1
|
Hariom, Kumari P, Chaturvedi S, Shrivastav S, Maratha S, Walia V. Caffeic acid differentially modulates behavior and neurochemicals in chronic unpredictable mild stress and dexamethasone induced models of depression. Pharmacol Biochem Behav 2025; 247:173930. [PMID: 39644931 DOI: 10.1016/j.pbb.2024.173930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
In the present study authors studied the effect of caffeic acid (CA) in chronic unpredictable mild stress (CUMS) and dexamethasone (DEXA) model of depression. CUMS (21 days) and DEXA (1.5 mg/kg × 21 days) was used for the induction of depression and anxiety related behavior. Locomotor activity was determined using actophotometer. Depression related behavior was determined using tail suspension test (TST) and forced swim test (FST) whereas for the determination of anxiety related behavior elevated plus maze (EPM) test was used. Following behavioral studies, mice were sacrificed by decapitation method. Hippocampus was dissected and was used for the neurochemical assays including 5-HT (serotonin), glutamate, nitrite and gamma-aminobutyric acid (GABA). The results obtained suggested that the CA (25-100 mg/kg, i.p.) did not affect the activity count in CUMS exposed and DEXA treated mice. CA (50 mg/kg) evoked anxiogenic reactions in CUMS model by increasing the hippocampal nitrite and glutamate level while CA (50 mg/kg) exerted anxiolysis in DEXA model by reducing the level of 5-HT. In CUMS model, CA exerted antidepressant like effect by increasing the hippocampal nitric oxide (NO) level, in DEXA model CA exerted antidepressant like effect by reducing the hippocampal glutamate level. CA failed to reverse DEXA mediated nNOS inhibition and therefore decreases hippocampal glutamate level to exert antidepressant like effect. Thus, CA modulate anxiety and depression related neurobehavioral alterations in both CUMS and DEXA models.
Collapse
Affiliation(s)
- Hariom
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Prerna Kumari
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | | | | | - Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| |
Collapse
|
2
|
Król-Kulikowska M, Banasik M, Kepinska M. The Effect of Selected Nitric Oxide Synthase Polymorphisms on the Risk of Developing Diabetic Nephropathy. Antioxidants (Basel) 2024; 13:838. [PMID: 39061907 PMCID: PMC11273648 DOI: 10.3390/antiox13070838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Nitric oxide synthase (NOS) is an enzyme that catalyzes the formation of nitric oxide (NO), the altered production of which is characteristic of diabetic nephropathy. NOS exists in three isoforms: NOS1, NOS2, and NOS3. Moreover, there are reports about the potential role of NOS3 polymorphisms in the development of diabetes complications. The aim of this study was to assess the role of selected NOS polymorphisms-rs3782218 (NOS1), rs1137933 (NOS2), rs1799983, rs2070744, and rs61722009 (NOS3)-in the risk of developing diabetic nephropathy and in the likelihood of renal replacement therapy. METHODS The studied polymorphisms were analyzed in a group of 232 patients divided into three groups. Four polymorphisms (rs3782218, rs1137933, rs1799983, rs2070744) were genotyped using the PCR-RFLP, while the rs61722009 polymorphism was genotyped using the PCR. RESULTS The C/C genotype and the C allele of the rs3782218 polymorphism (NOS1) were associated with an increased risk of developing diabetic nephropathy and an increased likelihood of renal replacement therapy. In turn, the G allele of the rs1137933 polymorphism (NOS2) reduces the likelihood of renal replacement therapy. CONCLUSIONS The specific genotypes or alleles of the rs3782218 (NOS1) and rs1137933 (NOS2) polymorphisms seem to be potential risk factors for diabetic nephropathy and renal replacement therapy.
Collapse
Affiliation(s)
- Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Mirosław Banasik
- Department and Clinic of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| |
Collapse
|
3
|
Ikrin AN, Moskalenko AM, Mukhamadeev RR, de Abreu MS, Kolesnikova TO, Kalueff AV. The emerging complexity of molecular pathways implicated in mouse self-grooming behavior. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110840. [PMID: 37580009 DOI: 10.1016/j.pnpbp.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rodent self-grooming is an important complex behavior, and its deficits are translationally relevant to a wide range of neuropsychiatric disorders. Here, we analyzed a comprehensive dataset of 227 genes whose mutations are known to evoke aberrant self-grooming in mice. Using these genes, we constructed the network of their established protein-protein interactions (PPI), yielding several distinct molecular clusters related to postsynaptic density, the Wnt signaling, transcription factors, neuronal cell cycle, NOS neurotransmission, microtubule regulation, neuronal differentiation/trafficking, neurodevelopment and mitochondrial function. Utilizing further bioinformatics analyses, we also identified novel central ('hub') proteins within these clusters, whose genes may also be implicated in aberrant self-grooming and other repetitive behaviors in general. Untangling complex molecular pathways of this important behavior using in silico approaches contributes to our understanding of related neurological disorders, and may suggest novel potential targets for their pharmacological or gene therapy.
Collapse
Affiliation(s)
- Aleksey N Ikrin
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anastasia M Moskalenko
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Radmir R Mukhamadeev
- Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Murilo S de Abreu
- Moscow Institute of Science and Technology, Dolgoprudny 197028, Russia.
| | - Tatiana O Kolesnikova
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Allan V Kalueff
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 194021, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia; Neuroscience Group, Ural Federal University, Ekaterinburg 620002, Russia; Laboratory of Translational Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia.
| |
Collapse
|
4
|
Shiroshita A, Yamamoto N, Saka N, Shiba H, Toki S, Yamamoto M, Dohi E, Kataoka Y. Expanding the Scope: In-depth Review of Interaction in Regression Models. ANNALS OF CLINICAL EPIDEMIOLOGY 2023; 6:25-32. [PMID: 38606039 PMCID: PMC11006550 DOI: 10.37737/ace.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Akihiro Shiroshita
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine
- Scientific Research Works Peer Support Group (SRWS-PSG)
| | - Norio Yamamoto
- Scientific Research Works Peer Support Group (SRWS-PSG)
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Natsumi Saka
- Scientific Research Works Peer Support Group (SRWS-PSG)
- Department of Health Research Methods, Evidence & Impact, McMaster University
- Department of Orthopedic Surgery, Teikyo University School of Medicine
| | - Hiroshi Shiba
- Department of Internal Medicine, Suwa Central Hospital
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine
| | - Mari Yamamoto
- Department of Rheumatology and Nephrology,Chubu Rosai Hospital
| | - Eisuke Dohi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yuki Kataoka
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
- Department of Internal Medicine, Kyoto Min-Iren Asukai Hospital
- Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/Public Health
| |
Collapse
|
5
|
Xu H, Zhong Y, Yuan S, Wu Y, Ma Z, Hao Z, Ding H, Wu H, Liu G, Pang M, Liu N, Wang C, Zhang N. Nitric Oxide Synthase Type 1 Methylation Is Associated With White Matter Microstructure in the Corpus Callosum and Greater Panic Disorder Severity Among Panic Disorder Patients. Front Neurol 2021; 12:755270. [PMID: 34733233 PMCID: PMC8559336 DOI: 10.3389/fneur.2021.755270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: Methylation of the neuronal nitric oxide synthase (NOS1/nNOS) gene has recently been identified as a promising biomarker of psychiatric disorders. NOS1 plays an essential role in neurite outgrowth and may thus affect the microstructure development of white matter (WM) in the corpus callosum (CC), which is known to be altered in panic disorder (PD). We examined the relationship between NOS1 methylation, WM tracts in the CC, and symptoms based on this finding. Methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited after age, gender, and the education level were matched. The cell type used was whole-blood DNA, and DNA methylation of NOS1 was measured at 20 CpG sites in the promoter region. Although 25 patients with PD were assessed with the Panic Disorder Severity Scale (PDSS), diffusion tensor imaging (DTI) scans were only collected from 16 participants with PD. Results: We observed that the PD group showed lower methylation than did the HCs group and positive correlations between the symptom severity of PD and methylation at CpG4 and CpG9. In addition, CpG9 methylation was significantly correlated with the fractional anisotropy (FA) and mean diffusivity (MD) values of the CC and its major components (the genu and the splenium) in the PD group. Furthermore, path analyses showed that CpG9 methylation offers a mediating effect for the association between the MD values of the genu of the CC and PD symptom severity (95% CI = −1.731 to −0.034). Conclusions: The results suggest that CpG9 methylation leads to atypical development of the genu of the CC, resulting in higher PD symptom severity, adding support for the methylation of NOS1 as a future prognostic indicator of PD.
Collapse
Affiliation(s)
- Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, China
| | - Shiting Yuan
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zijuan Ma
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ziyu Hao
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huiqing Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Manlong Pang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Na Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Papp LM, Kouros CD. Effect of COVID-19 disruptions on young adults' affect and substance use in daily life. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2021; 35:391-401. [PMID: 34014686 PMCID: PMC8184623 DOI: 10.1037/adb0000748] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Guided by accounts of adjustment in daily life as a key indicator of health, the current study examined prospective changes in young adults' emotions and substance behaviors assessed during a normative baseline period and during the acute COVID-19 disruption period in late March/early April 2020. The COVID-19 assessment also collected psychosocial risk factors expected to moderate changes in adjustment across time. METHOD Participants included 295 young adults (70.8% female; ages 18-21 at baseline), drawn from an ongoing study of daily behaviors and health in college life that oversampled for recent substance behaviors, who completed both the baseline and COVID-19 assessments. Hypotheses were tested using analyses of repeated-measures data that included covariates of length of time between assessments and sampling group status. RESULTS Direct tests in support of hypotheses indicated an increase in negative affect (d = .67, p < .001), and greater alcohol use (d = .75, p < .001) and marijuana use (d = .58, p < .001), in daily life across time. Levels of positive affect (d = .08, p > .05), nicotine use (d = .01, p > .05), and prescription drug misuse (d = .003, p > .05) did not reliably change in tests of direct models. Moderation tests indicated several risk factors for experiencing steeper increases in negative affect, and increased likelihood of marijuana and nicotine use, in daily life across time. CONCLUSIONS Findings offer implications for future research and clinical efforts to improve young adult adjustment in response to the pandemic. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren M Papp
- Department of Human Development and Family Studies, University of Wisconsin-Madison
| | | |
Collapse
|
7
|
Temporal patterns of suicide and circulatory system disease-related mortality are inversely correlated in several countries. BMC Psychiatry 2021; 21:153. [PMID: 33726707 PMCID: PMC7962271 DOI: 10.1186/s12888-021-03159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nearly 800,000 suicides occur worldwide annually and suicide rates are increasing faster than population growth. Unfortunately, the pathophysiology of suicide remains poorly understood, which has hindered suicide prevention efforts. However, mechanistic clues may be found by studying effects of seasonality on suicide and other mortality causes. Suicides tend to peak in spring-summer periods and nadir in fall-winter periods while circulatory system disease-related mortality tends to exhibit the opposite temporal trends. This study aimed to determine for the first time whether monthly temporal cross-correlations exist between suicide and circulatory system disease-related mortality at the population level. If so and if common biological factors moderate risks for both mortality types, such factors may be discoverable and utilized to improve suicide prevention. METHODS We conducted time series analyses of monthly mortality data from northern (England and Wales, South Korea, United States) and southern (Australia, Brazil) hemisphere countries during the period 2009-2018 (N = 41.8 million all-cause mortality cases). We used a Poisson regression variant of the standard cosinor model to determine peak months of mortality. We also estimated cross-correlations between monthly mortality counts from suicide and from circulatory system diseases. RESULTS Suicide and circulatory disease-related mortality temporal patterns were negatively correlated in Australia (- 0.32), Brazil (- 0.57), South Korea (- 0.32), and in the United States (- 0.66), but no temporal correlation was discernable in England and Wales. CONCLUSIONS The negative temporal cross-correlations between these mortality types we found in 4 of 5 countries studied suggest that seasonal factors broadly and inversely moderate risks for circulatory disease-related mortality and suicide, but not in all regions, indicating that the effect is not uniform. Since the seasonal factors of temperature and light exert opposite effects on suicide and circulatory disease-related mortality in several countries, we propose that physiologically-adaptive circulatory system responses to heat and light may increase risk for suicide and should be studied to determine whether they affect suicide risk. For example, heat and light increase production and release of the bioactive gas nitric oxide and reduce circulatory system disease by relaxing blood vessel tone, while elevated nitric oxide levels are associated with suicidal behavior, inverse effects that parallel the inverse temporal mortality patterns we detected.
Collapse
|
8
|
Genetic Factors of Nitric Oxide's System in Psychoneurologic Disorders. Int J Mol Sci 2020; 21:ijms21051604. [PMID: 32111088 PMCID: PMC7084194 DOI: 10.3390/ijms21051604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
According to the recent data, nitric oxide (NO) is a chemical messenger that mediates functions such as vasodilation and neurotransmission, as well as displaying antimicrobial and antitumoral activities. NO has been implicated in the neurotoxicity associated with stroke and neurodegenerative diseases; neural regulation of smooth muscle, including peristalsis; and penile erections. We searched for full-text English publications from the past 15 years in Pubmed and SNPedia databases using keywords and combined word searches (nitric oxide, single nucleotide variants, single nucleotide polymorphisms, genes). In addition, earlier publications of historical interest were included in the review. In our review, we have summarized information regarding all NOS1, NOS2, NOS3, and NOS1AP single nucleotide variants (SNVs) involved in the development of mental disorders and neurological diseases/conditions. The results of the studies we have discussed in this review are contradictory, which might be due to different designs of the studies, small sample sizes in some of them, and different social and geographical characteristics. However, the contribution of genetic and environmental factors has been understudied, which makes this issue increasingly important for researchers as the understanding of these mechanisms can support a search for new approaches to pathogenetic and disease-modifying treatment.
Collapse
|
9
|
Baksa D, Gonda X, Eszlari N, Petschner P, Acs V, Kalmar L, Deakin JFW, Bagdy G, Juhasz G. Financial Stress Interacts With CLOCK Gene to Affect Migraine. Front Behav Neurosci 2020; 13:284. [PMID: 32038187 PMCID: PMC6993567 DOI: 10.3389/fnbeh.2019.00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggested that both maladaptive stress response and circadian dysregulation might have a role in the background of migraine. However, effects of circadian genes on migraine have not been tested yet. In the present study, we investigated the main effect of rs10462028 of the circadian locomotor output cycles kaput (CLOCK) gene and its interaction with different stress factors on migraine. In our cross-sectional study 2,157 subjects recruited from Manchester and Budapest completed the ID-Migraine questionnaire to detect migraine type headaches (migraineID). Additional stress factors were assessed by a shortened version of the Childhood Trauma Questionnaire, the List of Threatening Experiences questionnaire, and a validated questionnaire to identify financial difficulties. Rs10462028 showed no main genetic effect on migraineID. However, chronic stress indexed by financial difficulties showed a significant interaction effect with rs10462028 (p = 0.006 in recessive model) on migraineID. This result remained significant after correction for lifetime bipolar and unipolar depression and was replicated in both subsamples, although only a trend effect was reached after Bonferroni-correction, which is the strictest correction not considering interdependences. Childhood adversity (CHA) and Recent negative life events (RLE) showed no significant gene × stress interaction with rs10462028. In addition, in silico analysis demonstrated that the genetic region tagged by rs10462028 alters the binding of several miRNAs. Our exploratory study suggests that variations in the CLOCK gene, with moderating effect on gene function through miRNA binding, in interaction with financial difficulties might influence the risk of migraine-type headaches. Thus, financial hardship as a chronic stress factor may affect migraine through altering circadian rhythms.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Veronika Acs
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Lajos Kalmar
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Hullam G, Antal P, Petschner P, Gonda X, Bagdy G, Deakin B, Juhasz G. The UKB envirome of depression: from interactions to synergistic effects. Sci Rep 2019; 9:9723. [PMID: 31278308 PMCID: PMC6611783 DOI: 10.1038/s41598-019-46001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is a result of the complex interplay between a large number of environmental and genetic factors but the comprehensive analysis of contributing environmental factors is still an open challenge. The primary aim of this work was to create a Bayesian dependency map of environmental factors of depression, including life stress, social and lifestyle factors, using the UK Biobank data to determine direct dependencies and to characterize mediating or interacting effects of other mental health, metabolic or pain conditions. As a complementary approach, we also investigated the non-linear, synergistic multi-factorial risk of the UKB envirome on depression using deep neural network architectures. Our results showed that a surprisingly small number of core factors mediate the effects of the envirome on lifetime depression: neuroticism, current depressive symptoms, parental depression, body fat, while life stress and household income have weak direct effects. Current depressive symptom showed strong or moderate direct relationships with life stress, pain conditions, falls, age, insomnia, weight change, satisfaction, confiding in someone, exercise, sports and Townsend index. In conclusion, the majority of envirome exerts their effects in a dynamic network via transitive, interactive and synergistic relationships explaining why environmental effects may be obscured in studies which consider them individually.
Collapse
Grants
- OTKA (Hungarian Scientific Research Fund, No. 119866), BME-Biotechnology FIKP grant of EMMI (BME FIKP-BIO)
- Hungarian Brain Research Program (KTIA 13 NAP-A-II/14, KTIA NAP 13-2-2015-0001, 2017-1.2.1-NKP-2017-00002), the National Development Agency (KTIA NAP 13-1-2013-0001), Hungarian Academy of Sciences (MTA-SE Neuropsychopharmacology and Neurochemistry Research Group)
- UNKP-18-4-SE-33 New National Excellence Program of the Ministry of Human Capacities, Janos Bolyai Research Fellowship Program of the Hungarian Academy of Sciences.
- Hungarian Academy of Sciences (MTA-SE Neuropsychopharmacology and Neurochemistry Research Group), Hungarian Brain Research Program (KTIA 13 NAP-A-II/14, KTIA NAP 13-2-2015-0001, 2017-1.2.1-NKP-2017-00002), the National Development Agency (KTIA NAP 13-1-2013-0001)
- National Institute for Health Research Manchester Biomedical Research Centre
- OTKA (Hungarian Scientific Research Fund, No. 119866) BME-Biotechnology FIKP grant of EMMI (BME FIKP-BIO) Hungarian Brain Research Program (KTIA\_13\_NAP-A-II/14, KTIA\_NAP\_13-2-2015-0001, 2017-1.2.1-NKP-2017-00002) National Development Agency (KTIA\_NAP\_13-1-2013-0001) National Institute for Health Research Manchester Biomedical Research Centre Hungarian Academy of Sciences (MTA-SE Neuropsychopharmacology and Neurochemistry Research Group) New National Excellence Program of Ministry of Human Capacities (UNKP-17-4-BME-115,UNKP-18-4-SE-33)
Collapse
Affiliation(s)
- Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, H-1117, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, H-1089, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, H-1117, Hungary
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, H-1089, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, H-1089, Hungary
| | - Xenia Gonda
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, H-1089, Hungary
- NAP2-SE New Antidepressant Target Research Group Semmelweis University, Budapest, H-1089, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, H-1089, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, H-1089, Hungary
- NAP2-SE New Antidepressant Target Research Group Semmelweis University, Budapest, H-1089, Hungary
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Prestwich, Manchester, UK
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, H-1089, Hungary.
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, University of Manchester and Manchester Academic Health Sciences Centre, Manchester, M13 9PL, UK.
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, H-1089, Hungary.
| |
Collapse
|
11
|
Gonda X, Petschner P, Eszlari N, Sutori S, Gal Z, Koncz S, Anderson IM, Deakin B, Juhasz G, Bagdy G. Effects of Different Stressors Are Modulated by Different Neurobiological Systems: The Role of GABA-A Versus CB1 Receptor Gene Variants in Anxiety and Depression. Front Cell Neurosci 2019; 13:138. [PMID: 31024264 PMCID: PMC6467241 DOI: 10.3389/fncel.2019.00138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Environmental stress and its interaction with genetic variation are key contributors in the development of depression and anxiety, yet there is a failure to identify replicable genetic variants and gene-interaction effects in the background of these psychiatric symptoms. Recently it has been reported that 5-HTTLPR and NOSI interact with financial but not other types of recent stressors in the development of depression. In the present study we investigated the interaction of GABRA6 rs3219151 and CNR1 rs7766029 in interaction with different types of recent life events on the presence of depression and anxiety in a large general population sample. 2191 participants completed the List of Threatening Experiences questionnaire which covers four categories of stressful life events (financial problems, illness/personal problems, intimate relationships, and social network) experienced over the previous year and the Brief Symptom Inventory for depression and anxiety symptoms. Participants were genotyped for rs3219151 and rs7766029. Data were analyzed with linear regression models with age and gender as covariates. Results indicated that CNR1 rs7766029 interacted significantly with financial but not other types of life events both in case of depression and anxiety symptoms. In contrast, GABRA6 rs3219151 showed a significant interaction with social network related life events in case of anxiety and with illness/personal problem-related life events in case of depression. Our results suggest that the psychological impact of different types of recent stress may be differentially modulated by distinct molecular genetic pathways. Furthermore, in case of certain genetic variants, the occurring psychiatric symptom may depend on the type of stress experienced.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Szabolcs Koncz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Ian M Anderson
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom.,Greater Manchester Mental Health NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Gabriella Juhasz
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom.,SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
GARME Y, MOUDI M, SARAVANI R, GALAVI H. Nitric Oxide Synthase 2 Polymorphisms (rs2779248T/C and rs1137933C/T) and the Risk of Type 2 Diabetes in Zahedan, Southeastern Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1734-1741. [PMID: 30581791 PMCID: PMC6294872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/12/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Nitric oxide (NO) has been associated with insulin resistance and type 2 diabetes (T2D). NO is synthesized enzymatically from l-arginine (l-Arg) by three NO synthase (NOS) isoforms, Neuronal NOS (nNOS or NOS1), Inducible NOS (iNOS or NOS2), and Endothelial NOS (eNOS or NOS3). The impact of NOS2 gene polymorphism was investigated on the susceptibility of T2D in a sample of Iranian population (Southeastern of Iran). METHODS In 2015, the present case-control study was conducted on 152 T2D patients and 157 healthy control subjects (HCs) referring to Bu-ali Hospital of Zahedan, eastern Iran. Genotyping of NOS2 rs2779248T/C and rs1137933C/T variants were done using the Tetra-Amplification Refractory Mutation System Polymerase Chain Reaction (Tetra-ARMS PCR) method. RESULTS CT genotype of rs1137933C/T was significantly associated with increased risk of T2D (P<0.0001). The T allele of this single nucleotide polymorphism (SNP) was also strongly associated with T2D risk (P<0.0001). For rs2779248 T/C, TC genotype of this SNP decreased the risk of T2D (OR=0.25 95%CI= 0.15-0.42, P<0.0001); however, CC genotype of this SNP increased the risk of T2D (P<0.005). There was no significant association between clinical-demographic characteristics of T2D group with respect to both SNPS in dominant. CONCLUSION CT genotype and C allele of NOS2 rs1137933 C/T polymorphism were associated with a higher risk of T2D, and no association was observed between T allele of NOS2 rs2779248 T/C polymorphism and T2D while TC genotype of this SNP decreased the risk of T2D in the study participants.
Collapse
Affiliation(s)
- Yasaman GARME
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh MOUDI
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin SARAVANI
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza GALAVI
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
13
|
Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 2018; 194:22-43. [PMID: 30189291 DOI: 10.1016/j.pharmthera.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of promising preclinical results there is a decreasing number of new registered medications in major depression. The main reason behind this fact is the lack of confirmation in clinical studies for the assumed, and in animals confirmed, therapeutic results. This suggests low predictive value of animal studies for central nervous system disorders. One solution for identifying new possible targets is the application of genetics and genomics, which may pinpoint new targets based on the effect of genetic variants in humans. The present review summarizes such research focusing on depression and its therapy. The inconsistency between most genetic studies in depression suggests, first of all, a significant role of environmental stress. Furthermore, effect of individual genes and polymorphisms is weak, therefore gene x gene interactions or complete biochemical pathways should be analyzed. Even genes encoding target proteins of currently used antidepressants remain non-significant in genome-wide case control investigations suggesting no main effect in depression, but rather an interaction with stress. The few significant genes in GWASs are related to neurogenesis, neuronal synapse, cell contact and DNA transcription and as being nonspecific for depression are difficult to harvest pharmacologically. Most candidate genes in replicable gene x environment interactions, on the other hand, are connected to the regulation of stress and the HPA axis and thus could serve as drug targets for depression subgroups characterized by stress-sensitivity and anxiety while other risk polymorphisms such as those related to prominent cognitive symptoms in depression may help to identify additional subgroups and their distinct treatment. Until these new targets find their way into therapy, the optimization of current medications can be approached by pharmacogenomics, where metabolizing enzyme polymorphisms remain prominent determinants of therapeutic success.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| | - Peter Petschner
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Andrea Edes
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bagdy
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Zhang X, Huo Q, Sun W, Zhang C, Wu Z, Xing B, Li Q. Rs2910164 in microRNA‑146a confers an elevated risk of depression in patients with coronary artery disease by modulating the expression of NOS1. Mol Med Rep 2018; 18:603-609. [PMID: 29749487 DOI: 10.3892/mmr.2018.8929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Depression has been well established as an independent predictor of mortality and cardiac morbidity rates in patients with coronary artery disease (CAD). Evidence has shown that single nucleotide polymorphisms located in pre‑microRNA (miRNA) or mature miRNA may modify various biological processes and affect the process of carcinogenesis, and the downregulation of neuronal nitric oxide synthase 1 (NOS1) can induce depression. It has been shown that NOS1 is the target gene of miR‑146a, and that the rs2910164 G/C polymorphism can downregulate the expression of miR‑146a. In the present study, computational analysis was used to identify the target of miR‑146a, and a luciferase reporter assay system was used to validate NOS1 as a target gene of miR‑146a. In addition, U251 cells were treated with miR‑146a mimics/inhibitors to verify the negative regulatory association between miR‑146a and NOS1. Reverse transcription‑quantitative polymerase chain reaction analysis and western blot analysis were used to estimate the mRNA expression of NOS1 and the expression of miR‑146a. The results showed that the 'seed sequence' was located within the 3'‑untranslated region of NOS1 by searching an online miRNA database (www.mirdb.org), and the luciferase reporter assay confirmed that NOS1 was a direct target gene of miR‑146a. It was also found that the mRNA and protein expression levels of NOS1 in U251 cells treated with miR‑146a mimics and NOS1 small interfering RNA were substantially downregulated, compared with cells treated with the scramble control. The cells treated with miR‑146a inhibitors showed increased expression of NOS1. In addition, the presence of a minor allele of the rs2910164 polymorphism was significantly associated with risk of depression in patients with CAD. Taken together, the findings indicated a decreased risk of depression in the patients with CAD who were carriers of the miR‑146a rs2910164 C allele, and this association may be attributed to its ability to compromise the expression of miR‑146a, and thereby increase the expression of its target gene, NOS1.
Collapse
Affiliation(s)
- Xinling Zhang
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qianqian Huo
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Wei Sun
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Zongyin Wu
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bing Xing
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qiang Li
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
15
|
McGinnis GJ, Raber J. CNS side effects of immune checkpoint inhibitors: preclinical models, genetics and multimodality therapy. Immunotherapy 2017; 9:929-941. [PMID: 29338610 PMCID: PMC6161123 DOI: 10.2217/imt-2017-0056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Following cancer treatment, patients often report behavioral and cognitive changes. Novel cancer immunotherapeutics have the potential to produce sustained cancer survivorship, meaning patients will live longer with the side effects of treatment. Given the role of inflammatory pathways in mediating behavioral and cognitive impairments seen in cancer, we aim in this review to discuss emerging evidence for the contribution of immune checkpoint blockade to exacerbate these CNS effects. We discuss ongoing studies regarding the ability of immune checkpoint inhibitors to reach the brain and how treatment responses to checkpoint inhibitors may be modulated by genetic factors. We further consider the use of preclinical tumor-models to study the role of tumor status in CNS effects of immune checkpoint inhibitors and multimodality therapy.
Collapse
Affiliation(s)
- Gwendolyn J McGinnis
- Department of Radiation Medicine, Oregon Health & Science University, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, OR, USA
| | - Jacob Raber
- Department of Radiation Medicine, Oregon Health & Science University, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, OR, USA
- Department of Neurology, Oregon Health & Science University, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
16
|
Nitric oxide pathway genes (NOS1AP and NOS1) are involved in PTSD severity, depression, anxiety, stress and resilience. Gene 2017; 625:42-48. [DOI: 10.1016/j.gene.2017.04.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 01/22/2023]
|
17
|
Genetic Contributions of Inflammation to Depression. Neuropsychopharmacology 2017; 42:81-98. [PMID: 27555379 PMCID: PMC5143493 DOI: 10.1038/npp.2016.169] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
This paper describes the effects of immune genes genetic variants and mRNA expression on depression's risk, severity, and response to antidepressant treatment, through a systematic review on all papers published between 2000 and 2016. Our results, based largely on case-control studies, suggest that common genetic variants and gene-expression pathways are involved in both immune activation and depression. The most replicated and relevant genetic variants include polymorphisms in the genes for interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, C-reactive protein, and phospholipase A2. Moreover, increased blood cytokines mRNA expression (especially of IL-1β) identifies patients that are less likely to respond to conventional antidepressants. However, even for the most replicated findings there are inconsistent results, not only between studies, but also between the immune effects of the genetic variants and the resulting effects on depression. We find evidence that these discrepant findings may be explained, at least in part, by the heterogeneity of the depression immunophenotype, by environmental influences and gene × environment interactions, and by the complex interfacing of genetic variants with gene expression. Indeed, some of the most robust findings have been obtained in patients developing depression in the context of treatment with interferon-alpha, a widely used model to mimic depression in the context of inflammation. Further 'omics' approaches, through GWAS and transcriptomics, will finally shed light on the interaction between immune genes, their expression, and the influence of the environment, in the pathogenesis of depression.
Collapse
|
18
|
Kovacs D, Kovacs P, Eszlari N, Gonda X, Juhasz G. Psychological side effects of immune therapies: symptoms and pathomechanism. Curr Opin Pharmacol 2016; 29:97-103. [PMID: 27456240 DOI: 10.1016/j.coph.2016.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/22/2016] [Indexed: 01/09/2023]
Abstract
Immunotherapies revolutionised the treatment of several disorders but show specific side-effect profiles which frequently involve psychological symptoms. Long term interferon-alpha (IFN-alpha) therapy can cause wide-ranging psychiatric side-effects from fatigue, insomnia, anxiety to full-blown depression. This treatment-emergent depression shares several symptoms with major depressive disorder (MDD) with a predominance of somatic/neurovegetative symptoms, and can be treated with antidepressants. However, this experience directed research to inflammatory mechanisms in MDD. MDD has been confirmed as a heterogeneous disorder with a subgroup of patients suffering from low-grade chronic inflammation and frequently resistant to traditional antidepressant treatment. Thus future research should develop strategies to identify those MDD patients who could benefit from drugs acting through inflammatory pathways.
Collapse
Affiliation(s)
- David Kovacs
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Kovacs
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Budapest, Hungary; National Institute of Oncology, Budapest, Hungary
| | - Nora Eszlari
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Budapest, Hungary; Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Budapest, Hungary; Department of Clinical and Theoretical Mental Health, Kútvölgyi Clinical Center, Semmelweis University, Kútvölgyi u.4, Budapest, Hungary
| | - Gabriella Juhasz
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Budapest, Hungary; Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, University Manchester, Manchester, UK; MTA-SE-NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
19
|
Financial difficulties but not other types of recent negative life events show strong interactions with 5-HTTLPR genotype in the development of depressive symptoms. Transl Psychiatry 2016; 6:e798. [PMID: 27138797 PMCID: PMC5070066 DOI: 10.1038/tp.2016.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/16/2016] [Accepted: 03/05/2016] [Indexed: 12/16/2022] Open
Abstract
Several studies indicate that 5-HTTLPR mediates the effect of childhood adversity in the development of depression, while results are contradictory for recent negative life events. For childhood adversity the interaction with genotype is strongest for sexual abuse, but not for other types of childhood maltreatment; however, possible interactions with specific recent life events have not been investigated separately. The aim of our study was to investigate the effect of four distinct types of recent life events in the development of depressive symptoms in a large community sample. Interaction between different types of recent life events measured by the List of Threatening Experiences and the 5-HTTLPR genotype on current depression measured by the depression subscale and additional items of the Brief Symptom Inventory was investigated in 2588 subjects in Manchester and Budapest. Only a nominal interaction was found between life events overall and 5-HTTLPR on depression, which failed to survive correction for multiple testing. However, subcategorising life events into four categories showed a robust interaction between financial difficulties and the 5-HTTLPR genotype, and a weaker interaction in the case of illness/injury. No interaction effect for the other two life event categories was present. We investigated a general non-representative sample in a cross-sectional approach. Depressive symptoms and life event evaluations were self-reported. The 5-HTTLPR polymorphism showed a differential interaction pattern with different types of recent life events, with the strongest interaction effects of financial difficulties on depressive symptoms. This specificity of interaction with only particular types of life events may help to explain previous contradictory findings.
Collapse
|
20
|
Freudenberg F, Alttoa A, Reif A. Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as a genetic risk factors for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2015; 14:46-63. [PMID: 25612209 DOI: 10.1111/gbb.12193] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is a gaseous transmitter produced by nitric oxide synthases (NOSs). The neuronal isoform (NOS-I, encoded by NOS1) is the main source of NO in the central nervous system (CNS). Animal studies suggest that nitrinergic dysregulation may lead to behavioral abnormalities. Unfortunately, the large number of animal studies is not adequately reflected by publications concerning humans. These include post-mortem studies, determination of biomarkers, and genetic association studies. Here, we review the evidence for the role of NO in psychiatric disorders by focusing on the human NOS1 gene as well as biomarker studies. Owing to the complex regulation of NOS1 and the varying function of NOS-I in different brain regions, no simple, unidirectional association is expected. Rather, the 'where, when and how much' of NO formation is decisive. Present data, although still preliminary and partially conflicting, suggest that genetically driven reduced NO signaling in the prefrontal cortex is associated with schizophrenia and cognition. Both NOS1 and its interaction partner NOS1AP have a role therein. Also, reduced NOS1 expression in the striatum determined by a length polymorphism in a NOS1 promoter (NOS1 ex1f-VNTR) goes along with a variety of impulsive behaviors. An association of NOS1 with mood disorders, suggested by animal models, is less clear on the genetic level; however, NO metabolites in blood may serve as biomarkers for major depression and bipolar disorder. As the nitrinergic system comprises a relevant target for pharmacological interventions, further studies are warranted not only to elucidate the pathophysiology of mental disorders, but also to evaluate NO function as a biomarker.
Collapse
Affiliation(s)
- F Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
21
|
Karaçay B, Bonthius DJ. The neuronal nitric oxide synthase (nNOS) gene and neuroprotection against alcohol toxicity. Cell Mol Neurobiol 2015; 35:449-61. [PMID: 25672665 PMCID: PMC4380853 DOI: 10.1007/s10571-015-0155-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
Abstract
When a mother abuses alcohol during pregnancy, the offspring can suffer a myriad of abnormalities, collectively known as fetal alcohol spectrum disorder (FASD). Foremost among these abnormalities is central nervous system dysfunction, which commonly manifests itself as mental retardation, clumsiness, hyperactivity, and poor attention span. These behavior problems are due, in large part, to alcohol-induced neuronal losses in the developing fetal brain. However, not all fetuses are equally affected by maternal alcohol consumption during pregnancy. While some fetuses are severely affected and develop hallmarks of FASD later in life, others exhibit no evident neuropathology or behavioral abnormalities. This variation is likely due, at least in part, to differences in fetal genetics. This review focuses on one particular gene, neuronal nitric oxide synthase, whose mutation worsens alcohol-induced neuronal death, both in vitro and in vivo. In addition, ectopic expression of the neuronal nitric oxide synthase gene protects neurons against alcohol toxicity. The gene encodes an enzyme that produces nitric oxide (NO), which facilitates the protective effects of neuronal growth factors and which underlies the ability of neurons to resist alcohol toxicity as they mature. Nitric oxide exerts its protective effects against alcohol via a specific signaling pathway, the NO-cGMP-PKG pathway. Pharmacologic manipulation of this pathway could be of therapeutic use in preventing or ameliorating FASD.
Collapse
Affiliation(s)
- Bahri Karaçay
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Department of Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | - Daniel J. Bonthius
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Department of Neuroscience Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Division of Child Neurology, Stead Family Department of Pediatrics, Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242 USA
| |
Collapse
|
22
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 2015; 9:3. [PMID: 25653586 PMCID: PMC4300918 DOI: 10.3389/fnins.2015.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis which rapidly releases high concentrations of glucocorticoid stress hormones, resulting in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation. High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular proteins in addition to inhibiting components of the mitochondrial transport chain, leading to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric oxide production reduces indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this review is to present an overview of the current literature on stress-evoked changes in the nitrergic system, particularly within neural tissue.
Collapse
Affiliation(s)
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|