1
|
Kongstorp M, Karnani MM, McCutcheon JE. Does the lateral hypothalamus govern the transition between appetitive and consummatory feeding? Neuropharmacology 2025; 275:110438. [PMID: 40194590 DOI: 10.1016/j.neuropharm.2025.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Feeding is a cyclic behaviour that includes appetitive, consummatory and termination phases. Identifying the neural circuits controlling these phases and triggering specific transitions between phases would be a key advance in understanding feeding behaviour. The lateral hypothalamus (LH) has long been recognized for its central role in feeding. We review evidence suggesting that the LH acts as a regulator of the appetitive-consummatory transition using a switchboard-like circuit architecture. Within the LH, several neuronal subpopulations can be defined based on molecular markers, and - although these subpopulations are functionally diverse - they contribute to appetitive and consummatory behaviours to varying extents. We summarise the current evidence on whether these subpopulations have functional identities and speculate on the role of the LH as a controller of behavioural transitions.
Collapse
Affiliation(s)
- Mette Kongstorp
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| | - Mahesh M Karnani
- Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - James E McCutcheon
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway.
| |
Collapse
|
2
|
Marshall LG, Barbas H. Specializations in Amygdalar and Hippocampal Innervation of the Primate Nucleus Accumbens Shell. J Neurosci 2025; 45:e2425242025. [PMID: 40374561 PMCID: PMC12160417 DOI: 10.1523/jneurosci.2425-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/28/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025] Open
Abstract
The nucleus accumbens (NAc) is critical to goal-directed behaviors as the main input structure for limbic pathways to the basal ganglia. The NAc shell is composed of inhibitory projection neurons that receive robust glutamatergic innervation from both the hippocampus and amygdala. In view of primate-specific changes in the neural composition of the NAc, it is still unclear how its circuits are organized in primates. We used a system-to-synapse approach to characterize amygdalar and hippocampal pathway distribution, innervation patterns, and synaptic characteristics in the NAc shell of rhesus monkeys (Macaca mulatta) of both sexes. Key findings showed that both the amygdalar and hippocampal pathways disproportionately innervated NAc shell interneurons relative to their population sizes, assessed via confocal systems' analysis and at the synaptic level with electron microscopy. The synaptic features associated with the two pathways were distinct. The amygdalar projection was denser, with larger boutons that more often contained mitochondria than the hippocampal projection. The hippocampal pathway had larger postsynaptic densities and more frequently formed perforated synapses, which are features associated with high synaptic efficacy. In addition, hippocampal boutons more frequently formed multiple synapses, often with one projection neuron and one interneuron. These interactions with the NAc shell suggest distinct mechanisms for the processing of affective signaling from the amygdala and contextual information from the hippocampus.
Collapse
Affiliation(s)
- Laura G Marshall
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
- Graduate Program for Neuroscience, Boston University, and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
- Graduate Program for Neuroscience, Boston University, and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
3
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural and perceptual contrast sensitivity. Nat Neurosci 2025; 28:836-847. [PMID: 40033123 DOI: 10.1038/s41593-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
Lateral inhibition is a central principle in sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. However, the neurons, computations and mechanisms underlying cortical lateral inhibition remain debated, and its importance for perception remains unknown. Here we show that lateral inhibition from parvalbumin neurons in mouse primary visual cortex reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from somatostatin neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model, anatomical tracing and direct subthreshold measurements indicated that the larger spatial footprint for somatostatin versus parvalbumin synaptic inhibition explains this difference. Together, these results define cell-type-specific computational roles for lateral inhibition in primary visual cortex, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Soon Ho Kim
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Brice Williams
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alan J Otsuki
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Kendell Worden
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lou T Blanpain
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lyndah Lovell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Eid L, Lokmane L, Raju PK, Tene Tadoum SB, Jiang X, Toulouse K, Lupien-Meilleur A, Charron-Ligez F, Toumi A, Backer S, Lachance M, Lavertu-Jolin M, Montseny M, Lacaille JC, Bloch-Gallego E, Rossignol E. Both GEF domains of the autism and developmental epileptic encephalopathy-associated Trio protein are required for proper tangential migration of GABAergic interneurons. Mol Psychiatry 2025; 30:1338-1358. [PMID: 39300136 PMCID: PMC11919732 DOI: 10.1038/s41380-024-02742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Recessive and de novo mutations in the TRIO gene are associated with intellectual deficiency (ID), autism spectrum disorder (ASD) and developmental epileptic encephalopathies (DEE). TRIO is a dual guanine nucleotide exchange factor (GEF) that activates Rac1, Cdc42 and RhoA. Trio has been extensively studied in excitatory neurons, and has recently been found to regulate the switch from tangential to radial migration in GABAergic interneurons (INs) through GEFD1-Rac1-dependent SDF1α/CXCR4 signaling. Given the central role of Rho-GTPases during neuronal migration and the implication of IN pathologies in ASD and DEE, we investigated the relative roles of both Trio's GEF domains in regulating the dynamics of INs tangential migration. In Trio-/- mice, we observed reduced numbers of tangentially migrating INs, with intact progenitor proliferation. Further, we noted increased growth cone collapse in developing INs, suggesting altered cytoskeleton dynamics. To bypass the embryonic mortality of Trio-/- mice, we generated Dlx5/6Cre;Trioc/c conditional mutant mice (TriocKO), which develop spontaneous seizures and behavioral deficits reminiscent of ASD and ID. These phenotypes are associated with reduced cortical IN density and functional cortical inhibition. Mechanistically, this reduction of cortical IN numbers reflects a premature switch to radial migration, with an aberrant early entry in the cortical plate, as well as major deficits in cytoskeletal dynamics, including enhanced leading neurite branching and slower nucleokinesis reflecting reduced actin filament condensation and turnover as well as a loss of response to the motogenic effect of EphA4/ephrin A2 reverse signaling. Further, we show that both Trio GEFD1 and GEFD2 domains are required for proper IN migration, with a dominant role of the RhoA-activating GEFD2 domain. Altogether, our data show a critical role of the DEE/ASD-associated Trio gene in the establishment of cortical inhibition and the requirement of both GEF domains in regulating IN migration dynamics.
Collapse
Affiliation(s)
- Lara Eid
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ludmilla Lokmane
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Praveen K Raju
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Samuel Boris Tene Tadoum
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Xiao Jiang
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Karolanne Toulouse
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Alexis Lupien-Meilleur
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - François Charron-Ligez
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Asmaa Toumi
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Stéphanie Backer
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mathieu Lachance
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marisol Lavertu-Jolin
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marie Montseny
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Jean-Claude Lacaille
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, QC, Canada
| | - Evelyne Bloch-Gallego
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | - Elsa Rossignol
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada.
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada.
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Huang JY, Hess M, Bajpai A, Li X, Hobson LN, Xu AJ, Barton SJ, Lu HC. From initial formation to developmental refinement: GABAergic inputs shape neuronal subnetworks in the primary somatosensory cortex. iScience 2025; 28:112104. [PMID: 40129704 PMCID: PMC11930745 DOI: 10.1016/j.isci.2025.112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neuronal subnetworks, also known as ensembles, are functional units formed by interconnected neurons for information processing and encoding in the adult brain. Our study investigates the establishment of neuronal subnetworks in the mouse primary somatosensory (S1) cortex from postnatal days (P)11 to P21 using in vivo two-photon calcium imaging. We found that at P11, neuronal activity was highly synchronized but became sparser by P21. Clustering analyses revealed that while the number of subnetworks remained constant, their activity patterns became more distinct, with increased coherence, independent of cortical layer or sex. Furthermore, the coherence of neuronal activity within individual subnetworks significantly increased when synchrony frequencies were reduced by augmenting gamma-aminobutyric acid (GABA)ergic activity at P15/16, a period when the neuronal subnetworks were still maturing. Together, these findings indicate the early formation of subnetworks and underscore the pivotal roles of GABAergic inputs in modulating S1 neuronal subnetworks.
Collapse
Affiliation(s)
- Jui-Yen Huang
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Michael Hess
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Abhinav Bajpai
- Research Technologies, Indiana University, Bloomington, IN 47408, USA
| | - Xuan Li
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Liam N. Hobson
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ashley J. Xu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Scott J. Barton
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Hui-Chen Lu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Chung A, Alipio JB, Ghosh M, Evans L, Miller SM, Goode TD, Mehta I, Ahmed OJ, Sahay A. Neotenic expansion of adult-born dentate granule cells reconfigures GABAergic inhibition to enhance social memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643806. [PMID: 40166333 PMCID: PMC11957001 DOI: 10.1101/2025.03.17.643806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Adult-born dentate granule cells (abDGCs) contribute to hippocampal dentate gyrus (DG)-CA3/CA2 circuit functions in memory encoding, retrieval and consolidation. Heightened synaptic and structural plasticity of immature abDGCs is thought to govern their distinct contributions to circuit and network mechanisms of hippocampal-dependent memory operations. Protracted maturation or neoteny of abDGCs in higher mammals is hypothesized to offset decline in adult hippocampal neurogenesis by expanding the capacity for circuit and network plasticity underlying different memory operations. Here, we provide evidence for this hypothesis by genetically modelling the effective impact of neoteny of abDGCs on circuitry, network properties and social cognition in mice. We show that selective synchronous expansion of a single cohort of 4 weeks old immature, but not 8 weeks old mature abDGCs, increases functional recruitment of fast spiking parvalbumin expressing inhibitory interneurons (PV INs) in CA3/CA2, number of PV IN-CA3/CA2 synapses, and GABAergic inhibition of CA3/CA2. This transient increase in feed-forward inhibition in DG-CA2 decreased social memory interference and enhanced social memory consolidation. In vivo local field potential recordings revealed that the expansion of a single cohort of 4-week-old abDGCs increased baseline power, amplitude, and duration, as well as sensitivity to social investigation-dependent rate changes of sharp-wave ripples (SWRs) in CA1 and CA2, a neural substrate for memory consolidation. Inhibitory neuron-targeted chemogenetic manipulations implicate CA3/CA2 INs, including PV INs, as necessary and sufficient for social memory consolidation following neotenic expansion of the abDGC population and in wild-type mice, respectively. These studies suggest that neoteny of abDGCs may represent an evolutionary adaptation to support cognition by reconfiguring PV IN-CA3/CA2 circuitry and emergent network properties underlying memory consolidation.
Collapse
Affiliation(s)
- Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
- Department of Bio and Brain Engineering, Korea Advanced Institution for Science and Technology, Deajeon, KOR
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Megha Ghosh
- Department of Psychology, University of Michigan, Ann Arbor, United States Department of Psychology, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Samara M Miller
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Iyanah Mehta
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, United States Department of Psychology, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
7
|
Yevoo PE, Fontanini A, Maffei A. Modulation of sweet preference by neurosteroid-sensitive, δ-GABA A receptors in adult mouse gustatory insular cortex. Curr Biol 2025; 35:1047-1060.e4. [PMID: 39933517 PMCID: PMC11903165 DOI: 10.1016/j.cub.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/12/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Taste preference is a fundamental driver of feeding behavior, influencing dietary choices and eating patterns. Extensive experimental evidence indicates that the gustatory cortex (GC) is engaged in taste perception, palatability, and preference. However, our knowledge of the neural and neurochemical signals regulating taste preference is limited. Neuromodulators can affect preferences, though their effects on neural circuits for taste are incompletely understood. Neurosteroids are of particular interest, as systemic administration of the neurosteroid allopregnanolone (ALLO), a positive allosteric modulator of extrasynaptic GABAA receptors containing the delta subunit (δ-GABAARs), induces hyperphagia and increases intake of energy-rich food in humans and animals. The δ-GABAARs receptors produce a tonic inhibitory current and are widely distributed in the brain. However, information regarding their expression within gustatory circuits is lacking, and their role in taste preference has not been investigated. Here, we focused on GC to investigate whether activation of δ-GABAARs affects sweet taste preference in adult mice. Our data reveal that δ-GABAARs are expressed in multiple cell types within GC, mediate an ALLO-sensitive tonic current, decrease the behavioral sensitivity to sucrose, and reduce the preference for sweet taste in a cell-type-specific manner. Our findings demonstrate a fundamental role for δ-GABAAR-mediated currents within GC in regulating taste sensitivity and preference in the adult mammalian brain.
Collapse
Affiliation(s)
- Priscilla E Yevoo
- Department of Neurobiology and Behavior Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Graduate Program in Neuroscience, Stony Brook University, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Graduate Program in Neuroscience, Stony Brook University, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Center for Neural Circuit Dynamics, Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Graduate Program in Neuroscience, Stony Brook University, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA; Center for Neural Circuit Dynamics, Stony Brook University, Life Science Building, 100 Nicoll Road, Stony Brook, NY 11794-5320, USA.
| |
Collapse
|
8
|
Xin Q, Zheng D, Zhou T, Xu J, Ni Z, Hu H. Deconstructing the neural circuit underlying social hierarchy in mice. Neuron 2025; 113:444-459.e7. [PMID: 39662472 DOI: 10.1016/j.neuron.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice. Specifically, layer 5 neurons projecting to the dorsal raphe nucleus (DRN) and periaqueductal gray (PAG) promote social competition, whereas layer 2/3 neurons projecting to the anterior basolateral amygdala (aBLA) suppress competition. These two neuronal populations show opposite changes in activity during effortful pushes in competition. In vivo and in vitro electrophysiology recordings revealed inhibition from the lose-related pathway to the win-related pathway. Such antagonistic interplay may represent a central principle in how the mPFC orchestrates complex behaviors through top-down control.
Collapse
Affiliation(s)
- Qiuhong Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Diyang Zheng
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tingting Zhou
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiayi Xu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China.
| |
Collapse
|
9
|
Koch NA, Corrigan BW, Feyerabend M, Gulli RA, Jimenez-Sosa MS, Abbass M, Sunstrum JK, Matovic S, Roussy M, Luna R, Mestern SA, Mahmoudian B, Vijayraghavan S, Igarashi H, Pradeepan KS, Assis WJ, Pruszynski JA, Tripathy S, Staiger JF, Gonzalez-Burgos G, Neef A, Treue S, Everling S, Inoue W, Khadra A, Martinez-Trujillo JC. Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics. Cell Rep 2025; 44:115159. [PMID: 39772396 DOI: 10.1016/j.celrep.2024.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices. Broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative inhibitory interneurons exhibit both E-SFA and I-SFA. Developing a data-driven hybrid circuit model comprising NS model neurons receiving BS input reveals that NS model neurons exhibit longer SFA than observed in vivo; however, adding feedforward inhibition corrects this in a manner dependent on I-SFA. Identification of this circuit motif shaping E-SFA in LPFC highlights the roles of both intrinsic and network mechanisms in neural activity underlying behavior.
Collapse
Affiliation(s)
- Nils A Koch
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Benjamin W Corrigan
- Department of Biology, York University, Toronto, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael Feyerabend
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Roberto A Gulli
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Julia K Sunstrum
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Neuroscience Graduate Program, Western University, London, ON, Canada
| | - Sara Matovic
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rogelio Luna
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Samuel A Mestern
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Borna Mahmoudian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Susheel Vijayraghavan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Hiroyuki Igarashi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kartik S Pradeepan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - William J Assis
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Shreejoy Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jochen F Staiger
- Department of Neuroanatomy, University Medical Center, Georg-August-University, Göttingen, Germany
| | | | - Andreas Neef
- Campus Institute for Dynamics of Biological Networks, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz ScienceCampus, Primate Cognition, Göttingen, Germany
| | - Stefan Everling
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Anmar Khadra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada.
| | - Julio C Martinez-Trujillo
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| |
Collapse
|
10
|
Zerlaut Y, Tzilivaki A. Interneuronal modulations as a functional switch for cortical computations: mechanisms and implication for disease. Front Cell Neurosci 2025; 18:1479579. [PMID: 39916937 PMCID: PMC11799556 DOI: 10.3389/fncel.2024.1479579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025] Open
Abstract
Understanding cortical inhibition and its diverse roles remains a key challenge in neurophysiological research. Traditionally, inhibition has been recognized for controlling the stability and rhythmicity of network dynamics, or refining the spatiotemporal properties of cortical representations. In this perspective, we propose that specific types of interneurons may play a complementary role, by modulating the computational properties of neural networks. We review experimental and theoretical evidence, mainly from rodent sensory cortices, that supports this view. Additionally, we explore how dysfunctions in these interneurons may disrupt the network's ability to switch between computational modes, impacting the flexibility of cortical processing and potentially contributing to various neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Yann Zerlaut
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Einstein Center for Neurosciences, Chariteplatz, Berlin, Germany
- NeuroCure Cluster of Excellence, Chariteplatz, Berlin, Germany
| |
Collapse
|
11
|
Wertheimer O, Hart Y. Autism spectrum disorder variation as a computational trade-off via dynamic range of neuronal population responses. Nat Neurosci 2024; 27:2476-2486. [PMID: 39604753 PMCID: PMC11614743 DOI: 10.1038/s41593-024-01800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Individuals diagnosed with autism spectrum disorder (ASD) show neural and behavioral characteristics differing from the neurotypical population. This may stem from a computational principle that relates inference and computational dynamics to the dynamic range of neuronal population responses, reflecting the signal levels for which the system is responsive. In the present study, we showed that an increased dynamic range (IDR), indicating a gradual response of a neuronal population to changes in input, accounts for neural and behavioral variations in individuals diagnosed with ASD across diverse tasks. We validated the model with data from finger-tapping synchronization, orientation reproduction and global motion coherence tasks. We suggested that increased heterogeneity in the half-activation point of individual neurons may be the biological mechanism underlying the IDR in ASD. Taken together, this model provides a proof of concept for a new computational principle that may account for ASD and generates new testable and distinct predictions regarding its behavioral, neural and biological foundations.
Collapse
Affiliation(s)
- Oded Wertheimer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Hart
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Dang S, Antono JE, Kagan I, Pooresmaeili A. Modality-specific and modality-general representations of subjective value in frontal cortex. Commun Biol 2024; 7:1550. [PMID: 39572709 PMCID: PMC11582727 DOI: 10.1038/s42003-024-07253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Neuroeconomics theories propose that the value associated with diverse rewards or reward-predicting stimuli is encoded along a common reference scale, irrespective of their sensory properties. However, in a dynamic environment with changing stimulus-reward pairings, the brain must also represent the sensory features of rewarding stimuli. The mechanism by which the brain balances these needs-deriving a common reference scale for valuation while maintaining sensitivity to sensory contexts-remains unclear. To investigate this, we conducted an fMRI study with human participants engaged in a dynamic foraging task, which required integrating the reward history of auditory or visual choice options and updating the subjective value for each sensory modality. Univariate fMRI analysis revealed modality-specific value representations in the orbitofrontal cortex (OFC) and modality-general value representations in the ventromedial prefrontal cortex (vmPFC), confirmed by an exploratory multivariate pattern classification approach. Crucially, modality-specific value representations were absent when the task involved instruction-based rather than value-based choices. Effective connectivity analysis showed that modality-specific value representations emerged from selective bidirectional interactions across the auditory and visual sensory cortices, the corresponding OFC clusters, and the vmPFC. These results illustrate how the brain enables a valuation process that is sensitive to the sensory context of rewarding stimuli.
Collapse
Affiliation(s)
- Shilpa Dang
- Perception and Cognition Lab, European Neuroscience Institute Goettingen - A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen, Germany
- School of Artificial Intelligence & Data Science, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Jessica Emily Antono
- Perception and Cognition Lab, European Neuroscience Institute Goettingen - A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen, Germany
| | - Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz Science Campus Primate Cognition, Goettingen, Germany
| | - Arezoo Pooresmaeili
- Perception and Cognition Lab, European Neuroscience Institute Goettingen - A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen, Germany.
- School of Psychology, University of Southampton, Southampton, UK.
| |
Collapse
|
13
|
Romani A, Antonietti A, Bella D, Budd J, Giacalone E, Kurban K, Sáray S, Abdellah M, Arnaudon A, Boci E, Colangelo C, Courcol JD, Delemontex T, Ecker A, Falck J, Favreau C, Gevaert M, Hernando JB, Herttuainen J, Ivaska G, Kanari L, Kaufmann AK, King JG, Kumbhar P, Lange S, Lu H, Lupascu CA, Migliore R, Petitjean F, Planas J, Rai P, Ramaswamy S, Reimann MW, Riquelme JL, Román Guerrero N, Shi Y, Sood V, Sy MF, Van Geit W, Vanherpe L, Freund TF, Mercer A, Muller E, Schürmann F, Thomson AM, Migliore M, Káli S, Markram H. Community-based reconstruction and simulation of a full-scale model of the rat hippocampus CA1 region. PLoS Biol 2024; 22:e3002861. [PMID: 39499732 PMCID: PMC11537418 DOI: 10.1371/journal.pbio.3002861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
The CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought to play an important role in cognitive functions such as memory and spatial navigation. Despite a wealth of experimental data on its structure and function, it has been challenging to integrate information obtained from diverse experimental approaches. To address this challenge, we present a community-based, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the effects that acetylcholine has on the system. We tested and validated each model component and the final network model, and made input data, assumptions, and strategies explicit and transparent. The unique flexibility of the model allows scientists to potentially address a range of scientific questions. In this article, we describe the methods used to set up simulations to reproduce in vitro and in vivo experiments. Among several applications in the article, we focus on theta rhythm, a prominent hippocampal oscillation associated with various behavioral correlates and use our computer model to reproduce experimental findings. Finally, we make data, code, and model available through the hippocampushub.eu portal, which also provides an extensive set of analyses of the model and a user-friendly interface to facilitate adoption and usage. This community-based model represents a valuable tool for integrating diverse experimental data and provides a foundation for further research into the complex workings of the hippocampal CA1 region.
Collapse
Affiliation(s)
- Armando Romani
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alberto Antonietti
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Davide Bella
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Julian Budd
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
| | | | - Kerem Kurban
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Sára Sáray
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Marwan Abdellah
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alexis Arnaudon
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Elvis Boci
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Cristina Colangelo
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Jean-Denis Courcol
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Thomas Delemontex
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - András Ecker
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Joanne Falck
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Cyrille Favreau
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michael Gevaert
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Juan B. Hernando
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Joni Herttuainen
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Genrich Ivaska
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Lida Kanari
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Anna-Kristin Kaufmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - James Gonzalo King
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Pramod Kumbhar
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Sigrun Lange
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Huanxiang Lu
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | | | - Rosanna Migliore
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Fabien Petitjean
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Judit Planas
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Pranav Rai
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael W. Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Juan Luis Riquelme
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Nadir Román Guerrero
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Vishal Sood
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Mohameth François Sy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Liesbeth Vanherpe
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Tamás F. Freund
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Audrey Mercer
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Eilif Muller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, Canada
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, Canada
- Mila Quebec AI Institute, Montréal, Canada
| | - Felix Schürmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Alex M. Thomson
- UCL School of Pharmacy, University College London (UCL), London, United Kingdom
| | - Michele Migliore
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Szabolcs Káli
- HUN-REN Institute of Experimental Medicine (KOKI), Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
14
|
Hochbaum DR, Hulshof L, Urke A, Wang W, Dubinsky AC, Farnsworth HC, Hakim R, Lin S, Kleinberg G, Robertson K, Park C, Solberg A, Yang Y, Baynard C, Nadaf NM, Beron CC, Girasole AE, Chantranupong L, Cortopassi MD, Prouty S, Geistlinger L, Banks AS, Scanlan TS, Datta SR, Greenberg ME, Boulting GL, Macosko EZ, Sabatini BL. Thyroid hormone remodels cortex to coordinate body-wide metabolism and exploration. Cell 2024; 187:5679-5697.e23. [PMID: 39178853 PMCID: PMC11455614 DOI: 10.1016/j.cell.2024.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.
Collapse
Affiliation(s)
- Daniel R Hochbaum
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Lauren Hulshof
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Urke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Dubinsky
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah C Farnsworth
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Hakim
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giona Kleinberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keiramarie Robertson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Canaria Park
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Solberg
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yechan Yang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Baynard
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Naeem M Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celia C Beron
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Allison E Girasole
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne Chantranupong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marissa D Cortopassi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shannon Prouty
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | - Gabriella L Boulting
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Ge J, Xie S, Duan J, Tian B, Ren P, Hu E, Huang Q, Mao H, Zou Y, Chen Q, Wang W. Imbalance between hippocampal projection cell and parvalbumin interneuron architecture increases epileptic susceptibility in mouse model of methyl CpG binding protein 2 duplication syndrome. Epilepsia 2024; 65:2483-2496. [PMID: 38819633 DOI: 10.1111/epi.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Methyl CpG-binding protein 2 (MECP2) duplication syndrome is a rare X-linked genomic disorder affecting predominantly males, which is usually manifested as epilepsy and autism spectrum disorder (ASD) comorbidity. The transgenic line MeCP2Tg1 was used for mimicking MECP2 duplication syndrome and showed autism-epilepsy co-occurrence. Previous works suggested that the excitatory/inhibitory (E/I) imbalance is a potential common mechanism for both epilepsy and ASD. The projection neurons and parvalbumin (PV) interneurons account for the majority of E/I balance in the hippocampus. Therefore, we explored how structural changes of projection and PV+ neurons occur in the hippocampus of MeCP2Tg1 mice and whether these morphological changes contribute to epilepsy susceptibility. METHODS We used the interneuron Designer receptors exclusively activated by designer drugs mouse model to inhibit inhibitory neurons in the hippocampus to verify the epilepsy susceptibility of MeCP2Tg1 (FVB, an inbred strain named as sensitivity to Friend leukemia virus) mice. Electroencephalograms were recorded for the definition of seizure. We performed retro-orbital injection of virus in MeCP2Tg1 (FVB):CaMKIIα-Cre (C57BL/6) mice or MeCP2Tg1:PV-Cre (C57BL/6) mice and their littermate controls to specifically label projection and PV+ neurons for structural analysis. RESULTS Epilepsy susceptibility was increased in MeCP2Tg1 mice. There was a reduced number of PV neurons and reduced dendritic complexity in the hippocampus of MeCP2Tg1 mice. The dendritic complexity in MeCP2Tg1 mice was increased compared to wild-type mice, and total dendritic spine density in dentate gyrus of MeCP2Tg1 mice was also increased. Total dendritic spine density was increased in CA1 of MeCP2Tg1 mice. SIGNIFICANCE Overexpression of MeCP2 may disrupt crucial signaling pathways, resulting in decreased dendritic complexity of PV interneurons and increased dendritic spine density of projection neurons. This reciprocal modulation of excitatory and inhibitory neuronal structures associated with MeCP2 implies its significance as a potential target in the development of epilepsy and offers a novel perspective on the co-occurrence of autism and epilepsy.
Collapse
Affiliation(s)
- Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengjun Xie
- Jingzhou Hospital affiliated with Yangtze University, Jingzhou, China
| | - Jiamei Duan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Biqing Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Pengfei Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qiyi Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuxin Zou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qian Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural & perceptual contrast sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566605. [PMID: 38014014 PMCID: PMC10680635 DOI: 10.1101/2023.11.10.566605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lateral inhibition is a central principle for sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. Much work on the role of inhibition in sensory systems has focused on visual cortex; however, the neurons, computations, and mechanisms underlying cortical lateral inhibition remain debated, and its importance for visual perception remains unknown. Here, we tested how lateral inhibition from PV or SST neurons in mouse primary visual cortex (V1) modulates neural and perceptual sensitivity to stimulus contrast. Lateral inhibition from PV neurons reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from SST neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model identified spatially extensive lateral projections from SST neurons as the key factor, and we confirmed this with anatomy and direct subthreshold measurements of a larger spatial footprint for SST versus PV lateral inhibition. Together, these results define cell-type specific computational roles for lateral inhibition in V1, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
|
17
|
Utashiro N, MacLaren DAA, Liu YC, Yaqubi K, Wojak B, Monyer H. Long-range inhibition from prelimbic to cingulate areas of the medial prefrontal cortex enhances network activity and response execution. Nat Commun 2024; 15:5772. [PMID: 38982042 PMCID: PMC11233578 DOI: 10.1038/s41467-024-50055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaneschka Yaqubi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf and Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Wojak
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Kwon OH, Choe J, Kim D, Kim S, Moon C. Sensory Stimulation-dependent Npas4 Expression in the Olfactory Bulb during Early Postnatal Development. Exp Neurobiol 2024; 33:77-98. [PMID: 38724478 PMCID: PMC11089401 DOI: 10.5607/en23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/15/2024] Open
Abstract
The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dokyeong Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sunghwan Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Cheil Moon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
19
|
Kanigowski D, Urban-Ciecko J. Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex. Cereb Cortex 2024; 34:bhae109. [PMID: 38572735 PMCID: PMC10993172 DOI: 10.1093/cercor/bhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.
Collapse
Affiliation(s)
- Dominik Kanigowski
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Hainmueller T, Cazala A, Huang LW, Bartos M. Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice. Nat Commun 2024; 15:714. [PMID: 38267409 PMCID: PMC10808551 DOI: 10.1038/s41467-024-44882-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The hippocampus is the brain's center for episodic memories. Its subregions, the dentate gyrus and CA1-3, are differentially involved in memory encoding and recall. Hippocampal principal cells represent episodic features like movement, space, and context, but less is known about GABAergic interneurons. Here, we performed two-photon calcium imaging of parvalbumin- and somatostatin-expressing interneurons in the dentate gyrus and CA1-3 of male mice exploring virtual environments. Parvalbumin-interneurons increased activity with running-speed and reduced it in novel environments. Somatostatin-interneurons in CA1-3 behaved similar to parvalbumin-expressing cells, but their dentate gyrus counterparts increased activity during rest and in novel environments. Congruently, chemogenetic silencing of dentate parvalbumin-interneurons had prominent effects in familiar contexts, while silencing somatostatin-expressing cells increased similarity of granule cell representations between novel and familiar environments. Our data indicate unique roles for parvalbumin- and somatostatin-positive interneurons in the dentate gyrus that are distinct from those in CA1-3 and may support routing of novel information.
Collapse
Affiliation(s)
- Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| | - Aurore Cazala
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Li-Wen Huang
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
| |
Collapse
|
21
|
Ceanga M, Rahmati V, Haselmann H, Schmidl L, Hunter D, Brauer AK, Liebscher S, Kreye J, Prüss H, Groc L, Hallermann S, Dalmau J, Ori A, Heckmann M, Geis C. Human NMDAR autoantibodies disrupt excitatory-inhibitory balance, leading to hippocampal network hypersynchrony. Cell Rep 2023; 42:113166. [PMID: 37768823 DOI: 10.1016/j.celrep.2023.113166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Anti-NMDA receptor autoantibodies (NMDAR-Abs) in patients with NMDAR encephalitis cause severe disease symptoms resembling psychosis and cause cognitive dysfunction. After passive transfer of patients' cerebrospinal fluid or human monoclonal anti-GluN1-autoantibodies in mice, we find a disrupted excitatory-inhibitory balance resulting from CA1 neuronal hypoexcitability, reduced AMPA receptor (AMPAR) signaling, and faster synaptic inhibition in acute hippocampal slices. Functional alterations are also reflected in widespread remodeling of the hippocampal proteome, including changes in glutamatergic and GABAergic neurotransmission. NMDAR-Abs amplify network γ oscillations and disrupt θ-γ coupling. A data-informed network model reveals that lower AMPAR strength and faster GABAA receptor current kinetics chiefly account for these abnormal oscillations. As predicted in silico and evidenced ex vivo, positive allosteric modulation of AMPARs alleviates aberrant γ activity, reinforcing the causative effects of the excitatory-inhibitory imbalance. Collectively, NMDAR-Ab-induced aberrant synaptic, cellular, and network dynamics provide conceptual insights into NMDAR-Ab-mediated pathomechanisms and reveal promising therapeutic targets that merit future in vivo validation.
Collapse
Affiliation(s)
- Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Vahid Rahmati
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Holger Haselmann
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Lars Schmidl
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Daniel Hunter
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Anna-Katherina Brauer
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Martinsried, Germany; Biomedical Center, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Martinsried, Germany; Biomedical Center, Ludwig Maximilians University Munich, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jakob Kreye
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Stefan Hallermann
- Carl Ludwig Institute for Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Josep Dalmau
- Catalan Institution for Research and Advanced Studies (ICREA) and IDIBAPS-Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
22
|
Noguchi A, Matsumoto N, Ikegaya Y. Postnatal Maturation of Membrane Potential Dynamics during in Vivo Hippocampal Ripples. J Neurosci 2023; 43:6126-6140. [PMID: 37400254 PMCID: PMC10476637 DOI: 10.1523/jneurosci.0125-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Sharp-wave ripples (SWRs) are transient high-frequency oscillations of local field potentials (LFPs) in the hippocampus and play a critical role in memory consolidation. During SWRs, CA1 pyramidal cells exhibit rapid spike sequences that often replay the sequential activity that occurred during behavior. This temporally organized firing activity gradually emerges during 2 weeks after the eye opening; however, it remains unclear how the organized spikes during SWRs mature at the intracellular membrane potential (Vm) level. Here, we recorded Vm of CA1 pyramidal cells simultaneously with hippocampal LFPs from anesthetized immature mice of either sex after the developmental emergence of SWRs. On postnatal days 16 and 17, Vm dynamics around SWRs were premature, characterized by prolonged depolarizations without either pre- or post-SWR hyperpolarizations. The biphasic hyperpolarizations, features typical of adult SWR-relevant Vm, formed by approximately postnatal day 30. This Vm maturation was associated with an increase in SWR-associated inhibitory inputs to pyramidal cells. Thus, the development of SWR-relevant inhibition restricts the temporal windows for spikes of pyramidal cells and allows CA1 pyramidal cells to organize their spike sequences during SWRs.SIGNIFICANCE STATEMENT Sharp-wave ripples (SWRs) are prominent hippocampal oscillations and play a critical role in memory consolidation. During SWRs, hippocampal neurons synchronously emit spikes with organized temporal patterns. This temporal structure of spikes during SWRs develops during the third and fourth postnatal weeks, but the underlying mechanisms are not well understood. Here, we recorded in vivo membrane potentials from hippocampal neurons in premature mice and suggest that the maturation of SWR-associated inhibition enables hippocampal neurons to produce precisely controlled spike times during SWRs.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
24
|
Li M, Kinney JL, Jiang YQ, Lee DK, Wu Q, Lee D, Xiong WC, Sun Q. Hypothalamic Supramammillary Nucleus Selectively Excites Hippocampal CA3 Interneurons to Suppress CA3 Pyramidal Neuron Activity. J Neurosci 2023; 43:4612-4624. [PMID: 37117012 PMCID: PMC10286942 DOI: 10.1523/jneurosci.1910-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
A key mode of neuronal communication between distant brain regions is through excitatory synaptic transmission mediated by long-range glutamatergic projections emitted from principal neurons. The long-range glutamatergic projection normally forms numerous en passant excitatory synapses onto both principal neurons and interneurons along its path. Under physiological conditions, the monosynaptic excitatory drive onto postsynaptic principal neurons outweighs disynaptic feedforward inhibition, with the net effect of depolarizing principal neurons. In contrast with this conventional doctrine, here we report that a glutamatergic projection from the hypothalamic supramammillary nucleus (SuM) largely evades postsynaptic pyramidal neurons (PNs), but preferentially target interneurons in the hippocampal CA3 region to predominantly provide feedforward inhibition. Using viral-based retrograde and anterograde tracing and ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording in mice of either sex, we show that SuM projects sparsely to CA3 and provides minimal excitation onto CA3 PNs. Surprisingly, despite its sparse innervation, the SuM input inhibits all CA3 PNs along the transverse axis. Further, we find that SuM provides strong monosynaptic excitation onto CA3 parvalbumin-expressing interneurons evenly along the transverse axis, which likely mediates the SuM-driven feedforward inhibition. Together, our results demonstrate that a novel long-range glutamatergic pathway largely evades principal neurons, but rather preferentially innervates interneurons in a distant brain region to suppress principal neuron activity. Moreover, our findings reveal a new means by which SuM regulates hippocampal activity through SuM-to-CA3 circuit, independent of the previously focused projections from SuM to CA2 or dentate gyrus.SIGNIFICANCE STATEMENT The dominant mode of neuronal communication between brain regions is the excitatory synaptic transmission mediated by long-range glutamatergic projections, which form en passant excitatory synapses onto both pyramidal neurons and interneurons along its path. Under normal conditions, the excitation onto postsynaptic neurons outweighs feedforward inhibition, with the net effect of depolarization. In contrast with this conventional doctrine, here we report that a glutamatergic input from hypothalamic supramammillary nucleus (SuM) largely evades PNs but selectively targets interneurons to almost exclusively provide disynaptic feedforward inhibition onto hippocampal CA3 PNs. Thus, our findings reveal a novel subcortical-hippocampal circuit that enables SuM to regulate hippocampal activity via SuM-CA3 circuit, independent of its projections to CA2 or dentate gyrus.
Collapse
Affiliation(s)
- Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jessica L Kinney
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qiwen Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
25
|
Watkins de Jong L, Nejad MM, Yoon E, Cheng S, Diba K. Optogenetics reveals paradoxical network stabilizations in hippocampal CA1 and CA3. Curr Biol 2023; 33:1689-1703.e5. [PMID: 37023753 PMCID: PMC10175182 DOI: 10.1016/j.cub.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Recurrent connectivity between excitatory neurons and the strength of feedback from inhibitory neurons are critical determinants of the dynamics and computational properties of neuronal circuits. Toward a better understanding of these circuit properties in regions CA1 and CA3 of the hippocampus, we performed optogenetic manipulations combined with large-scale unit recordings in rats under anesthesia and in quiet waking, using photoinhibition and photoexcitation with different light-sensitive opsins. In both regions, we saw striking paradoxical responses: subsets of cells increased firing during photoinhibition, while other cells decreased firing during photoexcitation. These paradoxical responses were more prominent in CA3 than in CA1, but, notably, CA1 interneurons showed increased firing in response to photoinhibition of CA3. These observations were recapitulated in simulations where we modeled both CA1 and CA3 as inhibition-stabilized networks in which strong recurrent excitation is balanced by feedback inhibition. To directly test the inhibition-stabilized model, we performed large-scale photoinhibition directed at (GAD-Cre) inhibitory cells and found that interneurons in both regions increased firing when photoinhibited, as predicted. Our results highlight the often-paradoxical circuit dynamics that are evidenced during optogenetic manipulations and indicate that, contrary to long-standing dogma, both CA1 and CA3 hippocampal regions display strongly recurrent excitation, which is stabilized through inhibition.
Collapse
Affiliation(s)
- Laurel Watkins de Jong
- Department of Anesthesiology, Michigan Medicine, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Psychology, University of Wisconsin-Milwaukee, 2441 E Hartford Ave, Milwaukee, WI 53211, USA
| | | | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, 1301 Beal Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Kamran Diba
- Department of Anesthesiology, Michigan Medicine, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Psychology, University of Wisconsin-Milwaukee, 2441 E Hartford Ave, Milwaukee, WI 53211, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Asede D, Doddapaneni D, Bolton MM. Amygdala Intercalated Cells: Gate Keepers and Conveyors of Internal State to the Circuits of Emotion. J Neurosci 2022; 42:9098-9109. [PMID: 36639901 PMCID: PMC9761677 DOI: 10.1523/jneurosci.1176-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 10/16/2022] [Indexed: 01/09/2023] Open
Abstract
Generating adaptive behavioral responses to emotionally salient stimuli requires evaluation of complex associations between multiple sensations, the surrounding context, and current internal state. Neural circuits within the amygdala parse this emotional information, undergo synaptic plasticity to reflect learned associations, and evoke appropriate responses through their projections to the brain regions orchestrating these behaviors. Information flow within the amygdala is regulated by the intercalated cells (ITCs), which are densely packed clusters of GABAergic neurons that encircle the basolateral amygdala (BLA) and provide contextually relevant feedforward inhibition of amygdala nuclei, including the central and BLA. Emerging studies have begun to delineate the unique contribution of each ITC cluster and establish ITCs as key loci of plasticity in emotional learning. In this review, we summarize the known connectivity and function of individual ITC clusters and explore how different neuromodulators conveying internal state act via ITC gates to shape emotionally motivated behavior. We propose that the behavioral state-dependent function of ITCs, their unique genetic profile, and rich expression of neuromodulator receptors make them potential therapeutic targets for disorders, such as anxiety, schizophrenia spectrum, and addiction.
Collapse
Affiliation(s)
- Douglas Asede
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Divyesh Doddapaneni
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| |
Collapse
|
27
|
Royero P, Quatraccioni A, Früngel R, Silva MH, Bast A, Ulas T, Beyer M, Opitz T, Schultze JL, Graham ME, Oberlaender M, Becker A, Schoch S, Beck H. Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase. Cell Rep 2022; 41:111757. [PMID: 36476865 PMCID: PMC9756112 DOI: 10.1016/j.celrep.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding.
Collapse
Affiliation(s)
- Pedro Royero
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Anne Quatraccioni
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Rieke Früngel
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Arco Bast
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Beyer
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany
| | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Mark E. Graham
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Albert Becker
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany,Corresponding author
| |
Collapse
|
28
|
Bhattacharya D, Bartley AF, Li Q, Dobrunz LE. Bicuculline restores frequency-dependent hippocampal I/E ratio and circuit function in PGC-1ɑ null mice. Neurosci Res 2022; 184:9-18. [PMID: 35842011 PMCID: PMC10865982 DOI: 10.1016/j.neures.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022]
Abstract
Altered inhibition/excitation (I/E) balance contributes to various brain disorders. Dysfunctional GABAergic interneurons enhance or reduce inhibition, resulting in I/E imbalances. Differences in short-term plasticity between excitation and inhibition cause frequency-dependence of the I/E ratio, which can be altered by GABAergic dysfunction. However, it is unknown whether I/E imbalances can be rescued pharmacologically using a single dose when the imbalance magnitude is frequency-dependent. Loss of PGC-1α (peroxisome proliferator activated receptor γ coactivator 1α) causes transcriptional dysregulation in hippocampal GABAergic interneurons. PGC-1α-/- slices have enhanced baseline inhibition onto CA1 pyramidal cells, causing increased I/E ratio and impaired circuit function. High frequency stimulation reduces the I/E ratio and recovers circuit function in PGC-1α-/- slices. Here we tested if using a low dose of bicuculline that can restore baseline I/E ratio can also rescue the frequency-dependent I/E imbalances in these mice. Remarkably, bicuculline did not reduce the I/E ratio below that of wild type during high frequency stimulation. Interestingly, bicuculline enhanced the paired-pulse ratio (PPR) of disynaptic inhibition without changing the monosynaptic inhibition PPR, suggesting that bicuculline modifies interneuron recruitment and not GABA release. Bicuculline improved CA1 output in PGC-1α-/- slices, enhancing EPSP-spike coupling to wild type levels at high and low frequencies. Our results show that it is possible to rescue frequency-dependent I/E imbalances in an animal model of transcriptional dysregulation with a single treatment.
Collapse
Affiliation(s)
- Dwipayan Bhattacharya
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Qin Li
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States.
| |
Collapse
|
29
|
Polykretis I, Michmizos KP. The role of astrocytes in place cell formation: A computational modeling study. J Comput Neurosci 2022; 50:505-518. [PMID: 35840871 PMCID: PMC9671849 DOI: 10.1007/s10827-022-00828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Place cells develop spatially-tuned receptive fields during the early stages of novel environment exploration. The generative mechanism underlying these spatially-selective responses remains largely elusive, but has been associated with theta rhythmicity. An important factor implicating the transformation of silent cells to place cells is a spatially-uniform depolarization that is mediated by a persistent sodium current. This neuronal current is modulated by extracellular calcium concentration, which, in turn, is actively controlled by astrocytes. However, there is no established relationship between the neuronal depolarization and astrocytic activity. To consider this link, we designed a bioplausible computational model of a neuronal-astrocytic network, where astrocytes induced the transient emergence of place fields in silent cells, and accelerated the plasticity-induced consolidation of place cells. Interestingly, theta oscillations emerged naturally at the network level, resulting from the astrocytic modulation of subcellular neuronal properties. Our results suggest that astrocytes participate in spatial mapping and exploration, and further highlight the computational roles of these cells in the brain.
Collapse
Affiliation(s)
- Ioannis Polykretis
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
30
|
Caputi A, Liu X, Fuchs EC, Liu YC, Monyer H. Medial entorhinal cortex commissural input regulates the activity of spatially and object-tuned cells contributing to episodic memory. Neuron 2022; 110:3389-3405.e7. [PMID: 36084654 DOI: 10.1016/j.neuron.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
Extensive interhemispheric projections connect many homotopic brain regions, including the hippocampal formation, but little is known as to how information transfer affects the functions supported by the target area. Here, we studied whether the commissural projections connecting the medial entorhinal cortices contribute to spatial coding, object coding, and memory. We demonstrate that input from the contralateral medial entorhinal cortex targets all major cell types in the superficial medial entorhinal cortex, modulating their firing rate. Notably, a fraction of responsive cells displayed object tuning and exhibited a reduction in their firing rate upon the inhibition of commissural input. In line with this finding are behavioral results that revealed the contribution of commissural input to episodic-like memory retrieval.
Collapse
Affiliation(s)
- Antonio Caputi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xinghua Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Elke C Fuchs
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Abstract
Consider how advantageous it might be to have eyes on our hands, rather than on our faces: depth perception would be improved by the greater distance between the eyes, and it would be easy to look into relatively inaccessible spaces by appropriate movement of the hands. The absence of mammals that use this visual strategy draws attention to constraints on how evolution is able to 'design' the nervous system. Energy use in particular, in this case the large amount of energy that would be needed to send visual information along the ∼106 optic nerve axons over the length of the arms to the brain (instead of along the much shorter optic nerve), imposes significant design constraints on the nervous system.
Collapse
Affiliation(s)
- Tania Quintela-López
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Hiroko Shiina
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
32
|
Jacotte-Simancas A, Middleton JW, Stielper ZF, Edwards S, Molina PE, Gilpin NW. Brain Injury Effects on Neuronal Activation and Synaptic Transmission in the Basolateral Amygdala of Adult Male and Female Wistar Rats. J Neurotrauma 2022; 39:544-559. [PMID: 35081744 PMCID: PMC8978566 DOI: 10.1089/neu.2021.0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) is defined as brain damage produced by an external mechanical force that leads to behavioral, cognitive, and psychiatric sequelae. The basolateral amygdala (BLA) is involved in emotional regulation, and its function and morphology are altered following TBI. Little is known about potential sex-specific effects of TBI on BLA neuronal function, but it is critical for the field to identify potential sex differences in TBI effects on brain and behavior. Here, we hypothesized that TBI would produce sex-specific acute (1 h) effects on BLA neuronal activation, excitability, and synaptic transmission in adult male and female rats. Forty-nine Wistar rats (n = 23 males and 26 females) were randomized to TBI (using lateral fluid percussion) or Sham groups in two separate studies. Study 1 used in situ hybridization (i.e., RNAscope) to measure BLA expression of c-fos (a marker of cell activation), vGlut, and vGat (markers of glutamatergic and GABAergic neurons, respectively) messenger RNA (mRNA). Study 2 used slice electrophysiology to measure intrinsic excitability and excitatory/inhibitory synaptic transmission in putative pyramidal neurons in the BLA. Physiological measures of injury severity were collected from all animals. Our results show that females exhibit increased apnea duration and reduced respiratory rate post-TBI relative to males. In male and female rats, TBI increased c-fos expression in BLA glutamatergic cells but not in BLA GABAergic cells, and TBI increased firing rate in BLA pyramidal neurons. Further, TBI increased spontaneous excitatory and inhibitory postsynaptic current (sEPSC and sIPSC) amplitude in BLA neurons of females relative to all other groups. TBI increased sEPSC frequency in BLA neurons of females relative to males but did not alter sIPSC frequency. In summary, lateral fluid percussion produced different physiological responses in male and female rats, as well as sex-specific alterations in BLA neuronal activation, excitability, and synaptic transmission 1 h after injury.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jason W. Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zachary F. Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
33
|
Greenhouse I. Inhibition for gain modulation in the motor system. Exp Brain Res 2022; 240:1295-1302. [DOI: 10.1007/s00221-022-06351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
|
34
|
Suzuki N, Tantirigama MLS, Aung KP, Huang HHY, Bekkers JM. Fast and slow feedforward inhibitory circuits for cortical odor processing. eLife 2022; 11:73406. [PMID: 35297763 PMCID: PMC8929928 DOI: 10.7554/elife.73406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Feedforward inhibitory circuits are key contributors to the complex interplay between excitation and inhibition in the brain. Little is known about the function of feedforward inhibition in the primary olfactory (piriform) cortex. Using in vivo two-photon-targeted patch clamping and calcium imaging in mice, we find that odors evoke strong excitation in two classes of interneurons – neurogliaform (NG) cells and horizontal (HZ) cells – that provide feedforward inhibition in layer 1 of the piriform cortex. NG cells fire much earlier than HZ cells following odor onset, a difference that can be attributed to the faster odor-driven excitatory synaptic drive that NG cells receive from the olfactory bulb. As a result, NG cells strongly but transiently inhibit odor-evoked excitation in layer 2 principal cells, whereas HZ cells provide more diffuse and prolonged feedforward inhibition. Our findings reveal unexpected complexity in the operation of inhibition in the piriform cortex.
Collapse
Affiliation(s)
- Norimitsu Suzuki
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Malinda L S Tantirigama
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, Germany
| | - K Phyu Aung
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Helena H Y Huang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
35
|
Apicella AJ, Marchionni I. VIP-Expressing GABAergic Neurons: Disinhibitory vs. Inhibitory Motif and Its Role in Communication Across Neocortical Areas. Front Cell Neurosci 2022; 16:811484. [PMID: 35221922 PMCID: PMC8867699 DOI: 10.3389/fncel.2022.811484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
GABAergic neurons play a crucial role in shaping cortical activity. Even though GABAergic neurons constitute a small fraction of cortical neurons, their peculiar morphology and functional properties make them an intriguing and challenging task to study. Here, we review the basic anatomical features, the circuit properties, and the possible role in the relevant behavioral task of a subclass of GABAergic neurons that express vasoactive intestinal polypeptide (VIP). These studies were performed using transgenic mice in which the VIP-expressing neurons can be recognized using fluorescent proteins and optogenetic manipulation to control (or regulate) their electrical activity. Cortical VIP-expressing neurons are more abundant in superficial cortical layers than other cortical layers, where they are mainly studied. Optogenetic and paired recordings performed in ex vivo cortical preparations show that VIP-expressing neurons mainly exert their inhibitory effect onto somatostatin-expressing (SOM) inhibitory neurons, leading to a disinhibitory effect onto excitatory pyramidal neurons. However, this subclass of GABAergic neurons also releases neurotransmitters onto other GABAergic and non-GABAergic neurons, suggesting other possible circuit roles than a disinhibitory effect. The heterogeneity of VIP-expressing neurons also suggests their involvement and recruitment during different functions via the inhibition/disinhibition of GABAergic and non-GABAergic neurons locally and distally, depending on the specific local circuit in which they are embedded, with potential effects on the behavioral states of the animal. Although VIP-expressing neurons represent only a tiny fraction of GABAergic inhibitory neurons in the cortex, these neurons’ selective activation/inactivation could produce a relevant behavioral effect in the animal. Regardless of the increasing finding and discoveries on this subclass of GABAergic neurons, there is still a lot of missing information, and more studies should be done to unveil their role at the circuit and behavior level in different cortical layers and across different neocortical areas.
Collapse
Affiliation(s)
- Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| | - Ivan Marchionni
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| |
Collapse
|
36
|
Cao AS, Van Hooser SD. Paired Feed-Forward Excitation With Delayed Inhibition Allows High Frequency Computations Across Brain Regions. Front Neural Circuits 2022; 15:803065. [PMID: 35210993 PMCID: PMC8862685 DOI: 10.3389/fncir.2021.803065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
The transmission of high frequency temporal information across brain regions is critical to perception, but the mechanisms underlying such transmission remain unclear. Long-range projection patterns across brain areas are often comprised of paired feed-forward excitation followed closely by delayed inhibition, including the thalamic triad synapse, thalamic projections to cortex, and projections within the hippocampus. Previous studies have shown that these joint projections produce a shortened period of depolarization, sharpening the timing window over which the postsynaptic neuron can fire. Here we show that these projections can facilitate the transmission of high frequency computations even at frequencies that are highly filtered by neuronal membranes. This temporal facilitation occurred over a range of synaptic parameter values, including variations in synaptic strength, synaptic time constants, short-term synaptic depression, and the delay between excitation and inhibition. Further, these projections can coordinate computations across multiple network levels, even amid ongoing local activity. We suggest that paired feed-forward excitation and inhibition provide a hybrid signal-carrying both a value and a clock-like trigger-to allow circuits to be responsive to input whenever it arrives.
Collapse
Affiliation(s)
- Alexandra S. Cao
- Department of Biology, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Stephen D. Van Hooser
- Department of Biology, Brandeis University, Waltham, MA, United States
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
- Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, MA, United States
| |
Collapse
|
37
|
Stacho M, Manahan-Vaughan D. Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition. Trends Neurosci 2022; 45:284-296. [DOI: 10.1016/j.tins.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
|
38
|
Pathway-specific contribution of parvalbumin interneuron NMDARs to synaptic currents and thalamocortical feedforward inhibition. Mol Psychiatry 2022; 27:5124-5134. [PMID: 36075962 PMCID: PMC9763122 DOI: 10.1038/s41380-022-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Prefrontal cortex (PFC) is a site of information convergence important for behaviors relevant to psychiatric disorders. Despite the importance of inhibitory GABAergic parvalbumin-expressing (PV+) interneurons to PFC circuit function and decades of interest in N-methyl-D-aspartate receptors (NMDARs) in these neurons, examples of defined circuit functions that depend on PV+ interneuron NMDARs have been elusive. Indeed, it remains controversial whether all PV+ interneurons contain functional NMDARs in adult PFC, which has major consequences for hypotheses of the pathogenesis of psychiatric disorders. Using a combination of fluorescent in situ hybridization, pathway-specific optogenetics, cell-type-specific gene ablation, and electrophysiological recordings from PV+ interneurons, here we resolve this controversy. We found that nearly 100% of PV+ interneurons in adult medial PFC (mPFC) express transcripts encoding GluN1 and GluN2B, and they have functional NMDARs. By optogenetically stimulating corticocortical and thalamocortical inputs to mPFC, we show that synaptic NMDAR contribution to PV+ interneuron EPSCs is pathway-specific, which likely explains earlier reports of PV+ interneurons without synaptic NMDAR currents. Lastly, we report a major contribution of NMDARs in PV+ interneurons to thalamus-mediated feedforward inhibition in adult mPFC circuits, suggesting molecular and circuit-based mechanisms for cognitive impairment under conditions of reduced NMDAR function. These findings represent an important conceptual advance that has major implications for hypotheses of the pathogenesis of psychiatric disorders.
Collapse
|
39
|
Almeida VN, Radanovic M. Semantic priming and neurobiology in schizophrenia: A theoretical review. Neuropsychologia 2021; 163:108058. [PMID: 34655651 DOI: 10.1016/j.neuropsychologia.2021.108058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
In this theoretical review we bridge the cognitive and neurobiological sciences to shed light on the neurocognitive foundations of the semantic priming effect in schizophrenia. We review and theoretically evaluate the neurotransmitter systems (dopaminergic, GABAergic and glutamatergic) and neurobiological underpinnings of behavioural and electrophysiological (N400) semantic priming in the pathology, and the main hypotheses on their geneses: a disinhibition of the semantic spread of activation, a disorganised semantic storage or noisy lexical-semantic associations, a psychomotor artefact, an artefact of relatedness proportions, or an inability to mobilise contextual information. We further assess the literature on the endophenotype of Formal Thought Disorder from multiple standpoints, ranging from neurophysiology to cognition: considerations are weaved on neuronal (PV basket cell, SST, VIP) and receptor deficits (DRD1, NMDA), neurotransmitter imbalances (dopamine), cortical and dopaminergic lateralisation, inter alia. In conclusion, we put forth novel postulates on the underlying causes of controlled hypopriming, automatic hyperpriming, N400 reversals (larger amplitudes for close associations), indirect versus direct hyperpriming, and the endophenotype of lexical-semantic disturbances in schizophrenia.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Marcia Radanovic
- Laboratório de Neurociências (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Brazil
| |
Collapse
|
40
|
Gal E, Amsalem O, Schindel A, London M, Schürmann F, Markram H, Segev I. The Role of Hub Neurons in Modulating Cortical Dynamics. Front Neural Circuits 2021; 15:718270. [PMID: 34630046 PMCID: PMC8500625 DOI: 10.3389/fncir.2021.718270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Many neurodegenerative diseases are associated with the death of specific neuron types in particular brain regions. What makes the death of specific neuron types particularly harmful for the integrity and dynamics of the respective network is not well understood. To start addressing this question we used the most up-to-date biologically realistic dense neocortical microcircuit (NMC) of the rodent, which has reconstructed a volume of 0.3 mm3 and containing 31,000 neurons, ∼37 million synapses, and 55 morphological cell types arranged in six cortical layers. Using modern network science tools, we identified hub neurons in the NMC, that are connected synaptically to a large number of their neighbors and systematically examined the impact of abolishing these cells. In general, the structural integrity of the network is robust to cells’ attack; yet, attacking hub neurons strongly impacted the small-world topology of the network, whereas similar attacks on random neurons have a negligible effect. Such hub-specific attacks are also impactful on the network dynamics, both when the network is at its spontaneous synchronous state and when it was presented with synchronized thalamo-cortical visual-like input. We found that attacking layer 5 hub neurons is most harmful to the structural and functional integrity of the NMC. The significance of our results for understanding the role of specific neuron types and cortical layers for disease manifestation is discussed.
Collapse
Affiliation(s)
- Eyal Gal
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Amsalem
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Schindel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael London
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Idan Segev
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
41
|
Metzdorf K, Fricke S, Balia MT, Korte M, Zagrebelsky M. Nogo-A Modulates the Synaptic Excitation of Hippocampal Neurons in a Ca 2+-Dependent Manner. Cells 2021; 10:cells10092299. [PMID: 34571950 PMCID: PMC8467072 DOI: 10.3390/cells10092299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
A tight regulation of the balance between inhibitory and excitatory synaptic transmission is a prerequisite for synaptic plasticity in neuronal networks. In this context, the neurite growth inhibitor membrane protein Nogo-A modulates synaptic plasticity, strength, and neurotransmitter receptor dynamics. However, the molecular mechanisms underlying these actions are unknown. We show that Nogo-A loss-of-function in primary mouse hippocampal cultures by application of a function-blocking antibody leads to higher excitation following a decrease in GABAARs at inhibitory and an increase in the GluA1, but not GluA2 AMPAR subunit at excitatory synapses. This unbalanced regulation of AMPAR subunits results in the incorporation of Ca2+-permeable GluA2-lacking AMPARs and increased intracellular Ca2+ levels due to a higher Ca2+ influx without affecting its release from the internal stores. Increased neuronal activation upon Nogo-A loss-of-function prompts the phosphorylation of the transcription factor CREB and the expression of c-Fos. These results contribute to the understanding of the molecular mechanisms underlying the regulation of the excitation/inhibition balance and thereby of plasticity in the brain.
Collapse
Affiliation(s)
- Kristin Metzdorf
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Steffen Fricke
- Division of Cell Physiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany;
| | - Maria Teresa Balia
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Correspondence: ; Tel.: +49-(0)-531-3913225
| |
Collapse
|
42
|
Traub RD, Tu Y, Whittington MA. Cell assembly formation and structure in a piriform cortex model. Rev Neurosci 2021; 33:111-132. [PMID: 34271607 DOI: 10.1515/revneuro-2021-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/19/2021] [Indexed: 11/15/2022]
Abstract
The piriform cortex is rich in recurrent excitatory synaptic connections between pyramidal neurons. We asked how such connections could shape cortical responses to olfactory lateral olfactory tract (LOT) inputs. For this, we constructed a computational network model of anterior piriform cortex with 2000 multicompartment, multiconductance neurons (500 semilunar, 1000 layer 2 and 500 layer 3 pyramids; 200 superficial interneurons of two types; 500 deep interneurons of three types; 500 LOT afferents), incorporating published and unpublished data. With a given distribution of LOT firing patterns, and increasing the strength of recurrent excitation, a small number of firing patterns were observed in pyramidal cell networks: first, sparse firings; then temporally and spatially concentrated epochs of action potentials, wherein each neuron fires one or two spikes; then more synchronized events, associated with bursts of action potentials in some pyramidal neurons. We suggest that one function of anterior piriform cortex is to transform ongoing streams of input spikes into temporally focused spike patterns, called here "cell assemblies", that are salient for downstream projection areas.
Collapse
Affiliation(s)
- Roger D Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | - Yuhai Tu
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | | |
Collapse
|
43
|
Sarazin MXB, Victor J, Medernach D, Naudé J, Delord B. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State. Front Neural Circuits 2021; 15:648538. [PMID: 34305535 PMCID: PMC8298038 DOI: 10.3389/fncir.2021.648538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
In the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible behaviors rely on continuous dynamical sequences of spiking activity that constitute neural trajectories in the state space of activity. Neural trajectories subserve diverse representations, from explicit mappings in physical spaces to generalized mappings in the task space, and up to complex abstract transformations such as working memory, decision-making and behavioral planning. Computational models have separately assessed learning and replay of neural trajectories, often using unrealistic learning rules or decoupling simulations for learning from replay. Hence, the question remains open of how neural trajectories are learned, memorized and replayed online, with permanently acting biological plasticity rules. The asynchronous irregular regime characterizing cortical dynamics in awake conditions exerts a major source of disorder that may jeopardize plasticity and replay of locally ordered activity. Here, we show that a recurrent model of local PFC circuitry endowed with realistic synaptic spike timing-dependent plasticity and scaling processes can learn, memorize and replay large-size neural trajectories online under asynchronous irregular dynamics, at regular or fast (sped-up) timescale. Presented trajectories are quickly learned (within seconds) as synaptic engrams in the network, and the model is able to chunk overlapping trajectories presented separately. These trajectory engrams last long-term (dozen hours) and trajectory replays can be triggered over an hour. In turn, we show the conditions under which trajectory engrams and replays preserve asynchronous irregular dynamics in the network. Functionally, spiking activity during trajectory replays at regular timescale accounts for both dynamical coding with temporal tuning in individual neurons, persistent activity at the population level, and large levels of variability consistent with observed cognitive-related PFC dynamics. Together, these results offer a consistent theoretical framework accounting for how neural trajectories can be learned, memorized and replayed in PFC networks circuits to subserve flexible dynamic representations and adaptive behaviors.
Collapse
Affiliation(s)
- Matthieu X B Sarazin
- Institut des Systèmes Intelligents et de Robotique, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Julie Victor
- CEA Paris-Saclay, CNRS, NeuroSpin, Saclay, France
| | - David Medernach
- Institut des Systèmes Intelligents et de Robotique, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Jérémie Naudé
- Neuroscience Paris Seine - Institut de biologie Paris Seine, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Bruno Delord
- Institut des Systèmes Intelligents et de Robotique, CNRS, Inserm, Sorbonne Université, Paris, France
| |
Collapse
|
44
|
Akil AE, Rosenbaum R, Josić K. Balanced networks under spike-time dependent plasticity. PLoS Comput Biol 2021; 17:e1008958. [PMID: 33979336 PMCID: PMC8143429 DOI: 10.1371/journal.pcbi.1008958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/24/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory–inhibitory balance is a plausible mechanism that generates such irregular activity, but it remains unclear how balance is achieved and maintained in plastic neural networks. In particular, it is not fully understood how plasticity induced changes in the network affect balance, and in turn, how correlated, balanced activity impacts learning. How do the dynamics of balanced networks change under different plasticity rules? How does correlated spiking activity in recurrent networks change the evolution of weights, their eventual magnitude, and structure across the network? To address these questions, we develop a theory of spike–timing dependent plasticity in balanced networks. We show that balance can be attained and maintained under plasticity–induced weight changes. We find that correlations in the input mildly affect the evolution of synaptic weights. Under certain plasticity rules, we find an emergence of correlations between firing rates and synaptic weights. Under these rules, synaptic weights converge to a stable manifold in weight space with their final configuration dependent on the initial state of the network. Lastly, we show that our framework can also describe the dynamics of plastic balanced networks when subsets of neurons receive targeted optogenetic input. Animals are able to learn complex tasks through changes in individual synapses between cells. Such changes lead to the coevolution of neural activity patterns and the structure of neural connectivity, but the consequences of these interactions are not fully understood. We consider plasticity in model neural networks which achieve an average balance between the excitatory and inhibitory synaptic inputs to different cells, and display cortical–like, irregular activity. We extend the theory of balanced networks to account for synaptic plasticity and show which rules can maintain balance, and which will drive the network into a different state. This theory of plasticity can provide insights into the relationship between stimuli, network dynamics, and synaptic circuitry.
Collapse
Affiliation(s)
- Alan Eric Akil
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
46
|
Kim B, Im HI. Chronic nicotine impairs sparse motor learning via striatal fast-spiking parvalbumin interneurons. Addict Biol 2021; 26:e12956. [PMID: 32767546 PMCID: PMC8243919 DOI: 10.1111/adb.12956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
Nicotine can diversely affect neural activity and motor learning in animals. However, the impact of chronic nicotine on striatal activity in vivo and motor learning at long-term sparse timescale remains unknown. Here, we demonstrate that chronic nicotine persistently suppresses the activity of striatal fast-spiking parvalbumin interneurons, which mediate nicotine-induced deficit in sparse motor learning. Six weeks of longitudinal in vivo single-unit recording revealed that mice show reduced activity of fast-spiking interneurons in the dorsal striatum during chronic nicotine exposure and withdrawal. The reduced firing of fast-spiking interneurons was accompanied by spike broadening, diminished striatal delta oscillation power, and reduced sample entropy in local field potential. In addition, chronic nicotine withdrawal impaired motor learning with a weekly sparse training regimen but did not affect general locomotion and anxiety-like behavior. Lastly, the excitatory DREADD hM3Dq-mediated activation of striatal fast-spiking parvalbumin interneurons reversed the chronic nicotine withdrawal-induced deficit in sparse motor learning. Taken together, we identified that chronic nicotine withdrawal impairs sparse motor learning via disruption of activity in striatal fast-spiking parvalbumin interneurons. These findings suggest that sparse motor learning paradigm can reveal the subtle effect of nicotine withdrawal on motor function and that striatal fast-spiking parvalbumin interneurons are a neural substrate of nicotine's effect on motor learning.
Collapse
Affiliation(s)
- Baeksun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia (DTC), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia (DTC), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
47
|
Modulation of Coordinated Activity across Cortical Layers by Plasticity of Inhibitory Synapses. Cell Rep 2021; 30:630-641.e5. [PMID: 31968242 PMCID: PMC6988114 DOI: 10.1016/j.celrep.2019.12.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022] Open
Abstract
In the neocortex, synaptic inhibition shapes all forms of spontaneous and sensory evoked activity. Importantly, inhibitory transmission is highly plastic, but the functional role of inhibitory synaptic plasticity is unknown. In the mouse barrel cortex, activation of layer (L) 2/3 pyramidal neurons (PNs) elicits strong feedforward inhibition (FFI) onto L5 PNs. We find that FFI involving parvalbumin (PV)-expressing cells is strongly potentiated by postsynaptic PN burst firing. FFI plasticity modifies the PN excitation-to-inhibition (E/I) ratio, strongly modulates PN gain, and alters information transfer across cortical layers. Moreover, our LTPi-inducing protocol modifies firing of L5 PNs and alters the temporal association of PN spikes to γ-oscillations both in vitro and in vivo. All of these effects are captured by unbalancing the E/I ratio in a feedforward inhibition circuit model. Altogether, our results indicate that activity-dependent modulation of perisomatic inhibitory strength effectively influences the participation of single principal cortical neurons to cognition-relevant network activity. Feedforward inhibition (FFI) of layer 5 pyramidal neurons (PNs) is highly plastic Long-term potentiation of FFI modulates spiking activity of layer 5 PNs LTPi affects information transfer across cortical layers The strength of LTPi determines the phase locking of PN firing to γ-oscillations
Collapse
|
48
|
Trompoukis G, Leontiadis LJ, Rigas P, Papatheodoropoulos C. Scaling of Network Excitability and Inhibition may Contribute to the Septotemporal Differentiation of Sharp Waves-Ripples in Rat Hippocampus In Vitro. Neuroscience 2021; 458:11-30. [PMID: 33465412 DOI: 10.1016/j.neuroscience.2020.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/21/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
The functional organization of the hippocampus along its longitudinal (septotemporal or dorsoventral) axis is conspicuously heterogeneous. This functional diversification includes the activity of sharp wave and ripples (SPW-Rs), a complex intrinsic network pattern involved in memory consolidation. In this study, using transverse slices from the ventral and the dorsal rat hippocampus and recordings of CA1 field potentials we studied the development of SPW-Rs and possible changes in local network excitability and inhibition, during in vitro maintenance of the hippocampal tissue. We found that SPW-Rs develop gradually in terms of magnitude and rate of occurrence in the ventral hippocampus. On the contrary, neither the magnitude nor the rate of occurrence significantly changed in dorsal hippocampal slices during their in vitro maintenance. The development of SPW-Rs was accompanied by an increase in local network excitability more in the ventral than in the dorsal hippocampus, and an increase in local network inhibition in the ventral hippocampus only. Furthermore, the amplitude of SPWs positively correlated with the level of maximum excitation of the local neuronal network in both segments of the hippocampus, and the local network excitability and inhibition in the ventral but not the dorsal hippocampus. Blockade of α5 subunit-containing GABAA receptor by L-655,708 significantly reduced the rate of occurrence of SPWs and enhanced the probability of their generation in the form of clusters in the ventral hippocampus without affecting activity in the dorsal hippocampus. The present evidence suggests that a dynamic upregulation of excitation and inhibition in the local neuronal network may significantly contribute to the generation of SPW-Rs, particularly in the ventral hippocampus.
Collapse
Affiliation(s)
- George Trompoukis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Leonidas J Leontiadis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Pavlos Rigas
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
49
|
Sadeh S, Clopath C. Inhibitory stabilization and cortical computation. Nat Rev Neurosci 2020; 22:21-37. [PMID: 33177630 DOI: 10.1038/s41583-020-00390-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Neuronal networks with strong recurrent connectivity provide the brain with a powerful means to perform complex computational tasks. However, high-gain excitatory networks are susceptible to instability, which can lead to runaway activity, as manifested in pathological regimes such as epilepsy. Inhibitory stabilization offers a dynamic, fast and flexible compensatory mechanism to balance otherwise unstable networks, thus enabling the brain to operate in its most efficient regimes. Here we review recent experimental evidence for the presence of such inhibition-stabilized dynamics in the brain and discuss their consequences for cortical computation. We show how the study of inhibition-stabilized networks in the brain has been facilitated by recent advances in the technological toolbox and perturbative techniques, as well as a concomitant development of biologically realistic computational models. By outlining future avenues, we suggest that inhibitory stabilization can offer an exemplary case of how experimental neuroscience can progress in tandem with technology and theory to advance our understanding of the brain.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK.
| |
Collapse
|
50
|
|