1
|
Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front Immunol 2022; 13:936167. [PMID: 36341426 PMCID: PMC9633986 DOI: 10.3389/fimmu.2022.936167] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the lungs, macrophages constitute the first line of defense against pathogens and foreign bodies and play a fundamental role in maintaining tissue homeostasis. Activated macrophages show altered immunometabolism and metabolic changes governing immune effector mechanisms, such as cytokine secretion characterizing their classic (M1) or alternative (M2) activation. Lipopolysaccharide (LPS)-stimulated macrophages demonstrate enhanced glycolysis, blocked succinate dehydrogenase (SDH), and increased secretion of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Glycolysis suppression using 2 deoxyglucose in LPS-stimulated macrophages inhibits IL-1β secretion, but not TNF-α, indicating metabolic pathway specificity that determines cytokine production. In contrast to LPS, the nature of the immunometabolic responses induced by non-organic particles, such as silica, in macrophages, its contribution to cytokine specification, and disease pathogenesis are not well understood. Silica-stimulated macrophages activate pattern recognition receptors (PRRs) and NLRP3 inflammasome and release IL-1β, TNF-α, and interferons, which are the key mediators of silicosis pathogenesis. In contrast to bacteria, silica particles cannot be degraded, and the persistent macrophage activation results in an increased NADPH oxidase (Phox) activation and mitochondrial reactive oxygen species (ROS) production, ultimately leading to macrophage death and release of silica particles that perpetuate inflammation. In this manuscript, we reviewed the effects of silica on macrophage mitochondrial respiration and central carbon metabolism determining cytokine specification responsible for the sustained inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Antonella Marrocco
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Usuki Y, Ishii S, Ijiri M, Yoshida KI, Satoh T, Horigome S, Yoshida I, Mishima T, Fujita KI. Evaluation of Inhibitory Activities of UK-2A, an Antimycin-Type Antibiotic, and Its Synthetic Analogues against the Production of Anti-inflammatory Cytokine IL-4. JOURNAL OF NATURAL PRODUCTS 2018; 81:2590-2594. [PMID: 30417645 DOI: 10.1021/acs.jnatprod.8b00559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The inhibitory activities of the antimycin-class antibiotics UK-2A, antimycin A, and splenocin B against the production of anti-inflammatory cytokine IL-4, which is related to IgE-mediated allergic responses in rat basophilic leukemia (RBL-2H3) cells, were evaluated. Although antimycin A and splenocin B showed cytotoxicity at concentrations at which IL-4 release from the cells was restricted, UK-2A was found to restrict IL-4 release without cytotoxicity. Three UK-2A analogues (4-6) were then synthesized and assessed. Compound 5 restricted IL-4 release dose-dependently without cytotoxicity, and its effect was more potent than that of UK-2A.
Collapse
Affiliation(s)
- Yoshinosuke Usuki
- Department of Chemistry, Graduate School of Science , Osaka City University , 3-3-138 Sugimoto , Sumiyoshi, Osaka 558-8585 , Japan
| | - Saho Ishii
- Department of Chemistry, Graduate School of Science , Osaka City University , 3-3-138 Sugimoto , Sumiyoshi, Osaka 558-8585 , Japan
| | - Minako Ijiri
- Department of Chemistry, Graduate School of Science , Osaka City University , 3-3-138 Sugimoto , Sumiyoshi, Osaka 558-8585 , Japan
| | - Ken-Ichi Yoshida
- Department of Chemistry, Graduate School of Science , Osaka City University , 3-3-138 Sugimoto , Sumiyoshi, Osaka 558-8585 , Japan
| | - Tetsuya Satoh
- Department of Chemistry, Graduate School of Science , Osaka City University , 3-3-138 Sugimoto , Sumiyoshi, Osaka 558-8585 , Japan
| | - Satoru Horigome
- Saito Laboratory , Japan Food Research Laboratories , 4-41 Saito-asagi 7-chome , Ibaraki-shi, Osaka 567-0085 , Japan
| | - Izumi Yoshida
- Saito Laboratory , Japan Food Research Laboratories , 4-41 Saito-asagi 7-chome , Ibaraki-shi, Osaka 567-0085 , Japan
| | - Takashi Mishima
- Saito Laboratory , Japan Food Research Laboratories , 4-41 Saito-asagi 7-chome , Ibaraki-shi, Osaka 567-0085 , Japan
| | - Ken-Ichi Fujita
- Department of Biology, Graduate School of Science , Osaka City University , 3-3-138 Sugimoto , Sumiyoshi, Osaka 558-8585 , Japan
| |
Collapse
|
3
|
Xie X, Mao C, Liu X, Tan L, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung KWK, Chu PK, Wu S. Tuning the Bandgap of Photo-Sensitive Polydopamine/Ag 3PO 4/Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants. ACS CENTRAL SCIENCE 2018; 4:724-738. [PMID: 29974068 PMCID: PMC6026779 DOI: 10.1021/acscentsci.8b00177] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 05/20/2023]
Abstract
Bacterial infection and associated complications are threats to human health especially when biofilms form on biomedical devices and artificial implants. Herein, a hybrid polydopamine (PDA)/Ag3PO4/graphene oxide (GO) coating is designed and constructed to achieve rapid bacteria killing and eliminate biofilms in situ. By varying the amount of GO in the hybrid coating, the bandgap can be tuned from 2.52 to 2.0 eV so that irradiation with 660 nm visible light produces bacteria-killing effects synergistically in concert with reactive oxygen species (ROS). GO regulates the release rate of Ag+ to minimize the cytotoxicity while maintaining high antimicrobial activity, and a smaller particle size enhances the yield of ROS. After irradiation with 660 nm visible light for 15 min, the antimicrobial rates of the PDA/Ag3PO4/GO hybrid coating against Escherichia coli and Staphylococcus aureus are 99.53% and 99.66%, respectively. In addition, this hybrid coating can maintain a repeatable and sustained antibacterial efficacy. The released Ag+ and photocatalytic Ag3PO4 produce synergistic antimicrobial effects in which the ROS increases the permeability of the bacterial membranes to increase the probability of Ag+ to enter the cells to kill them together with ROS synergistically.
Collapse
Affiliation(s)
- Xianzhou Xie
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Ministry-of-Education Key Laboratory for the Green Preparation and
Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Congyang Mao
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Ministry-of-Education Key Laboratory for the Green Preparation and
Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Ministry-of-Education Key Laboratory for the Green Preparation and
Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Lei Tan
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Ministry-of-Education Key Laboratory for the Green Preparation and
Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhenduo Cui
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Xianjin Yang
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Yufeng Zheng
- State
Key Laboratory for Turbulence and Complex System and Department of
Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin Wai Kwok Yeung
- Department
of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Paul K. Chu
- Department
of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shuilin Wu
- School
of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
- Hubei
Collaborative Innovation Center for Advanced Organic Chemical Materials,
Ministry-of-Education Key Laboratory for the Green Preparation and
Application of Functional Materials, Hubei Key Laboratory of Polymer
Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Irwin MH, Kanara I, Pinkert CA, Powers WR, Steliou K, Vavvas DG, Kodukula K. Epigenetic Treatment of Neurodegenerative Ophthalmic Disorders: An Eye Toward the Future. Biores Open Access 2017; 6:169-181. [PMID: 29291141 PMCID: PMC5747116 DOI: 10.1089/biores.2017.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in ageing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innovative new approaches that target various mechanisms and sequelae driving conditions that result in adverse vision. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, including antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomedical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along with alternative and potentially more effective conjugates, which together harness the necessary potency, specificity, and biodistribution parameters required for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | | - Carl A. Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
- Bridgewater College, Bridgewater, Virginia
| |
Collapse
|