1
|
Klangkalya N, Esteve-Sole A, Gil Silva AA, Stoddard JL, Niemela JE, Prader S, Dueckers G, Igel L, Niehues T, Stewart-Bates BC, Mousallem T, Fleisher TA, Rosenzweig SD, Kuehn HS. IKAROS protein stability is regulated by its early N-terminal region and C-terminal dimerization domain. Clin Immunol 2025; 274:110469. [PMID: 40024461 PMCID: PMC11929600 DOI: 10.1016/j.clim.2025.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
IKAROS, encoded by IKZF1, is a six zinc-finger (ZF) transcription factor integral to lymphocyte development and function. IKZF1 mutations affecting DNA-binding (ZF1-4) and dimerization (ZF5-6) have been extensively reported and result in human disease. Herein, we investigated IKZF1 mutations affecting protein stability. We identified ten individuals in three families carrying IKZF1 mutations mapping either to the pre-ZF1 area (D22N), or the dimerization domain (M494Vfs*86, Y503*) presenting with infections, immune dysregulation and/or lymphoproliferation with incomplete clinical penetrance. IKAROS expression was reduced in all mutation-carrier evaluated. Protein stability was decreased for D22N, V52L (another pre-ZF1 variant reported in COSMIC), Y503* and Del1-116, a laboratory-designed mutant encompassing the pre-ZF1 area. Mutants Y503* and Del1-116 also exhibited other impaired functions. IKAROS N-terminal pre-ZF1 area, encompassing a previously uncharacterized protein stability-associated region (PSAR), is crucial for IKAROS stability. Variants in the IKAROS PSAR leading to decreased protein stability and IKAROS haploinsufficiency seem sufficient to result in immune defects and IKAROS-associated diseases.
Collapse
Affiliation(s)
- Natchanun Klangkalya
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA; Department of Pediatric, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ana Esteve-Sole
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Agustin A Gil Silva
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Seraina Prader
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gregor Dueckers
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Lina Igel
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Benjamin C Stewart-Bates
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Talal Mousallem
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA.
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
de Smith AJ, Wahlster L, Jeon S, Kachuri L, Black S, Langie J, Cato LD, Nakatsuka N, Chan TF, Xia G, Mazumder S, Yang W, Gazal S, Eng C, Hu D, Burchard EG, Ziv E, Metayer C, Mancuso N, Yang JJ, Ma X, Wiemels JL, Yu F, Chiang CWK, Sankaran VG. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. CELL GENOMICS 2024; 4:100526. [PMID: 38537633 PMCID: PMC11019360 DOI: 10.1016/j.xgen.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jalen Langie
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tsz-Fung Chan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Guangze Xia
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Soumyaa Mazumder
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Celeste Eng
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Esteban González Burchard
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaomei Ma
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Del Giudice G, Serra A, Saarimäki LA, Kotsis K, Rouse I, Colibaba SA, Jagiello K, Mikolajczyk A, Fratello M, Papadiamantis AG, Sanabria N, Annala ME, Morikka J, Kinaret PAS, Voyiatzis E, Melagraki G, Afantitis A, Tämm K, Puzyn T, Gulumian M, Lobaskin V, Lynch I, Federico A, Greco D. An ancestral molecular response to nanomaterial particulates. NATURE NANOTECHNOLOGY 2023; 18:957-966. [PMID: 37157020 PMCID: PMC10427433 DOI: 10.1038/s41565-023-01393-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
The varied transcriptomic response to nanoparticles has hampered the understanding of the mechanism of action. Here, by performing a meta-analysis of a large collection of transcriptomics data from various engineered nanoparticle exposure studies, we identify common patterns of gene regulation that impact the transcriptomic response. Analysis identifies deregulation of immune functions as a prominent response across different exposure studies. Looking at the promoter regions of these genes, a set of binding sites for zinc finger transcription factors C2H2, involved in cell stress responses, protein misfolding and chromatin remodelling and immunomodulation, is identified. The model can be used to explain the outcomes of mechanism of action and is observed across a range of species indicating this is a conserved part of the innate immune system.
Collapse
Affiliation(s)
- G Del Giudice
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - A Serra
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere, Finland
| | - L A Saarimäki
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - K Kotsis
- School of Physics, University College Dublin, Dublin, Ireland
| | - I Rouse
- School of Physics, University College Dublin, Dublin, Ireland
| | - S A Colibaba
- School of Physics, University College Dublin, Dublin, Ireland
| | - K Jagiello
- Group of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | - A Mikolajczyk
- Group of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | - M Fratello
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - A G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Novamechanics Ltd, Nicosia, Cyprus
| | - N Sanabria
- National Institute for Occupational Health, National Health Laboratory Services, Johannesburg, South Africa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - M E Annala
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - J Morikka
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - P A S Kinaret
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLife), University of Helsinki, Helsinki, Finland
| | | | - G Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | | | - K Tämm
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - T Puzyn
- Group of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | - M Gulumian
- National Institute for Occupational Health, National Health Laboratory Services, Johannesburg, South Africa
- Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
| | - V Lobaskin
- School of Physics, University College Dublin, Dublin, Ireland
| | - I Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - A Federico
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere, Finland
| | - D Greco
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLife), University of Helsinki, Helsinki, Finland.
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|