1
|
Duncan DH, van Moorselaar D, Theeuwes J. Pinging the brain to reveal the hidden attentional priority map using encephalography. Nat Commun 2023; 14:4749. [PMID: 37550310 PMCID: PMC10406833 DOI: 10.1038/s41467-023-40405-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Attention has been usefully thought of as organized in priority maps - putative maps of space where attentional priority is weighted across spatial regions in a winner-take-all competition for attentional deployment. Recent work has highlighted the influence of past experiences on the weighting of spatial priority - called selection history. Aside from being distinct from more well-studied, top-down forms of attentional enhancement, little is known about the neural substrates of history-mediated attentional priority. Using a task known to induce statistical learning of target distributions, in an EEG study we demonstrate that this otherwise invisible, latent attentional priority map can be visualized during the intertrial period using a 'pinging' technique in conjunction with multivariate pattern analyses. Our findings not only offer a method of visualizing the history-mediated attentional priority map, but also shed light on the underlying mechanisms allowing our past experiences to influence future behavior.
Collapse
Affiliation(s)
- Dock H Duncan
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, the Netherlands.
| | - Dirk van Moorselaar
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, the Netherlands
| | - Jan Theeuwes
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Institute Brain and Behavior Amsterdam (iBBA), Amsterdam, the Netherlands
- William James Center for Research, ISPA-Instituto Universitario, Lisbon, Portugal
| |
Collapse
|
2
|
Gu Q, Dai A, Ye T, Huang B, Lu X, Shen M, Gao Z. Object-based encoding in visual working memory: A critical revisit. Q J Exp Psychol (Hove) 2021; 75:1397-1410. [PMID: 34609217 DOI: 10.1177/17470218211052502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Visual working memory (VWM) is responsible for the temporal retention and manipulation of visual information. It has been suggested that VWM employs an object-based encoding (OBE) manner to extract highly discriminable information from visual perception: Whenever one feature dimension of the objects is selected for entry into VWM, the other task-irrelevant highly discriminable dimension is also extracted into VWM involuntarily. However, the task-irrelevant feature in OBE studies might reflect a high capacity fragile VWM (FVWM) trace that stores maskable sensory representations. To directly compare the VWM storage hypothesis and the FVWM storage hypothesis, we used a unique characteristic of FVWM that the representations in FVWM could be erased by backward masks presented at the original locations of the memory array. We required participants to memorise the orientations of three coloured bars while ignoring their colours, and presented backward masks during the VWM maintenance interval. In four experiments, we consistently observed that the OBE occurs regardless of the presentation of the backward masks, except when even the task-relevant features in VWM were significantly interrupted by immediate backward masks, suggesting that the task-irrelevant features of objects are stored in VWM rather than in FVWM.
Collapse
Affiliation(s)
- Quan Gu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Alessandro Dai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Tian Ye
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Bo Huang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiqian Lu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Mowei Shen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Zaifeng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Barbosa J, Lozano-Soldevilla D, Compte A. Pinging the brain with visual impulses reveals electrically active, not activity-silent, working memories. PLoS Biol 2021; 19:e3001436. [PMID: 34673775 PMCID: PMC8641864 DOI: 10.1371/journal.pbio.3001436] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/03/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Persistently active neurons during mnemonic periods have been regarded as the mechanism underlying working memory maintenance. Alternatively, neuronal networks could instead store memories in fast synaptic changes, thus avoiding the biological cost of maintaining an active code through persistent neuronal firing. Such "activity-silent" codes have been proposed for specific conditions in which memories are maintained in a nonprioritized state, as for unattended but still relevant short-term memories. A hallmark of this "activity-silent" code is that these memories can be reactivated from silent, synaptic traces. Evidence for "activity-silent" working memory storage has come from human electroencephalography (EEG), in particular from the emergence of decodability (EEG reactivations) induced by visual impulses (termed pinging) during otherwise "silent" periods. Here, we reanalyze EEG data from such pinging studies. We find that the originally reported absence of memory decoding reflects weak statistical power, as decoding is possible based on more powered analyses or reanalysis using alpha power instead of raw voltage. This reveals that visual pinging EEG "reactivations" occur in the presence of an electrically active, not silent, code for unattended memories in these data. This crucial change in the evidence provided by this dataset prompts a reinterpretation of the mechanisms of EEG reactivations. We provide 2 possible explanations backed by computational models, and we discuss the relationship with TMS-induced EEG reactivations.
Collapse
Affiliation(s)
- Joao Barbosa
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Études Cognitives, École Normale Supérieure, PSL University, Paris, France
| | - Diego Lozano-Soldevilla
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Albert Compte
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
The development of retro-cue benefits with extensive practice: Implications for capacity estimation and attentional states in visual working memory. Mem Cognit 2021; 49:1036-1049. [PMID: 33616865 PMCID: PMC7899059 DOI: 10.3758/s13421-021-01138-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/18/2022]
Abstract
Accessing the contents of visual short-term memory (VSTM) is compromised by information bottlenecks and visual interference between memorization and recall. Retro-cues, displayed after the offset of a memory stimulus and prior to the onset of a probe stimulus, indicate the test item and improve performance in VSTM tasks. It has been proposed that retro-cues aid recall by transferring information from a high-capacity memory store into visual working memory (multiple-store hypothesis). Alternatively, retro-cues could aid recall by redistributing memory resources within the same (low-capacity) working memory store (single-store hypothesis). If retro-cues provide access to a memory store with a capacity exceeding the set size, then, given sufficient training in the use of the retro-cue, near-ceiling performance should be observed. To test this prediction, 10 observers each performed 12 hours across 8 sessions in a retro-cue change-detection task (40,000+ trials total). The results provided clear support for the single-store hypothesis: retro-cue benefits (difference between a condition with and without retro-cues) emerged after a few hundred trials and then remained constant throughout the testing sessions, consistently improving performance by two items, rather than reaching ceiling performance. Surprisingly, we also observed a general increase in performance throughout the experiment in conditions with and without retro-cues, calling into question the generalizability of change-detection tasks in assessing working memory capacity as a stable trait of an observer (data and materials are available at osf.io/9xr82 and github.com/paulzerr/retrocues). In summary, the present findings suggest that retro-cues increase capacity estimates by redistributing memory resources across memoranda within a low-capacity working memory store.
Collapse
|
5
|
Gayet S, Moorselaar DV, Olivers CNL, Paffen CLE, Stigchel SVD. Prospectively reinstated memory drives conscious access of matching visual input. Sci Rep 2019; 9:4793. [PMID: 30886323 PMCID: PMC6423023 DOI: 10.1038/s41598-019-41350-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/25/2019] [Indexed: 11/09/2022] Open
Abstract
Maintaining information in visual working memory (VWM) biases attentional selection of concurrent visual input, by favoring VWM-matching over VWM-mismatching visual input. Recently, it was shown that this bias disappears when the same item is memorized on consecutive occasions (as memoranda presumably transit from VWM to long-term memory), but reemerges when observers anticipate to memorize a novel item on a subsequent trial. Here, we aimed to conceptually replicate and extend this intriguing finding, by investigating whether prospectively reinstated memory drives conscious access of memory-matching visual input. We measured the time it took for participants to detect interocularly suppressed target stimuli, which were either from the same color category as a concurrently memorized color or not. Our results showed that the advantage of memory-matching targets in overcoming suppression progresses non-monotonically across consecutive memorizations of the same color ('repetitions'): the advantage for memory-matching visual input initially declined to asymptote, before being fully revived on the last repetition. This revival was not observed in a control experiment in which targets were not interocularly suppressed. The results suggest that, as observers anticipate to memorize a novel item imminently, VWM usage is prospectively reinstated, causing memory-matching visual input to gain accelerated access to consciousness again.
Collapse
Affiliation(s)
- Surya Gayet
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Dirk van Moorselaar
- Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian N L Olivers
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris L E Paffen
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Eye Movement-Related Confounds in Neural Decoding of Visual Working Memory Representations. eNeuro 2018; 5:eN-NWR-0401-17. [PMID: 30310862 PMCID: PMC6179574 DOI: 10.1523/eneuro.0401-17.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory (VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG decoding results from our originally planned analyses were confounded. In addition to the eye movement analyses, we also present the original analyses to highlight how these might have readily led to invalid conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-related confounds.
Collapse
|