1
|
Zhang X, Lu L, Yi C, Li X. Protocol for profiling RNA m 5C methylation at base resolution using m 5C-TAC-seq. STAR Protoc 2025; 6:103599. [PMID: 39893640 PMCID: PMC11835647 DOI: 10.1016/j.xpro.2025.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
RNA 5-methylcytosine (m5C) is a widespread modification and plays a crucial role in gene expression regulation. Here, we present a protocol for transcriptome-wide m5C methylome profiling at base resolution using bisulfite-free m5C detection strategy enabled by ten-eleven translocation (TET)-assisted chemical labeling sequencing (m5C-TAC-seq). We detail steps for TET-assisted chemical labeling, library construction, and data analysis. m5C-TAC-seq enables accurate and robust m5C detection in various RNA species. For complete details on the use and execution of this protocol, please refer to Lu et al.1.
Collapse
Affiliation(s)
- Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Yan T, Chen Y, Mortishire-Smith B, Simeone A, Hofer A, Balasubramanian S. Selective Photocatalytic C-H Oxidation of 5-Methylcytosine in DNA. Angew Chem Int Ed Engl 2025; 64:e202413593. [PMID: 39231378 DOI: 10.1002/anie.202413593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Selective C-H activation on complex biological macromolecules is a key goal in the field of organic chemistry. It requires thermodynamically challenging chemical transformations to be delivered under mild, aqueous conditions. 5-Methylcytosine (5mC) is a fundamentally important epigenetic modification in DNA that has major implications for biology and has emerged as a vital biomarker. Selective functionalisation of 5mC would enable new chemical approaches to tag, detect and map DNA methylation to enhance the study and exploitation of this epigenetic feature. We demonstrate the first example of direct and selective chemical oxidation of 5mC to 5-formylcytosine (5fC) in DNA, employing a photocatalytic system. This transformation was used to selectively tag 5mC. We also provide proof-of-concept for deploying this chemistry for single-base resolution sequencing of 5mC and genetic bases adenine (A), cytosine (C), guanine (G), thymine (T) in DNA on a next-generation sequencing system. This work exemplifies how photocatalysis has the potential to transform the analysis of DNA.
Collapse
Affiliation(s)
- Tao Yan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yuqi Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ben Mortishire-Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Angela Simeone
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Alexandre Hofer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| |
Collapse
|
3
|
Bai D, Zhang X, Xiang H, Guo Z, Zhu C, Yi C. Simultaneous single-cell analysis of 5mC and 5hmC with SIMPLE-seq. Nat Biotechnol 2025; 43:85-96. [PMID: 38336903 DOI: 10.1038/s41587-024-02148-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Dynamic 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) modifications to DNA regulate gene expression in a cell-type-specific manner and are associated with various biological processes, but the two modalities have not yet been measured simultaneously from the same genome at the single-cell level. Here we present SIMPLE-seq, a scalable, base resolution method for joint analysis of 5mC and 5hmC from thousands of single cells. Based on orthogonal labeling and recording of 'C-to-T' mutational signals from 5mC and 5hmC sites, SIMPLE-seq detects these two modifications from the same molecules in single cells and enables unbiased DNA methylation dynamics analysis of heterogeneous biological samples. We applied this method to mouse embryonic stem cells, human peripheral blood mononuclear cells and mouse brain to give joint epigenome maps at single-cell and single-molecule resolution. Integrated analysis of these two cytosine modifications reveals distinct epigenetic patterns associated with divergent regulatory programs in different cell types as well as cell states.
Collapse
Affiliation(s)
- Dongsheng Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chenxu Zhu
- New York Genome Center, New York, NY, USA.
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
4
|
Chen F, Li X, Bai M, Zhao Y. Visualizing epigenetic modifications and their spatial proximities in single cells using three DNA-encoded amplifying FISH imaging strategies: BEA-FISH, PPDA-FISH and Cell-TALKING. Nat Protoc 2025; 20:220-247. [PMID: 39232201 DOI: 10.1038/s41596-024-01036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/11/2024] [Indexed: 09/06/2024]
Abstract
Epigenetic modifications and spatial proximities of nucleic acids and proteins play important roles in regulating physiological processes and disease progression. Currently available cell imaging methods, such as fluorescence in situ hybridization (FISH) and immunofluorescence, struggle to detect low-abundance modifications and their spatial proximities. Here we describe a step-by-step protocol for three DNA-encoded amplifying FISH-based imaging strategies to overcome these challenges for varying applications: base-encoded amplifying FISH (BEA-FISH), pairwise proximity-differentiated amplifying FISH (PPDA-FISH) and cellular macromolecules-tethered DNA walking indexing (Cell-TALKING). They all use the similar core principle of DNA-encoded amplification, which transforms different nonsequence molecular features into unique DNA barcodes for in situ rolling circle amplification and FISH analysis. This involves three key reactions in fixed cell samples: target labeling, DNA encoding and rolling circle amplification imaging. Using this protocol, these three imaging strategies achieve in situ counting of low-abundance modifications alone, the pairwise proximity-differentiated visualization of two modifications and the exploration of multiple modifications around one protein (one-to-many proximity), respectively. Low-abundance modifications, including 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil and 5-formyluracil, are clearly visualized in single cells. Various combinatorial patterns of nucleic acid modifications and/or histone modifications are found. The whole protocol takes ~2-4 d to complete, depending on different imaging applications.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Xinyin Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China.
| |
Collapse
|
5
|
Chen X, Xu H, Shu X, Song CX. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ 2025; 32:56-65. [PMID: 37658169 PMCID: PMC11742697 DOI: 10.1038/s41418-023-01213-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
The "epigenetics" concept was first described in 1942. Thus far, chemical modifications on histones, DNA, and RNA have emerged as three important building blocks of epigenetic modifications. Many epigenetic modifications have been intensively studied and found to be involved in most essential biological processes as well as human diseases, including cancer. Precisely and quantitatively mapping over 100 [1], 17 [2], and 160 [3] different known types of epigenetic modifications in histone, DNA, and RNA is the key to understanding the role of epigenetic modifications in gene regulation in diverse biological processes. With the rapid development of sequencing technologies, scientists are able to detect specific epigenetic modifications with various quantitative, high-resolution, whole-genome/transcriptome approaches. Here, we summarize recent advances in epigenetic modification sequencing technologies, focusing on major histone, DNA, and RNA modifications in mammalian cells.
Collapse
Affiliation(s)
- Xiufei Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Xiao Shu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
6
|
Parasyraki E, Mallick M, Hatch V, Vastolo V, Musheev MU, Karaulanov E, Gopanenko A, Moxon S, Méndez-Lago M, Han D, Schomacher L, Mukherjee D, Niehrs C. 5-Formylcytosine is an activating epigenetic mark for RNA Pol III during zygotic reprogramming. Cell 2024; 187:6088-6103.e18. [PMID: 39214079 DOI: 10.1016/j.cell.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
5-Methylcytosine (5mC) is an established epigenetic mark in vertebrate genomic DNA, but whether its oxidation intermediates formed during TET-mediated DNA demethylation possess an instructive role of their own that is also physiologically relevant remains unresolved. Here, we reveal a 5-formylcytosine (5fC) nuclear chromocenter, which transiently forms during zygotic genome activation (ZGA) in Xenopus and mouse embryos. We identify this chromocenter as the perinucleolar compartment, a structure associated with RNA Pol III transcription. In Xenopus embryos, 5fC is highly enriched on Pol III target genes activated at ZGA, notably at oocyte-type tandem arrayed tRNA genes. By manipulating Tet and Tdg enzymes, we show that 5fC is required as a regulatory mark to promote Pol III recruitment as well as tRNA expression. Concordantly, 5fC modification of a tRNA transgene enhances its expression in vivo. The results establish 5fC as an activating epigenetic mark during zygotic reprogramming of Pol III gene expression.
Collapse
Affiliation(s)
| | | | - Victoria Hatch
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | | | | | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | | | - Dandan Han
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz 55128, Germany; Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany.
| |
Collapse
|
7
|
Lu L, Zhang X, Zhou Y, Shi Z, Xie X, Zhang X, Gao L, Fu A, Liu C, He B, Xiong X, Yin Y, Wang Q, Yi C, Li X. Base-resolution m 5C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach. Mol Cell 2024; 84:2984-3000.e8. [PMID: 39002544 DOI: 10.1016/j.molcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.
Collapse
Affiliation(s)
- Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuenan Zhou
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zuokun Shi
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiwen Xie
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Zhang
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaoliao Gao
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Anbo Fu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- The Second Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
8
|
Wei Z, Yu L, Feng Y, Gan Z, Shen Y, Peng S, Xiao Y. Bioinspired Heterocoordination in Adaptable Cobalt Metal-Organic Framework for DNA Epigenetic Modification Detection. Anal Chem 2024; 96:9984-9993. [PMID: 38833588 DOI: 10.1021/acs.analchem.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Metal-organic frameworks (MOFs) show unique advantages in simulating the dynamics and fidelity of natural coordination. Inspired by zinc finger protein, a second linker was introduced to affect the homogeneous MOF system and thus facilitate the emergence of diverse functionalities. Under the systematic identification of 12 MOF species (i.e., metal ions, linkers) and 6 second linkers (trigger), a dissipative system consisting of Co-BDC-NO2 and o-phenylenediamine (oPD) was screened out, which can rapidly and in situ generate a high photothermal complex (η = 36.9%). Meanwhile, both the carboxylation of epigenetic modifications and metal ion (Fe3+, Ni2+, Cu2+, Zn2+, Co2+ and Mn2+) screening were utilized to improve the local coordination environment so that the adaptable Co-MOF growth on the DNA strand was realized. Thus, epigenetic modification information on DNA was converted to an amplified metal ion signal, and then oPD was further introduced to generate bimodal dissipative signals by which a simple, high-sensitivity detection strategy of 5-hydroxymethylcytosine (LOD = 0.02%) and 5-formylcytosine (LOD = 0.025‰) was developed. The strategy provides one low-cost method (< 0.01 $/sample) for quantifying global epigenetic modifications, which greatly promotes epigenetic modification-based early disease diagnosis. This work also proposes a general heterocoordination design concept for molecular recognition and signal transduction, opening a new MOF-based sensing paradigm.
Collapse
Affiliation(s)
- Zhongyu Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yumin Feng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiwen Gan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yongjin Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
9
|
Chen S, Lai W, Wang H. Recent advances in high-performance liquid chromatography tandem mass spectrometry techniques for analysis of DNA damage and epigenetic modifications. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503755. [PMID: 38821674 DOI: 10.1016/j.mrgentox.2024.503755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/02/2024]
Abstract
Environmental exposure would cause DNA damage and epigenetic modification changes, potentially resulting in physiological dysfunction, thereby triggering diseases and even cancer. DNA damage and epigenetic modifications are thus promising biomarkers for environmental exposures and disease states. Benefiting from its high sensitivity and accuracy, high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is considered the "gold standard technique" for investigating epigenetic DNA modifications. This review summarizes the recent advancements of UHPLC-MS/MS-based technologies for DNA damage and epigenetic modifications analysis, mainly focusing on the innovative methods developed for UHPLC-MS/MS-related pretreatment technologies containing efficient genomic DNA digestion and effective removal of the inorganic salt matrix, and the new strategies for improving detection sensitivity of liquid chromatography-mass spectrometry. Moreover, we also summarized the novel hyphenated techniques of the advanced UHPLC-MS/MS coupled with other separation and analysis methods for the measurement of DNA damage and epigenetic modification changes in special regions and fragments of chromosomes.
Collapse
Affiliation(s)
- Shaokun Chen
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
10
|
Li Y, Zhou H, Chen S, Li Y, Guo Y, Chen X, Wang S, Wang L, Gan Y, Zhang S, Zheng Y, Sheng J, Zhou Z, Wang R. Bioorthogonal labeling and profiling of N6-isopentenyladenosine (i6A) modified RNA. Nucleic Acids Res 2024; 52:2808-2820. [PMID: 38426933 PMCID: PMC11014277 DOI: 10.1093/nar/gkae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Chemical modifications in RNAs play crucial roles in diversifying their structures and regulating numerous biochemical processes. Since the 1990s, several hydrophobic prenyl-modifications have been discovered in various RNAs. Prenyl groups serve as precursors for terpenes and many other biological molecules. The processes of prenylation in different macromolecules have been extensively studied. We introduce here a novel chemical biology toolkit that not only labels i6A, a prenyl-modified RNA residue, by leveraging the unique reactivity of the prenyl group, but also provides a general strategy to incorporate fluorescence functionalities into RNAs for molecular tracking purposes. Our findings revealed that iodine-mediated cyclization reactions of the prenyl group occur rapidly, transforming i6A from a hydrogen-bond acceptor to a donor. Based on this reactivity, we developed an Iodine-Mediated Cyclization and Reverse Transcription (IMCRT) tRNA-seq method, which can profile all nine endogenous tRNAs containing i6A residues in Saccharomyces cerevisiae with single-base resolution. Furthermore, under stress conditions, we observed a decline in i6A levels in budding yeast, accompanied by significant decrease of mutation rate at A37 position. Thus, the IMCRT tRNA-seq method not only permits semi-quantification of i6A levels in tRNAs but also holds potential for transcriptome-wide detection and analysis of various RNA species containing i6A modifications.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongling Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shasha Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinan Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sheng Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Youfang Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shusheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya Ying Zheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
11
|
Ding JH, Li G, Xiong J, Liu FL, Xie NB, Ji TT, Wang M, Guo X, Feng YQ, Ci W, Yuan BF. Whole-Genome Mapping of Epigenetic Modification of 5-Formylcytosine at Single-Base Resolution by Chemical Labeling Enrichment and Deamination Sequencing. Anal Chem 2024; 96:4726-4735. [PMID: 38450632 DOI: 10.1021/acs.analchem.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.
Collapse
Affiliation(s)
- Jiang-Hui Ding
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Gaojie Li
- Key Laboratory of Genomics and Precision Medicine, and China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiong
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fei-Long Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, and China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
13
|
N M, Kumar PS, Manna D. Chemical Methods to Identify Epigenetic Modifications in Cytosine Bases. Chem Asian J 2024; 19:e202301005. [PMID: 38206202 DOI: 10.1002/asia.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Chemical modifications to Cytosine bases are among the most studied epigenetic markers and their detection in the human genome plays a crucial role in gaining more insights about gene regulation, prognosis of genetic disorders and unraveling genetic inheritance patterns. The Cytosine methylated at the 5th position and oxidized derivatives thereof generated in the demethylation pathways, perform separate and unique epigenetic functions in an organism. As the presence of various Cytosine modifications is associated with diverse diseases, including cancer, there has been a strong focus on developing methods, both chemical and alternative approaches, capable of detecting these modifications at a single-base resolution across the entire genome. In this comprehensive review, we aim to consolidate the various chemical methods and understanding their chemistry that have been established to date for the detection of various Cytosine modifications.
Collapse
Affiliation(s)
- Madhumitha N
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Parvathy S Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
14
|
Wu D, Huang K, Shi J, Liu S, Wang W, Jiang J, Ren H, Chen T, Ye S, Chen J, Wei W, Li X. Genome-Wide 5-Formylcytosine Redistribution in KCl-Stimulated Mouse Primary Cortical Neurons is Associated with Neuronal Activity. ACS Chem Neurosci 2023; 14:4352-4362. [PMID: 38019771 DOI: 10.1021/acschemneuro.3c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
An abundant accumulation of DNA demethylation intermediates has been identified in mammalian neurons. While the roles of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in neuronal function have been extensively studied, little is known about 5-formylcytosine (5fC) in neurons. Therefore, this study was to investigate the genome-wide distribution and potential functions of 5fC in neurons. In an in vitro culture model of mouse primary cortical neurons, we observed a dynamic increase in the total 5fC level in the neuronal genome after potassium chloride (KCl) stimulation. Subsequently, we employed chemical-labeling-enabled C-to-T conversion sequencing (CLEVER-seq) to examine the 5fC distribution at a single-base resolution. Bioinformatic analysis revealed that 5fC was enriched in promoter regions, and gene ontology (GO) analysis indicated that the differential formylation positions (DFP) were correlated with neuronal activities. Additionally, integration with previously published nascent RNA-seq data revealed a positive correlation between gene formylation and mRNA expression levels. As well, 6 neuro-activity-related genes with a positive correlation were validated. Furthermore, we observed higher chromatin accessibility and RNA pol II binding signals near the 5fC sites through multiomics analysis. Motif analysis identified potential reader proteins for 5fC. In conclusion, our work provides a valuable resource for studying the dynamic changes and functional roles of 5fC in activated mammalian neurons.
Collapse
Affiliation(s)
- Du Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Kaixin Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Jichun Shi
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Sha Liu
- Department of General Practice, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Wenjing Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Haobin Ren
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane 4702, Australia
| | - Tongyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Shengda Ye
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, 430071 Wuhan, China
- Medical Research Institute, Wuhan University, 430071 Wuhan, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| |
Collapse
|
15
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Chen Y, Jiang H, Hao T, Zhang N, Li M, Wang X, Wang X, Wei W, Zhao J. Fluorogenic Reactions in Chemical Biology: Seeing Chemistry in Cells. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:590-619. [PMID: 39474135 PMCID: PMC11504613 DOI: 10.1021/cbmi.3c00029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/05/2025]
Abstract
Among the recent development of click chemistry and bioorthogonal chemistry, fluorogenic reactions occupy a unique place in that fluorescence is generated from nonfluorescent reactants, thereby rendering them highly useful and convenient in no-wash live-cell imaging. This topic was extensively reviewed in 2010 by Wang et al. (Chem. Soc. Rev.2010, 39, 1233-1239) and in 2014 by Lin et al. (Curr. Opin. Chem. Biol.2014, 21, 89-95). This review presents a comprehensive and up-to-date overview on the fluorogenic reactions in the past decade. The reactions are classified into four major categories on the basis of the mechanisms of fluorescence generation. Representative examples of each type are discussed briefly in terms of structure, mechanism, and advantages. We describe the latest applications of fluorogenic reactions in chemical biology. In the end, future opportunities and challenges in this field are tentatively proposed.
Collapse
Affiliation(s)
- Yanyan Chen
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Jiang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tingting Hao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingyu Li
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingyun Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiuxiu Wang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Lei Z, Meng H, Rao X, Zhao H, Yi C. Detect-seq, a chemical labeling and biotin pull-down approach for the unbiased and genome-wide off-target evaluation of programmable cytosine base editors. Nat Protoc 2023:10.1038/s41596-023-00837-4. [PMID: 37277562 DOI: 10.1038/s41596-023-00837-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/09/2023] [Indexed: 06/07/2023]
Abstract
Programmable cytosine base editors show promising approaches for correcting pathogenic mutations; yet, their off-target effects have been of great concern. Detect-seq (dU-detection enabled by C-to-T transition during sequencing) is an unbiased, sensitive method for the off-target evaluation of programmable cytosine base editors. It profiles the editome by tracing the editing intermediate dU, which is introduced inside living cells and edited by programmable cytosine base editors. The genomic DNA is extracted, preprocessed and labeled by successive chemical and enzymatic reactions, followed by biotin pull-down to enrich the dU-containing loci for sequencing. Here, we describe a detailed protocol for performing the Detect-seq experiment, and a customized, open-source, bioinformatic pipeline for analyzing the characteristic Detect-seq data is also provided. Unlike those previous whole-genome sequencing-based methods, Detect-seq uses an enrichment strategy and hence is endowed with great sensitivity, a higher signal-to-noise ratio and no requirement for high sequencing depth. Furthermore, Detect-seq is widely applicable for both mitotic and postmitotic biological systems. The entire protocol typically takes 5 d from the genomic DNA extraction to sequencing and ~1 week for data analysis.
Collapse
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xichen Rao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Huanan Zhao
- School of Life Sciences, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking University Genome Editing Research Center, Peking University, Beijing, China.
| |
Collapse
|
18
|
Qi Q, Liu X, Fu F, Shen W, Cui S, Yan S, Zhang Y, Du Y, Tian T, Zhou X. Utilizing Epigenetic Modification as a Reactive Handle To Regulate RNA Function and CRISPR-Based Gene Regulation. J Am Chem Soc 2023; 145:11678-11689. [PMID: 37191624 DOI: 10.1021/jacs.3c01864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The current methods to control RNA functions in living conditions are limited. The new RNA-controlling strategy presented in this study involves utilizing 5-formylcytidine (f5C)-directed base manipulation. This study shows that malononitrile and pyridine boranes can effectively manipulate the folding, small molecule binding, and enzyme recognition of f5C-bearing RNAs. We further demonstrate the efficiency of f5C-directed reactions in controlling two different clustered regularly interspaced short palindromic repeat (CRISPR) systems. Although further studies are needed to optimize the efficiency of these reactions in vivo, this small molecule-based approach presents exciting new opportunities for regulating CRISPR-based gene expression and other applications.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Fang Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Shuangyu Cui
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Shen Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yutong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuhao Du
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
19
|
Laqqan MM, Al-Ghora SS, Yassin MM. Impact of waterpipe and tobacco cigarette smoking on global DNA methylation and nuclear proteins genes transcription in spermatozoa: a comparative investigation. Inhal Toxicol 2023:1-10. [PMID: 37145555 DOI: 10.1080/08958378.2023.2208608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Waterpipe smoking is harmful and dangerous, and it is a growing threat to public health. OBJECTIVES This study was performed to evaluate the influence of waterpipe smoking on global DNA methylation, DNA fragmentation, and protamine deficiency in spermatozoa compared to cigarette heavy smokers and nonsmokers, and to determine whether the transcription levels of spermatozoa nuclear proteins genes 'PRM1, PRM2, and H2BFWT' in waterpipe smokers are different compared to cigarette heavy smokers and nonsmokers. METHODS A total of 900 semen samples were collected from males with a mean age of 32.5 ± 6.3 years (300 waterpipe smokers, 300 cigarette heavy smokers, and 300 nonsmokers). The nucleic acids were isolated from purified spermatozoa, and then the global DNA methylation and transcription levels of the PRM1, PRM2, and H2BFWT genes were assessed using ELISA and qPCR, respectively. RESULTS A significant increase was found in the level of global DNA methylation (8.6 ± 0.6 ng/μl vs. 7.1 ± 0.6 ng/μl and 4.7 ± 0.6 ng/μl, p < 0.001), protamine deficiency (72.8 ± 15.3 vs. 51.7 ± 19.2 and 15.3 ± 5.9%, p < 0.001), and DNA fragmentation (73.4 ± 13.4 vs. 50.5 ± 18.9 and 9.3 ± 4.3%, p < 0.001) in waterpipe smokers compared to cigarette heavy smokers and nonsmokers. A significant increase was shown in the transcription levels of PRM1, PRM2, and H2BFWT genes in waterpipe smokers compared to cigarette heavy smokers and nonsmokers (p < 0.001). A down-regulation was found in the transcription level of these genes in different smoker groups compared to nonsmokers (<0.001). CONCLUSION This study suggests that waterpipe smoking is more harmful than cigarette smoking on semen parameters, global DNA methylation, and transcription of nuclear protein genes.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Faculty of Health Sciences, Department of Medical Laboratory Sciences, Islamic University of Gaza, Gaza, Palestine
| | - Said S Al-Ghora
- Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine
| | - Maged M Yassin
- Faculty of Medicine, Department of Human Physiology, Islamic University of Gaza, Gaza, Palestine
| |
Collapse
|
20
|
Abstract
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Collapse
Affiliation(s)
- Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Meng Michelle Xu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China;
| |
Collapse
|
21
|
Searle B, Müller M, Carell T, Kellett A. Third-Generation Sequencing of Epigenetic DNA. Angew Chem Int Ed Engl 2023; 62:e202215704. [PMID: 36524852 DOI: 10.1002/anie.202215704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The discovery of epigenetic bases has revolutionised the understanding of disease and development. Among the most studied epigenetic marks are cytosines covalently modified at the 5 position. In order to gain insight into their biological significance, the ability to determine their spatiotemporal distribution within the genome is essential. Techniques for sequencing on "next-generation" platforms often involve harsh chemical treatments leading to sample degradation. Third-generation sequencing promises to further revolutionise the field by providing long reads, enabling coverage of highly repetitive regions of the genome or structural variants considered unmappable by next generation sequencing technology. While the ability of third-generation platforms to directly detect epigenetic modifications is continuously improving, at present chemical or enzymatic derivatisation presents the most convenient means of enhancing reliability. This Review presents techniques available for the detection of cytosine modifications on third-generation platforms.
Collapse
Affiliation(s)
- Bethany Searle
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Markus Müller
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Andrew Kellett
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| |
Collapse
|
22
|
McGregor LA, Zhu B, Goetz AM, Sczepanski JT. Thymine DNA Glycosylase is an RNA-Binding Protein with High Selectivity for G-Rich Sequences. J Biol Chem 2023; 299:104590. [PMID: 36889585 PMCID: PMC10124917 DOI: 10.1016/j.jbc.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships is poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Baiyu Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Allison M Goetz
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | | |
Collapse
|
23
|
Laqqan MM, Yassin MM. Effect of hubble-bubble smoking on global DNA methylation and transcription levels of protamine and histone genes in human spermatozoa. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:53-60. [PMID: 36744325 DOI: 10.1080/10934529.2023.2174326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess the impact of hubble-bubble smoking on global DNA methylation, DNA fragmentation; protamine deficiency of spermatozoa, and to determine whether the transcription levels of the protamine and histone genes are different in hubble-bubble smokers compared to nonsmokers. Five hundred semen samples were collected from males with an average age of 32.2 ± 6.1 years (300 hubble-bubble smokers "60%" and 200 nonsmokers "40%"). The nucleic acid was isolated from purified sperm, then ELISA and qPCR were used to evaluate the global DNA methylation and transcription level of protamine and histone, respectively. A significant elevation in global DNA methylation, protamine deficiency, and DNA fragmentation was found in hubble-bubble smokers compared to nonsmokers (P < 0.0001). A significant decline was shown in transcription levels of protamine and histone genes in hubble-bubble compared to nonsmokers (P < 0.0001). Additionally, a down-regulation in the transcription levels of protamine and histone was revealed in hubble-bubble compared to nonsmokers with fold change (0.0001 and 0.007, respectively). In conclusion, this study provided proof that hubble-bubble smoking has a negative impact on global DNA methylation, DNA fragmentation, protamine deficiency, and the transcription of protamine and histone genes in spermatozoa, and these findings influence negatively males' fecundity.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University of Gaza, Gaza, Palestine
- Department of Gynecology & Obstetrics, Faculty of Medicine, Saarland University "Graduate", Saarbrucken, Germany
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine
| |
Collapse
|
24
|
Wang H, Wang Y, Luo Z, Lin X, Liu M, Wu F, Shao H, Zhang W. Advances in Off-Target Detection for CRISPR-Based Genome Editing. Hum Gene Ther 2023; 34:112-128. [PMID: 36453226 DOI: 10.1089/hum.2022.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing system exhibits marked potential for both gene editing and gene therapy, and its continuous improvement contributes to its great clinical potential. However, the largest hindrance to its application in clinical practice is the presence of off-target effects (OTEs). Thus, in addition to continuous optimization of the CRISPR system to reduce and eventually eliminate OTEs, further development of unbiased genome-wide detection of OTEs is key for its successful clinical application. This article summarizes detection strategies for OTEs of different CRISPR systems, to provide detailed guidance for the detection of OTEs in CRISPR-based genome editing.
Collapse
Affiliation(s)
- Haozheng Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and.,Department of Pharmacy, Meizhou People's Hospital, Meizhou, People's Republic of China
| | - Yangmin Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Zhongtao Luo
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Xinjian Lin
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Meilin Liu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| |
Collapse
|
25
|
Jin X, Huang Z, Xie L, Liu L, Han D, Cheng L. Photo‐Facilitated Detection and Sequencing of 5‐Formylcytidine RNA. Angew Chem Int Ed Engl 2022; 61:e202210652. [DOI: 10.1002/anie.202210652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao‐Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zu‐Rui Huang
- China National Center for Bioinformation Beijing Institute of Genomics Chinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Da‐Li Han
- China National Center for Bioinformation Beijing Institute of Genomics Chinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
26
|
Chen F, Xue J, Bai M, Fan C, Zhao Y. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification. Acc Chem Res 2022; 55:2248-2259. [PMID: 35904502 DOI: 10.1021/acs.accounts.2c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleic acids are naturally decorated with various chemical modifications at nucleobases. Most nucleic acid modifications (NAMs) do not alter Watson-Crick base pairing but can regulate gene expression known as "epigenetics". Their abundances present a very wide range, approximately 10-2 to 10-6 of total bases. Different NAMs may coexist in spatial proximity (e.g., <20 nm) in the crowded intracellular environment. Considering the highly dynamic chromatin accessibility (physical access to DNA), the NAMs in inaccessible DNA probably plays different roles. These multilayered features of NAMs vary from cell to cell. Our understanding of the function and mechanism of NAMs in biological processes and disease states has largely been driven by the expanding array of sequencing-based methodologies. However, an underexplored aspect is the measurement of the subcellular distribution, spatial proximity, and inaccessibility of NAMs in single cells. In recent years, we have developed new approaches that light up single-cell NAMs with single-site sensitivity. These methods are mainly based on the integration of chemical or chemoenzymatic tools, DNA amplification and nanotechnology, and/or microfluidics. An overview of these methods together with conventional methods such as immunofluorescence (IF) and fluorescence in situ hybridization (FISH) is provided in this Account.Our laboratory has proposed DNA-encoded amplification (DEA) as the main strategy for developing a set of single-cell NAM imaging methods. In brief, DEA transforms the different features of NAMs into unique DNA primers for rolling circle amplification (RCA) followed by FISH imaging. The first method is base-encoded amplifying FISH (BEA-FISH), in which we convert individual NAMs into RCA primers via chemoselective labeling and click bioconjugation. It enables the in situ visualization of low-abundance NAMs (e.g., 5hmU), which is impracticable by conventional methods. We subsequently developed pairwise proximity-differentiated amplifying FISH (PPDA-FISH), which integrates BEA-FISH with DNA nanotechnology. PPDA-FISH utilizes proximity ligation and toehold strand displacement to label the adjacent site of two different NAMs (one-to-one proximity) and their respective residual sites with three unique RCA probes. It achieves simultaneous counting of the above-mentioned three types of modified sites in the same cells. The third method is cellular macromolecule-tethered DNA walking indexing (Cell-TALKING) to probe more than two NAMs within the same nanoenvironments. Cell-TALKING uses dynamic DNA proximity cleavage to continuously activate different preblocked RCA primers (for each NAM) near one walking probe (for one target molecule). We have explored three NAMs around one histone (one-to-many proximity) in different cancer cell lines and clinical specimens. Then, we describe a single-cell hydrogel encoding amplification (scHEA) method by integrating droplet microfluidics with BEA-FISH. This method generates hydrogel beads that encapsulate single cells and their genomic DNA after cell lysis. It realizes the analysis of global (accessible and inaccessible) DNA from the same cells. We find that the global levels of both 5hmC and 5hmU in single cells can distinguish different breast cancer cells. Finally, the current limitations of these strategies and the future development directions are also discussed. We hope that this Account can spark new ideas and invite new efforts from different disciplines for single-cell NAM analysis.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
27
|
Huang Q, Chen X, Meng QF, Yue L, Jiang W, Zhao XZ, Rao L, Chen X, Chen S. Microfluidics-Assisted Fluorescence Mapping of DNA Phosphorothioation. Anal Chem 2022; 94:10479-10486. [PMID: 35834188 DOI: 10.1021/acs.analchem.2c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the key player of a new restriction modification system, DNA phosphorothioate (PT) modification, which swaps oxygen for sulfur on the DNA backbone, protects the bacterial host from foreign DNA invasion. The identification of PT sites helps us understand its physiological defense mechanisms, but accurately quantifying this dynamic modification remains a challenge. Herein, we report a simple quantitative analysis method for optical mapping of PT sites in the single bacterial genome. DNA molecules are fully stretched and immobilized in a microfluidic chip by capillary flow and electrostatic interactions, improving the labeling efficiency by maximizing exposure of PT sites on DNA while avoiding DNA loss and damage. After screening 116 candidates, we identified a bifunctional chemical compound, iodoacetyl-polyethylene glycol-biotin, that can noninvasively and selectively biotinylate PT sites, enabling further labeling with streptavidin fluorescent nanoprobes. With this method, PT sites in PT+ DNA can be easily detected by fluorescence, while almost no detectable ones were found in PT- DNA, achieving real-time visualization of PT sites on a single DNA molecule. Collectively, this facile genome-wide PT site detection method directly characterizes the distribution and frequency of DNA modification, facilitating a better understanding of its modification mechanism that can be potentially extended to label DNAs in different species.
Collapse
Affiliation(s)
- Qinqin Huang
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xingxiang Chen
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.,School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ludan Yue
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Jiang
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xing-Zhong Zhao
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lang Rao
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
28
|
Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 2022; 606:804-811. [PMID: 35551512 DOI: 10.1038/s41586-022-04836-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
DddA-derived cytosine base editors (DdCBEs), which are fusions of the split-DddA halves and transcription activator-like effector (TALE) array proteins, enable targeted C·G-to- T·A conversions in mitochondrial DNA1. However, its genome-wide specificity is poorly understood. Here we show that the mitochondrial base editor induces extensive off-target editing in the nuclear genome. Genome-wide, unbiased analysis of its editome reveals hundreds of off-target sites that are TALE array sequence (TAS)-dependent or -independent. TAS-dependent off-target sites in the nuclear DNA (nDNA) are often specified by only one of the two TALE repeats, challenging the principle that DdCBEs are guided by a paired TALE proteins positioned in close proximity. TAS-independent nDNA off-target sites are frequently shared among DdCBEs with distinct TALE arrays. Notably, they co-localize strongly with CTCF-binding sites and are enriched in TAD boundaries. We also engineered DdCBE to alleviate such off-target effect. Collectively, our results have implications for the use of DdCBEs in basic research and therapeutic applications, and suggest the need to thoroughly define and evaluate the off-target effects of base editing tools.
Collapse
|
29
|
Qualitative and quantitative detection of aldehydes in DNA with 2-amino benzamidoxime derivative. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Abstract
Epitranscriptomic RNA modifications can regulate biological processes, but there remains a major gap in our ability to identify and measure individual modifications at nucleotide resolution. Here we present Mal-Seq, a chemical method for sequencing 5-formylcytosine (f5C) modifications on RNA based on the selective and efficient malononitrile-mediated labeling of f5C residues to generate adducts that are read as C-to-T mutations upon reverse transcription and polymerase chain reaction amplification. We apply Mal-Seq to characterize the prevalence of f5C at the wobble position of mt-tRNA(Met) in different organisms and tissue types and find that high-level f5C modification is present in mammals but lacking in lower eukaryotes. Our work sheds light on mitochondrial tRNA modifications throughout eukaryotic evolution and provides a general platform for characterizing the f5C epitranscriptome.
Collapse
Affiliation(s)
- Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
31
|
Ito Y, Hari Y. Synthesis of Nucleobase-Modified Oligonucleotides by Post-Synthetic Modification in Solution. CHEM REC 2022; 22:e202100325. [PMID: 35119181 DOI: 10.1002/tcr.202100325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Oligonucleotides containing modified nucleobases have applications in various technologies. In general, to synthesize oligonucleotides with different nucleobase structures, each modified phosphoramidite monomer needs to be prepared over multiple steps and then introduced onto the oligonucleotides, which is time-consuming and inefficient. Post-synthetic modification is a powerful strategy for preparing many types of modified oligonucleotides, especially nucleobase-modified ones. Depending on the stage of modification, post-synthetic modification can be divided into two stages: "solid-phase modification," wherein an oligonucleotide attaches to the resin, and "solution-phase modification," wherein an oligonucleotide detaches itself from the resin. In this review, we focus on post-synthetic modification in solution for the synthesis of nucleobase-modified oligonucleotides, except the modifications to linkers for conjugation. Moreover, the reactions are summarized for each modified position of the nucleobases.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
32
|
Xiao F, Wang Q, Zhang K, Liu C, Zou G, Zhou X. Oxime formation coordination-directed detection of genome-wide thymine oxides with nanogram-scale sample input. Chem Sci 2022; 13:9074-9078. [PMID: 36091206 PMCID: PMC9365094 DOI: 10.1039/d2sc03013f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
We report a convenient strategy to quantify 5-formyluracil (5fU) and 5-hydroxymethyluracil (5hmU) in biological samples, using only 40 ng of sample input on a laboratory real-time PCR instrument.
Collapse
Affiliation(s)
- Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Kaiyuan Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chaoxing Liu
- University of California, Riverside Department of Chemistry, USA
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
33
|
Structure and Function of TET Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:239-267. [DOI: 10.1007/978-3-031-11454-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Liu H, Wang Y, Zhou X. Labeling and sequencing nucleic acid modifications using bio-orthogonal tools. RSC Chem Biol 2022; 3:994-1007. [PMID: 35975003 PMCID: PMC9347354 DOI: 10.1039/d2cb00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
The bio-orthogonal reaction is a type of reaction that can occur within a cell without interfering with the active components of the cell. Bio-orthogonal reaction techniques have been used to label and track the synthesis, metabolism, and interactions of distinct biomacromolecules in cells. Thus, it is a handy tool for analyzing biological macromolecules within cells. Nucleic acid modifications are widely distributed in DNA and RNA in cells and play a critical role in regulating physiological and pathological cellular activities. Utilizing bio-orthogonal tools to study modified bases is a critical and worthwhile research direction. The development of bio-orthogonal reactions focusing on nucleic acid modifications has enabled the mapping of nucleic acid modifications in DNA and RNA. This review discusses the recent advances in bio-orthogonal labeling and sequencing nucleic acid modifications in DNA and RNA. Labeling nucleic acid modifications using bio-orthogonal tools, then sequencing and imaging the labeled modifications in DNA and RNA.![]()
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
35
|
Liu J, Yang W, Zhang X, Wang Y, Zhou X. Bisulfite-free and quantitative detection of 5-formylcytosine in DNA through qPCR. Chem Commun (Camb) 2021; 57:13796-13798. [PMID: 34877946 DOI: 10.1039/d1cc05987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An easily operated bisulfite-free method was presented to detect and quantify 5fC through quantitative real-time PCR. Malononitrile can selectively label 5fC under mild reaction conditions causing a C-to-T conversion that affects the nick ligation of the complementary pairing oligos, and then the ligation product is amplified and visualized by qPCR.
Collapse
Affiliation(s)
- Jizhou Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| |
Collapse
|
36
|
Wang Q, Yin H, Zhou Y, Cao L, Yu Z, Xu Y, Ai S. Photoelectrochemical Biosensor for
5‐Formylcytosine
Based on
WS
2
/Bi/
Bi
2
O
2
CO
3
Nanocomposite and Rolling Circle Amplification. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Lulu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Zhengkun Yu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Yamin Xu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| |
Collapse
|
37
|
Yang W, Han S, Zhang X, Wang Y, Zou G, Liu C, Xu M, Zhou X. Sequencing 5-Formyluracil in Genomic DNA at Single-Base Resolution. Anal Chem 2021; 93:15445-15451. [PMID: 34775754 DOI: 10.1021/acs.analchem.1c03339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Albeit with low content, 5-formyluracil has been an important modification in genomic DNA. 5-formyluracil was found to be widely distributed among living bodies. Due to the equilibrium of keto-enol form, 5-formyluracil could be base-paired with guanine, thus inducing mutations in DNA. The highly reactive aldehyde group of 5-formyluracil could also cross-link with proteins nearby, preventing gene replication and expression. In certain cancerous tissues, the content of 5-formyluracil was found to be higher than the normal tissues adjacent to the tumor, and 5-formyluracil might be an important potential epigenetic mark. Nevertheless, the lack of a higher resolution sequencing technique has hampered the studies of 5-formyluracil. We adjusted the base-pairing of 5-formyluracil during the PCR amplification by changing the pH. Hence, we adopted the Alkaline Modulated 5-formyluracil Sequencing (AMfU-Seq), a single-base resolution analysis method, to profile 5-formyluracil at the genome scale. We analyzed the distribution of 5-formyluracil in the human thyroid carcinoma cells using AMfU-Seq. This technique can be used in the future investigations of 5-formyluracil.
Collapse
Affiliation(s)
- Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Muxin Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| |
Collapse
|
38
|
Su L, Chen F, Yu H, Yan H, Zhao F, Fan C, Zhao Y. Addition-Elimination Mechanism-Activated Nucleotide Transition Sequencing for RNA Dynamics Profiling. Anal Chem 2021; 93:13974-13980. [PMID: 34612623 DOI: 10.1021/acs.analchem.1c03361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic information of intracellular transcripts is essential to understand their functional roles. Routine RNA-sequencing (RNA-seq) methods only measure RNA species at a steady state and do not provide RNA dynamic information. Here, we develop addition-elimination mechanism-activated nucleotide transition sequencing (AENT-seq) for transcriptome-wide profiling of RNA dynamics. In AENT-seq, nascent transcripts are metabolically labeled with 4-thiouridine (4sU). The total RNA is treated with N2H4·H2O under aqueous conditions. N2H4·H2O is demonstrated to convert 4sU to 4-hydrazino cytosine (C*) based on an addition-elimination chemistry. C* is regarded as cytosine (C) during the DNA extension process. This 4sU-to-C transition marks nascent transcripts, so it enables sequencing analysis of RNA dynamics. We apply our AENT-seq to investigate transcript dynamic information of several genes involved in cancer progression and metastasis. This method uses a simple chemical reaction in aqueous solutions and will be rapidly disseminated with extensive applications.
Collapse
Affiliation(s)
- Li Su
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Hao Yan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Fengjiao Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai JiaoTong University, Shanghai 200127, China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
39
|
Schmidl D, Jonasson NSW, Korytiaková E, Carell T, Daumann LJ. Biomimetic Iron Complex Achieves TET Enzyme Reactivity**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Schmidl
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Niko S. W. Jonasson
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Eva Korytiaková
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Thomas Carell
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| | - Lena J. Daumann
- Department Chemie Ludwig-Maximilians-University München Butenandtstr. 5–13, Haus D München Germany
| |
Collapse
|
40
|
Schmidl D, Jonasson NSW, Korytiaková E, Carell T, Daumann LJ. Biomimetic Iron Complex Achieves TET Enzyme Reactivity*. Angew Chem Int Ed Engl 2021; 60:21457-21463. [PMID: 34181314 PMCID: PMC8518650 DOI: 10.1002/anie.202107277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Indexed: 12/12/2022]
Abstract
The epigenetic marker 5-methyl-2'-deoxycytidine (5mdC) is the most prevalent modification to DNA. It is removed inter alia via an active demethylation pathway: oxidation by Ten-Eleven Translocation 5-methyl cytosine dioxygenase (TET) and subsequent removal via base excision repair or direct demodification. Recently, we have shown that the synthetic iron(IV)-oxo complex [FeIV (O)(Py5 Me2 H)]2+ (1) can serve as a biomimetic model for TET by oxidizing the nucleobase 5-methyl cytosine (5mC) to its natural metabolites. In this work, we demonstrate that nucleosides and even short oligonucleotide strands can also serve as substrates, using a range of HPLC and MS techniques. We found that the 5-position of 5mC is oxidized preferably by 1, with side reactions occurring only at the strand ends of the used oligonucleotides. A detailed study of the reactivity of 1 towards nucleosides confirms our results; that oxidation of the anomeric center (1') is the most common side reaction.
Collapse
Affiliation(s)
- David Schmidl
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Niko S. W. Jonasson
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Eva Korytiaková
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Thomas Carell
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| | - Lena J. Daumann
- Department ChemieLudwig-Maximilians-University MünchenButenandtstr. 5–13, Haus DMünchenGermany
| |
Collapse
|
41
|
Cao M, Zhang C, Zhou L. DNA methylation detection technology and plasma-based methylation biomarkers in screening of gastrointestinal carcinoma. Epigenomics 2021; 13:1327-1339. [PMID: 34369810 DOI: 10.2217/epi-2021-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is of paramount importance for the evolution of human cancers. Its high sensitivity and specificity make it a potential biomarker for early cancer screening in the context of an increasing global burden of gastrointestinal (GI) carcinoma. More DNA methylation biomarkers are emerging with the development of liquid biopsy and sensitive DNA methylation detection technology. This review provides an overview of DNA methylation, focusing on the presentation and comparison of 5-methylcytosine detection technologies, and introduces the promising plasma-based cell-free DNA (cfDNA) methylation biomarkers published in recent years for early screening of GI carcinoma. Finally, we summarize and discuss the future of plasma cfDNA methylation markers detection as a clinical tool for early screening of GI carcinoma.
Collapse
Affiliation(s)
- Mengjiao Cao
- Department of Biochemistry, Department of the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuanfeng Zhang
- Department of Biochemistry, Department of the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Linfu Zhou
- Department of Biochemistry, Department of the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol 2021; 2:1096-1114. [PMID: 34458826 PMCID: PMC8341653 DOI: 10.1039/d1cb00022e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Apart from the four canonical nucleobases, DNA molecules carry a number of natural modifications. Substantial evidence shows that DNA modifications can regulate diverse biological processes. Dynamic and reversible modifications of DNA are critical for cell differentiation and development. Dysregulation of DNA modifications is closely related to many human diseases. The research of DNA modifications is a rapidly expanding area and has been significantly stimulated by the innovations of analytical methods. With the recent advances in methods and techniques, a series of new DNA modifications have been discovered in the genomes of prokaryotes and eukaryotes. Deciphering the biological roles of DNA modifications depends on the sensitive detection, accurate quantification, and genome-wide mapping of modifications in genomic DNA. This review provides an overview of the recent advances in analytical methods and techniques for both the quantification and genome-wide mapping of natural DNA modifications. We discuss the principles, advantages, and limitations of these developed methods. It is anticipated that new methods and techniques will resolve the current challenges in this burgeoning research field and expedite the elucidation of the functions of DNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
43
|
Eyres M, Lanfredini S, Xu H, Burns A, Blake A, Willenbrock F, Goldin R, Hughes D, Hughes S, Thapa A, Vavoulis D, Hubert A, D'Costa Z, Sabbagh A, Abraham AG, Blancher C, Jones S, Verrill C, Silva M, Soonawalla Z, Maughan T, Schuh A, Mukherjee S, O'Neill E. TET2 Drives 5hmc Marking of GATA6 and Epigenetically Defines Pancreatic Ductal Adenocarcinoma Transcriptional Subtypes. Gastroenterology 2021; 161:653-668.e16. [PMID: 33915173 DOI: 10.1053/j.gastro.2021.04.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by advanced disease stage at presentation, aggressive disease biology, and resistance to therapy, resulting in an extremely poor 5-year survival rate of <10%. PDAC is classified into transcriptional subtypes with distinct survival characteristics, although how these arise is not known. Epigenetic deregulation, rather than genetics, has been proposed to underpin progression, but exactly why is unclear and is hindered by the technical limitations of analyzing clinical samples. METHODS We performed genome-wide epigenetic mapping of DNA modifications 5-methylcytosine and 5-hydroxymethylcytosine (5hmc) using oxidative bisulfite sequencing from formalin-embedded sections. We identified overlap with transcriptional signatures in formalin-fixed, paraffin-embedded tissue from resected patients, via bioinformatics using iCluster and mutational profiling and confirmed them in vivo. RESULTS We found that aggressive squamous-like PDAC subtypes result from epigenetic inactivation of loci, including GATA6, which promote differentiated classical pancreatic subtypes. We showed that squamous-like PDAC transcriptional subtypes are associated with greater loss of 5hmc due to reduced expression of the 5-methylcytosine hydroxylase TET2. Furthermore, we found that SMAD4 directly supports TET2 levels in classical pancreatic tumors, and loss of SMAD4 expression was associated with reduced 5hmc, GATA6, and squamous-like tumors. Importantly, enhancing TET2 stability using metformin and vitamin C/ascorbic acid restores 5hmc and GATA6 levels, reverting squamous-like tumor phenotypes and WNT-dependence in vitro and in vivo. CONCLUSIONS We identified epigenetic deregulation of pancreatic differentiation as an underpinning event behind the emergence of transcriptomic subtypes in PDAC. Our data showed that restoring epigenetic control increases biomarkers of classical pancreatic tumors that are associated with improved therapeutic responses and survival.
Collapse
MESH Headings
- 5-Methylcytosine/analogs & derivatives
- 5-Methylcytosine/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Ascorbic Acid/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Differentiation
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases/genetics
- Dioxygenases/metabolism
- Epigenesis, Genetic/drug effects
- Epigenome
- Epigenomics
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Metformin/pharmacology
- Mice, Nude
- Mice, Transgenic
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Retrospective Studies
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Transcription, Genetic/drug effects
- Transcriptome
- Wnt Signaling Pathway/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Michael Eyres
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Adam Burns
- Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Robert Goldin
- Centre for Pathology, Imperial College, London, United Kingdom
| | - Daniel Hughes
- Department of Oncology, University of Oxford, Oxford, UK; Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Sophie Hughes
- Department of Oncology, University of Oxford, Oxford, UK
| | - Asmita Thapa
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Aline Hubert
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Ahmad Sabbagh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Christine Blancher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Nuffield Department of Surgical Sciences and Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Silva
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | | | - Anna Schuh
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Wang X, Martínez-Fernández L, Zhang Y, Zhang K, Improta R, Kohler B, Xu J, Chen J. Solvent-Dependent Stabilization of a Charge Transfer State is the Key to Ultrafast Triplet State Formation in an Epigenetic DNA Nucleoside. Chemistry 2021; 27:10932-10940. [PMID: 33860588 DOI: 10.1002/chem.202100787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/10/2022]
Abstract
2'-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1 nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco, 28049, Madrid, Spain
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Kun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| |
Collapse
|
45
|
Bai M, Cao X, Chen F, Xue J, Zhao Y, Zhao Y. Bioorthogonal Chemical Signature Enabling Amplified Visualization of Cellular Oxidative Thymines. Anal Chem 2021; 93:10495-10501. [PMID: 34293865 DOI: 10.1021/acs.analchem.1c01285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cellular oxidative thymines, 5-hydroxymethyluracil (5hmU) and 5-formyluracil (5fU), are found in the genomes of a diverse range of organisms, the distribution of which profoundly influence biological processes and living systems. However, the distribution of cellular oxidative thymines has not been explored because of lacking both specific bioorthogonal labeling and sensitivity methods for single-cell analysis. Herein, we report a bioorthogonal chemical signature enabling amplified visualization of cellular oxidative thymines in single cells. The synthesized ATP-γ-alkyne, an ATP analogue with bioorthogonal tag modified on γ-phosphate can be specifically linked to cellular 5hmU by chemoenzymatic labeling. DNA with 5-alkynephosphomethyluracil were then clicked with azide (N3)-modified 5hmU-primer. Identification of 5fU is based on selective reduction from 5fU to 5hmU, subsequent chemoenzymatic labeling of the newly generated 5hmU, and cross-linking with N3-modified 5fU-primer via click chemistry. Then, all of the 5hmU and 5fU sites are encoded with respective circularized barcodes. These barcodes are simultaneously amplified for multiplexed single-molecule imaging. The above two kinds of barcodes can be simultaneously amplified for differentiated visualization of 5hmU and 5fU in single cells. We find these two kinds of cellular oxidative thymines are spatially organized in a cell-type-dependent style with cell-to-cell heterogeneity. We also investigate their multilevel subcellular information and explore their dynamic changes during cell cycles. Further, using DNA sequencing instead of fluorescence imaging, our proposed bioorthogonal chemical signature holds great potential to offer the sequence information of these oxidative thymines in cells and may provide a reliable chemical biology approach for studying the whole-genome oxidative thymines profiles and insights into their functional role and dynamics in biology.
Collapse
Affiliation(s)
- Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| |
Collapse
|
46
|
Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nat Commun 2021; 12:4249. [PMID: 34253716 PMCID: PMC8275684 DOI: 10.1038/s41467-021-24425-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark that regulates gene expression. Charting the landscape of 5hmC in human tissues is fundamental to understanding its regulatory functions. Here, we systematically profiled the whole-genome 5hmC landscape at single-base resolution for 19 types of human tissues. We found that 5hmC preferentially decorates gene bodies and outperforms gene body 5mC in reflecting gene expression. Approximately one-third of 5hmC peaks are tissue-specific differentially-hydroxymethylated regions (tsDhMRs), which are deposited in regions that potentially regulate the expression of nearby tissue-specific functional genes. In addition, tsDhMRs are enriched with tissue-specific transcription factors and may rewire tissue-specific gene expression networks. Moreover, tsDhMRs are associated with single-nucleotide polymorphisms identified by genome-wide association studies and are linked to tissue-specific phenotypes and diseases. Collectively, our results show the tissue-specific 5hmC landscape of the human genome and demonstrate that 5hmC serves as a fundamental regulatory element affecting tissue-specific gene expression programs and functions.
Collapse
|
47
|
Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat Methods 2021; 18:643-651. [PMID: 34099937 DOI: 10.1038/s41592-021-01172-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/03/2021] [Indexed: 02/04/2023]
Abstract
Cytosine base editors (CBEs) have the potential to correct human pathogenic point mutations. However, their genome-wide specificity remains poorly understood. Here we report Detect-seq for the evaluation of CBE specificity. It enables sensitive detection of CBE-induced off-target sites at the genome-wide level. Detect-seq leverages chemical labeling and biotin pulldown to trace the editing intermediate deoxyuridine, thereby revealing the editome of CBE. In addition to Cas9-independent and typical Cas9-dependent off-target sites, we discovered edits outside the protospacer sequence (that is, out-of-protospacer) and on the target strand (which pairs with the single-guide RNA). Such unexpected off-target edits are prevalent and can exhibit a high editing ratio, while their occurrences exhibit cell-type dependency and cannot be predicted based on the sgRNA sequence. Moreover, we found out-of-protospacer and target-strand edits nearby the on-target sites tested, challenging the general knowledge that CBEs do not induce proximal off-target mutations. Collectively, our approaches allow unbiased analysis of the CBE editome and provide a widely applicable tool for specificity evaluation of various emerging genome editing tools.
Collapse
|
48
|
Chen F, Bai M, Cao X, Xue J, Zhao Y, Wu N, Wang L, Zhang D, Zhao Y. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications. Nat Commun 2021; 12:1965. [PMID: 33785750 PMCID: PMC8009891 DOI: 10.1038/s41467-021-22284-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Exploring spatial organization and relationship of diverse biomolecules within cellular nanoenvironments is important to elucidate the fundamental processes of life. However, it remains methodologically challenging. Herein, we report a molecular recognition mechanism cellular macromolecules-tethered DNA walking indexing (Cell-TALKING) to probe the nanoenvironments containing diverse chromatin modifications. As an example, we characterize the nanoenvironments of three DNA modifications around one histone posttranslational modification (PTM). These DNA modifications in fixed cells are labeled with respective DNA barcoding probes, and then the PTM site is tethered with a DNA walking probe. Cell-TALKING can continuously produce cleavage records of any barcoding probes nearby the walking probe. New 3'-OH ends are generated on the cleaved barcoding probes to induce DNA amplification for downstream detections. Combining fluorescence imaging, we identify various combinatorial chromatin modifications and investigate their dynamic changes during cell cycles. We also explore the nanoenvironments in different cancer cell lines and clinical specimens. In principle, using high-throughput sequencing instead of fluorescence imaging may allow the detection of complex cellular nanoenvironments containing tens of biomolecules such as transcription factors.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, PR China
| | - Dexin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
49
|
Mondal M, Yang L, Cai Z, Patra P, Gao YQ. A perspective on the molecular simulation of DNA from structural and functional aspects. Chem Sci 2021; 12:5390-5409. [PMID: 34168783 PMCID: PMC8179617 DOI: 10.1039/d0sc05329e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As genetic material, DNA not only carries genetic information by sequence, but also affects biological functions ranging from base modification to replication, transcription and gene regulation through its structural and dynamic properties and variations. The motion and structural properties of DNA involved in related biological processes are also multi-scale, ranging from single base flipping to local DNA deformation, TF binding, G-quadruplex and i-motif formation, TAD establishment, compartmentalization and even chromosome territory formation, just to name a few. The sequence-dependent physical properties of DNA play vital role in all these events, and thus it is interesting to examine how simple sequence information affects DNA and the formation of the chromatin structure in these different hierarchical orders. Accordingly, molecular simulations can provide atomistic details of interactions and conformational dynamics involved in different biological processes of DNA, including those inaccessible by current experimental methods. In this perspective, which is mainly based on our recent studies, we provide a brief overview of the atomistic simulations on how the hierarchical structure and dynamics of DNA can be influenced by its sequences, base modifications, environmental factors and protein binding in the context of the protein-DNA interactions, gene regulation and structural organization of chromatin. We try to connect the DNA sequence, the hierarchical structures of DNA and gene regulation.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China
| | - Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China.,Beijing Advanced Innovation Center for Genomics, Peking University 100871 Beijing China
| |
Collapse
|
50
|
Caldwell BA, Liu MY, Prasasya RD, Wang T, DeNizio JE, Leu NA, Amoh NYA, Krapp C, Lan Y, Shields EJ, Bonasio R, Lengner CJ, Kohli RM, Bartolomei MS. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Mol Cell 2021; 81:859-869.e8. [PMID: 33352108 PMCID: PMC7897302 DOI: 10.1016/j.molcel.2020.11.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.
Collapse
Affiliation(s)
- Blake A Caldwell
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Yun Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi D Prasasya
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tong Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie E DeNizio
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nana Yaa A Amoh
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|