1
|
Liu Y, Ning Y, Jiang Y, Ou Y, Chen X, Zhong C, Wang R, Zhang Z, Wang K, Long D, Zhao W. Effects of combined exposure to polyethylene and oxidized polycyclic aromatic hydrocarbons on growth, development, and neurobehavior in Zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107361. [PMID: 40233682 DOI: 10.1016/j.aquatox.2025.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of anthropogenic, persistent, and highly toxic PAH contaminants associated with developmental toxicity, 9-fluorenone (9-FLO) is a typical member of the OPAH family. Due to its ketone group, it has higher polarity, which results in increased solubility in water and greater potential for transport via atmospheric particles or water bodies. Polyethylene (PE), an amorphous polymer, is characterized by high diffusivity, high permeability, and a large internal molecular free volume, which confers a strong absorption capacity for organic pollutants. The effects of individual and combined exposures to these two common environmental pollutants on aquatic life remain unclear. In this study, we evaluated the effects of PE and 9-FLO exposure on growth, development, metabolism, and behavior using zebrafish as a model organism. We employed methods and techniques such as acridine orange staining, enzyme-linked immunosorbent assay (ELISA), video tracking, automated behavior analysis, microscopy imaging, and real-time fluorescence quantification. Zebrafish embryos at 2 h post-fertilization (hpf) were exposed to PE and 9-FLO, both individually and in combination. Our studies showed that exposure to PE or 9-FLO alone increases embryonic mortality and decreases hatchability compared to the control group. The 9-FLO group exhibited delayed hatching and inhibited larval length growth. The exposed groups showed a loose arrangement of telencephalic neurons, partial apoptosis, decreased dopamine (DA) content, increased serotonin (5-HT) content, decreased exercise capacity, reduced rhythmic amplitude, and increased rest time. The combined exposure group showed a slight alleviation of these effects compared to the single exposure groups but still exhibited significant differences from the control group. In summary, early exposure to PE and 9-FLO in zebrafish embryos, whether alone or in combination, affects growth, development, apoptosis, neurotransmitter release, and motor behavior of zebrafish neurons.
Collapse
Affiliation(s)
- Yu Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yujun Ning
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiquan Ou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of nutrition, The First People's Hospital of Chenzhou, Chenzhou No.1 People's Hospital, Chenzhou 423000, China
| | - Xiaobing Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chiting Zhong
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ru Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhibo Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; First Clinical Faculty, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Kongfan Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Schill DJ, Attili D, DeLong CJ, McInnis MG, Johnson CN, Murphy GG, O’Shea KS. Human-Induced Pluripotent Stem Cell (iPSC)-Derived GABAergic Neuron Differentiation in Bipolar Disorder. Cells 2024; 13:1194. [PMID: 39056776 PMCID: PMC11275104 DOI: 10.3390/cells13141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Bipolar disorder (BP) is a recurring psychiatric condition characterized by alternating episodes of low energy (depressions) followed by manias (high energy). Cortical network activity produced by GABAergic interneurons may be critical in maintaining the balance in excitatory/inhibitory activity in the brain during development. Initially, GABAergic signaling is excitatory; with maturation, these cells undergo a functional switch that converts GABAA channels from depolarizing (excitatory) to hyperpolarizing (inhibitory), which is controlled by the intracellular concentration of two chloride transporters. The earliest, NKCC1, promotes chloride entry into the cell and depolarization, while the second (KCC2) stimulates movement of chloride from the neuron, hyperpolarizing it. Perturbations in the timing or expression of NKCC1/KCC2 may affect essential morphogenetic events including cell proliferation, migration, synaptogenesis and plasticity, and thereby the structure and function of the cortex. We derived induced pluripotent stem cells (iPSC) from BP patients and undiagnosed control (C) individuals, then modified a differentiation protocol to form GABAergic interneurons, harvesting cells at sequential stages of differentiation. qRT-PCR and RNA sequencing indicated that after six weeks of differentiation, controls transiently expressed high levels of NKCC1. Using multi-electrode array (MEA) analysis, we observed that BP neurons exhibit increased firing, network bursting and decreased synchrony compared to C. Understanding GABA signaling in differentiation may identify novel approaches and new targets for treatment of neuropsychiatric disorders such as BP.
Collapse
Affiliation(s)
- Daniel J. Schill
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Durga Attili
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Cynthia J. DeLong
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Melvin G. McInnis
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - K. Sue O’Shea
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
3
|
Liu L, Bao GY, Zhang SS, Qin Y, Chen XP, Wang MD, Zhu JP, Yin H, Lin GQ, Feng CG, Zhang F, Guo YL. Analysis of the Amine Submetabolome Using Novel Isotope-Coded Pyrylium Salt Derivatization and LC-MS: Herbs and Cancer Tissues as Cases. Anal Chem 2022; 94:17606-17615. [PMID: 36473140 DOI: 10.1021/acs.analchem.2c04246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amine submetabolome, including amino acids (AAs) and biogenic amines (BAs), is a class of small molecular compounds exhibiting important physiological activities. Here, a new pyrylium salt named 6,7-dimethoxy-3-methyl isochromenylium tetrafluoroborate ([d0]-DMMIC) with stable isotope-labeled reagents ([d3]-/[d6]-DMMIC) was designed and synthesized for amino compounds. [d0]-/[d3]-/[d6]-DMMIC-derivatized had a charged tag and formed a set of molecular ions with an increase of 3.02 m/z and the characteristic fragment ions of m/z 204.1:207.1:210.1. When DMMIC coupled with liquid chromatography-mass spectrometry (LC-MS), a systematic methodology evaluation for quantitation proved to have good linearity (R2 between 0.9904 and 0.9998), precision (interday: 2.2-21.9%; intraday: 1.0-19.7%), and accuracy (recovery: 71.8-108.8%) through the test AAs. Finally, the methods based on DMMIC and LC-MS demonstrated the advantaged application by the nontargeted screening of BAs in a common medicinal herb Senecio scandens and an analysis of metabolic differences among the amine submetabolomes between the carcinoma and paracarcinoma tissues of esophageal squamous cell carcinoma (ESCC). A total of 20 BA candidates were discovered in S. scandens as well as the finding of 13 amine metabolites might be the highest-potential differential metabolites in ESCC. The results showed the ability of DMMIC coupled with LC-MS to analyze the amine submetabolome in herbs and clinical tissues.
Collapse
Affiliation(s)
- Li Liu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Geng-Yu Bao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yong Qin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiu-Ping Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Ming-Dan Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jian-Ping Zhu
- Guangxi Institute for Food and Drug Control, Nanning 530021, P. R. China
| | - Hang Yin
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Fang Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.,Guangxi Institute for Food and Drug Control, Nanning 530021, P. R. China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yin-Long Guo
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Wang Q, Qi Y, Li Y, Yan Z, Wang X, Ma Q, Tang C, Liu X, Wei M, Zhang H. Psychiatric traits and intracerebral hemorrhage: A Mendelian randomization study. Front Psychiatry 2022; 13:1049432. [PMID: 36684013 PMCID: PMC9850495 DOI: 10.3389/fpsyt.2022.1049432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Psychiatric traits have been associated with intracerebral hemorrhage (ICH) in observational studies, although their causal relationships remain uncertain. We used Mendelian randomization analyses to infer causality between psychiatric traits and ICH. METHODS We collected data from genome-wide association studies of ICH (n = 361,194) and eight psychiatric traits among Europeans, including mood swings (n = 451,619), major depressive disorder (n = 480,359), attention-deficit/hyperactivity disorder (n = 53,293), anxiety (n = 459,560), insomnia (n = 462,341), schizophrenia (n = 77,096), neuroticism (n = 374,323), and bipolar disorder (n = 51,710). We performed a series of bidirectional two-sample Mendelian randomization and related sensitivity analyses. A Bonferroni corrected threshold of p < 0.00625 (0.05/8) was considered to be significant, and p < 0.05 was considered suggestive of evidence for a potential association. RESULTS Mendelian randomization analyses revealed suggestive positive causality of mood swings on ICH (odds ratio = 1.006, 95% confidence interval = 1.001-1.012, p = 0.046), and the result was consistent after sensitivity analysis. However, major depressive disorder (p = 0.415), attention-deficit/hyperactivity disorder (p = 0.456), anxiety (p = 0.664), insomnia (p = 0.699), schizophrenia (p = 0.799), neuroticism (p = 0.140), and bipolar disorder (p = 0.443) are not significantly associated with the incidence of ICH. In the reverse Mendelian randomization analyses, no causal effects of ICH on mood swings (p = 0.565), major depressive disorder (p = 0.630), attention-deficit/hyperactivity disorder (p = 0.346), anxiety (p = 0.266), insomnia (p = 0.102), schizophrenia (p = 0.463), neuroticism (p = 0.261), or bipolar disorder (p = 0.985) were found. CONCLUSION Our study revealed that mood swings are suggestively causal of ICH and increase the risk of ICH. These results suggest the clinical significance of controlling mood swings for ICH prevention.
Collapse
Affiliation(s)
- Qingduo Wang
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yajie Qi
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengcun Yan
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaodong Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Qiang Ma
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Can Tang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoguang Liu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Min Wei
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Shirvani-Farsani Z, Maloum Z, Bagheri-Hosseinabadi Z, Vilor-Tejedor N, Sadeghi I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J Psychiatr Res 2021; 141:34-49. [PMID: 34171761 DOI: 10.1016/j.jpsychires.2021.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is a broadly-investigated epigenetic modification that has been considered as a heritable and reversible change. Previous findings have indicated that DNA methylation regulates gene expression in the central nervous system (CNS). Also, disturbance of DNA methylation patterns has been associated with destructive consequences that lead to human brain diseases such as neuropsychiatric disorders (NPDs). In this review, we comprehensively discuss the mechanism and function of DNA methylation and its most recent associations with the pathology of NPDs-including major depressive disorder (MDD), schizophrenia (SZ), autism spectrum disorder (ASD), bipolar disorder (BD), and attention/deficit hyperactivity disorder (ADHD). We also discuss how heterogeneous findings demand further investigations. Finally, based on the recent studies we conclude that DNA methylation status may have implications in clinical diagnostics and therapeutics as a potential epigenetic biomarker of NPDs.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Maloum
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands; Pompeu Fabra University, Barcelona, Spain.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
| |
Collapse
|
7
|
Enlightened: addressing circadian and seasonal changes in photoperiod in animal models of bipolar disorder. Transl Psychiatry 2021; 11:373. [PMID: 34226504 PMCID: PMC8257630 DOI: 10.1038/s41398-021-01494-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorders (BDs) exhibit high heritability and symptoms typically first occur during late adolescence or early adulthood. Affected individuals may experience alternating bouts of mania/hypomania and depression, with euthymic periods of varying lengths interspersed between these extremes of mood. Clinical research studies have consistently demonstrated that BD patients have disturbances in circadian and seasonal rhythms, even when they are free of symptoms. In addition, some BD patients display seasonal patterns in the occurrence of manic/hypomanic and depressive episodes as well as the time of year when symptoms initially occur. Finally, the age of onset of BD symptoms is strongly influenced by the distance one lives from the equator. With few exceptions, animal models useful in the study of BD have not capitalized on these clinical findings regarding seasonal patterns in BD to explore molecular mechanisms associated with the expression of mania- and depression-like behaviors in laboratory animals. In particular, animal models would be especially useful in studying how rates of change in photoperiod that occur during early spring and fall interact with risk genes to increase the occurrence of mania- and depression-like phenotypes, respectively. Another unanswered question relates to the ways in which seasonally relevant changes in photoperiod affect responses to acute and chronic stressors in animal models. Going forward, we suggest ways in which translational research with animal models of BD could be strengthened through carefully controlled manipulations of photoperiod to enhance our understanding of mechanisms underlying seasonal patterns of BD symptoms in humans. In addition, we emphasize the value of incorporating diurnal rodent species as more appropriate animal models to study the effects of seasonal changes in light on symptoms of depression and mania that are characteristic of BD in humans.
Collapse
|
8
|
Gut Microbiota and Bipolar Disorder: An Overview on a Novel Biomarker for Diagnosis and Treatment. Int J Mol Sci 2021; 22:ijms22073723. [PMID: 33918462 PMCID: PMC8038247 DOI: 10.3390/ijms22073723] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is the set of microorganisms that colonize the gastrointestinal tract of living creatures, establishing a bidirectional symbiotic relationship that is essential for maintaining homeostasis, for their growth and digestive processes. Growing evidence supports its involvement in the intercommunication system between the gut and the brain, so that it is called the gut-brain-microbiota axis. It is involved in the regulation of the functions of the Central Nervous System (CNS), behavior, mood and anxiety and, therefore, its implication in the pathogenesis of neuropsychiatric disorders. In this paper, we focused on the possible correlations between the gut microbiota and Bipolar Disorder (BD), in order to determine its role in the pathogenesis and in the clinical management of BD. Current literature supports a possible relationship between the compositional alterations of the intestinal microbiota and BD. Moreover, due to its impact on psychopharmacological treatment absorption, by acting on the composition of the microbiota beneficial effects can be obtained on BD symptoms. Finally, we discussed the potential of correcting gut microbiota alteration as a novel augmentation strategy in BD. Future studies are necessary to better clarify the relevance of gut microbiota alterations as state and disease biomarkers of BD.
Collapse
|
9
|
Developmental Requirement of Homeoprotein Otx2 for Specific Habenulo-Interpeduncular Subcircuits. J Neurosci 2018; 39:1005-1019. [PMID: 30593496 DOI: 10.1523/jneurosci.1818-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 01/11/2023] Open
Abstract
The habenulo-interpeduncular system (HIPS) is now recognized as a critical circuit modulating aversion, reward, and social behavior. There is evidence that dysfunction of this circuit leads to psychiatric disorders. Because psychiatric diseases may originate in developmental abnormalities, it is crucial to investigate the developmental mechanisms controlling the formation of the HIPS. Thus far, this issue has been the focus of limited studies. Here, we explored the developmental processes underlying the formation of the medial habenula (MHb) and its unique output, the interpeduncular nucleus (IPN), in mice independently of their gender. We report that the Otx2 homeobox gene is essential for the proper development of both structures. We show that MHb and IPN neurons require Otx2 at different developmental stages and, in both cases, Otx2 deletion leads to disruption of HIPS subcircuits. Finally, we show that Otx2+ neurons tend to be preferentially interconnected. This study reveals that synaptically connected components of the HIPS, despite radically different developmental strategies, share high sensitivity to Otx2 expression.SIGNIFICANCE STATEMENT Brain reward circuits are highly complex and still poorly understood. In particular, it is important to understand how these circuits form as many psychiatric diseases may arise from their abnormal development. This work shows that Otx2, a critical evolutionary conserved gene implicated in brain development and a predisposing factor for psychiatric diseases, is required for the formation of the habenulo-interpeduncular system (HIPS), an important component of the reward circuit. Otx2 deletion affects multiple processes such as proliferation and migration of HIPS neurons. Furthermore, neurons expressing Otx2 are preferentially interconnected. Therefore, Otx2 expression may represent a code that specifies the connectivity of functional subunits of the HIPS. Importantly, the Otx2 conditional knock-out animals used in this study might represent a new genetic model of psychiatric diseases.
Collapse
|
10
|
Kaufman J, Wymbs NF, Montalvo-Ortiz JL, Orr C, Albaugh MD, Althoff R, O’Loughlin K, Holbrook H, Garavan H, Kearney C, Yang BZ, Zhao H, Peña C, Nestler EJ, Lee RS, Mostofsky S, Gelernter J, Hudziak J. Methylation in OTX2 and related genes, maltreatment, and depression in children. Neuropsychopharmacology 2018; 43:2204-2211. [PMID: 30089883 PMCID: PMC6135753 DOI: 10.1038/s41386-018-0157-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Through unbiased transcriptomics and multiple molecular tools, transient downregulation of the Orthodenticle homeobox 2 (OTX2) gene was recently causatively associated with the development of depressive-like behaviors in a mouse model of early life stress. The analyses presented in this manuscript test the translational applicability of these findings by examining peripheral markers of methylation of OTX2 and OTX2-regulated genes in relation to measures of depression and resting-state functional connectivity data collected as part of a larger study examining risk and resilience in maltreated children. The sample included 157 children between the ages of 8 and 15 years (χ = 11.4, SD = 1.9). DNA specimens were derived from saliva samples and processed using the Illumina 450 K beadchip. A subset of children (N = 47) with DNA specimens also had resting-state functional MRI data. After controlling for demographic factors, cell heterogeneity, and three principal components, maltreatment history and methylation in OTX2 significantly predicted depression in the children. In terms of the imaging data, increased OTX2 methylation was found to be associated with increased functional connectivity between the right vmPFC and bilateral regions of the medial frontal cortex and the cingulate, including the subcallosal gyrus, frontal pole, and paracingulate gyrus-key structures implicated in depression. Mouse models of early stress hold significant promise in helping to unravel the mechanisms by which child adversity confers risk for psychopathology, with data presented in this manuscript supporting a potential role for OTX2 and OTX2-related (e.g., WNT1, PAX6) genes in the pathophysiology of stress-related depressive disorders in children.
Collapse
Affiliation(s)
- Joan Kaufman
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, Baltimore, MD, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Nicholas F. Wymbs
- 0000 0004 0427 667Xgrid.240023.7Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD USA
| | | | - Catherine Orr
- 0000 0004 1936 7689grid.59062.38Department of Psychiatry, Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT USA
| | - Matthew D. Albaugh
- 0000 0004 1936 7689grid.59062.38Department of Psychiatry, Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT USA
| | - Robert Althoff
- 0000 0004 1936 7689grid.59062.38Department of Psychiatry, Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT USA
| | - Kerry O’Loughlin
- 0000 0004 1936 7689grid.59062.38Department of Psychiatry, Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT USA
| | - Hannah Holbrook
- 0000 0004 1936 7689grid.59062.38Department of Psychiatry, Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT USA
| | - Hugh Garavan
- 0000 0004 1936 7689grid.59062.38Department of Psychiatry, Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT USA
| | - Catherine Kearney
- 0000 0004 0427 667Xgrid.240023.7Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, Baltimore, MD USA
| | - Bao-Zhu Yang
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University, New Haven, CT USA
| | - Hongyu Zhao
- 0000000419368710grid.47100.32Department of Biostatistics, Yale University, New Haven, CT USA
| | - Catherine Peña
- 0000 0001 0670 2351grid.59734.3cFishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric J. Nestler
- 0000 0001 0670 2351grid.59734.3cFishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Richard S. Lee
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Stewart Mostofsky
- 0000 0004 0427 667Xgrid.240023.7Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Joel Gelernter
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University, New Haven, CT USA ,0000000419368710grid.47100.32Department of Biostatistics, Yale University, New Haven, CT USA ,0000 0004 0478 7015grid.418356.dVeterans Administration, West Haven, CT USA
| | - James Hudziak
- 0000 0004 1936 7689grid.59062.38Department of Psychiatry, Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT USA
| |
Collapse
|
11
|
Jukić MM, Opel N, Ström J, Carrillo-Roa T, Miksys S, Novalen M, Renblom A, Sim SC, Peñas-Lledó EM, Courtet P, Llerena A, Baune BT, de Quervain DJ, Papassotiropoulos A, Tyndale RF, Binder EB, Dannlowski U, Ingelman-Sundberg M. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment. Mol Psychiatry 2017; 22:1155-1163. [PMID: 27895323 DOI: 10.1038/mp.2016.204] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/21/2016] [Accepted: 10/04/2016] [Indexed: 01/17/2023]
Abstract
The polymorphic CYP2C19 enzyme metabolizes psychoactive compounds and is expressed in the adult liver and fetal brain. Previously, we demonstrated that the absence of CYP2C19 is associated with lower levels of depressive symptoms in 1472 Swedes. Conversely, transgenic mice carrying the human CYP2C19 gene (2C19TG) have shown an anxious phenotype and decrease in hippocampal volume and adult neurogenesis. The aims of this study were to: (1) examine whether the 2C19TG findings could be translated to humans, (2) evaluate the usefulness of the 2C19TG strain as a tool for preclinical screening of new antidepressants and (3) provide an insight into the molecular underpinnings of the 2C19TG phenotype. In humans, we found that the absence of CYP2C19 was associated with a bilateral hippocampal volume increase in two independent healthy cohorts (N=386 and 1032) and a lower prevalence of major depressive disorder and depression severity in African-Americans (N=3848). Moreover, genetically determined high CYP2C19 enzymatic capacity was associated with higher suicidality in depressed suicide attempters (N=209). 2C19TG mice showed high stress sensitivity, impaired hippocampal Bdnf homeostasis in stress, and more despair-like behavior in the forced swim test (FST). After the treatment with citalopram and 5-HT1A receptor agonist 8OH-DPAT, the reduction in immobility time in the FST was more pronounced in 2C19TG mice compared with WTs. Conversely, in the 2C19TG hippocampus, metabolic turnover of serotonin was reduced, whereas ERK1/2 and GSK3β phosphorylation was increased. Altogether, this study indicates that elevated CYP2C19 expression is associated with depressive symptoms, reduced hippocampal volume and impairment of hippocampal serotonin and BDNF homeostasis.
Collapse
Affiliation(s)
- M M Jukić
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - N Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - J Ström
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - T Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Miksys
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Novalen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - A Renblom
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S C Sim
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E M Peñas-Lledó
- CICAB Clinical Research Center, Extremadura University Hospital and Medical School, Badajoz, Spain.,CIBERSAM, Madrid, Spain
| | - P Courtet
- CHU Montpellier, Hôpital Lapeyronie, Psychiatric Emergency and Post-Acute Care Department, Pole Urgence, Montpellier, France
| | - A Llerena
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - D J de Quervain
- Transfaculty Research Platform, Department of Psychology, University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - A Papassotiropoulos
- Transfaculty Research Platform, Department of Psychology, University Psychiatric Clinics, University of Basel, Basel, Switzerland.,Life Sciences Training Facility, Department Biozentrum, University of Basel, Basel, Switzerland
| | - R F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - E B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, University of Marburg, Marburg, Germany
| | - M Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Phillips C. Physical Activity Modulates Common Neuroplasticity Substrates in Major Depressive and Bipolar Disorder. Neural Plast 2017; 2017:7014146. [PMID: 28529805 PMCID: PMC5424494 DOI: 10.1155/2017/7014146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mood disorders (MDs) are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although the biogenic amine model has provided some clinical utility, a need remains to better understand the interrelated mechanisms that contribute to neuroplasticity deficits in MDs and the means by which various therapeutics mitigate them. Of those therapeutics being investigated, physical activity (PA) has shown clear and consistent promise. Accordingly, the aims of this review are to (1) explicate key modulators, processes, and interactions that impinge upon multiple susceptibility points to effectuate neuroplasticity deficits in MDs; (2) explore the putative mechanisms by which PA mitigates these features; (3) review protocols used to induce the positive effects of PA in MDs; and (4) highlight implications for clinicians and researchers.
Collapse
|
13
|
Electrocorticographic Dynamics as a Novel Biomarker in Five Models of Epileptogenesis. J Neurosci 2017; 37:4450-4461. [PMID: 28330876 DOI: 10.1523/jneurosci.2446-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 12/23/2022] Open
Abstract
Postinjury epilepsy (PIE) is a devastating sequela of various brain insults. While recent studies offer novel insights into the mechanisms underlying epileptogenesis and discover potential preventive treatments, the lack of PIE biomarkers hinders the clinical implementation of such treatments. Here we explored the biomarker potential of different electrographic features in five models of PIE. Electrocorticographic or intrahippocampal recordings of epileptogenesis (from the insult to the first spontaneous seizure) from two laboratories were analyzed in three mouse and two rat PIE models. Time, frequency, and fractal and nonlinear properties of the signals were examined, in addition to the daily rate of epileptiform spikes, the relative power of five frequency bands (theta, alpha, beta, low gamma, and high gamma) and the dynamics of these features over time. During the latent pre-seizure period, epileptiform spikes were more frequent in epileptic compared with nonepileptic rodents; however, this feature showed limited predictive power due to high inter- and intra-animal variability. While nondynamic rhythmic representation failed to predict epilepsy, the dynamics of the theta band were found to predict PIE with a sensitivity and specificity of >90%. Moreover, theta dynamics were found to be inversely correlated with the latency period (and thus predict the onset of seizures) and with the power change of the high-gamma rhythm. In addition, changes in theta band power during epileptogenesis were associated with altered locomotor activity and distorted circadian rhythm. These results suggest that changes in theta band during the epileptogenic period may serve as a diagnostic biomarker for epileptogenesis, able to predict the future onset of spontaneous seizures.SIGNIFICANCE STATEMENT Postinjury epilepsy is an unpreventable and devastating disorder that develops following brain injuries, such as traumatic brain injury and stroke, and is often associated with neuropsychiatric comorbidities. As PIE affects as many as 20% of brain-injured patients, reliable biomarkers are imperative before any preclinical therapeutics can find clinical translation. We demonstrate the capacity to predict the epileptic outcome in five different models of PIE, highlighting theta rhythm dynamics as a promising biomarker for epilepsy. Our findings prompt the exploration of theta dynamics (using repeated electroencephalographic recordings) as an epilepsy biomarker in brain injury patients.
Collapse
|
14
|
Melo MCA, Garcia RF, Linhares Neto VB, Sá MB, de Mesquita LMF, de Araújo CFC, de Bruin VMS. Sleep and circadian alterations in people at risk for bipolar disorder: A systematic review. J Psychiatr Res 2016; 83:211-219. [PMID: 27661417 DOI: 10.1016/j.jpsychires.2016.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sleep and circadian abnormalities have been mostly demonstrated in bipolar patients. However, it is not clear whether these alterations are present in population at high risk for bipolar disorder (BD), indicating a possible risk factor for this condition. OBJECTIVE This systematic review aims to define current evidence about sleep and rhythm alterations in people at risk for BD and to evaluate sleep and circadian disorders as risk factor for BD. METHODS The systematic review included all articles about the topic until February 2016. Two researchers performed an electronic search of PubMed and Cochrane Library. Keywords used were 'sleep' or 'rhythm' or 'circadian' AND 'bipolar disorder' or 'mania' or 'bipolar depression' AND 'high-risk' or 'risk'. RESULTS Thirty articles were analyzed (7451 participants at risk for BD). Sleep disturbances are frequent in studies using both subjective measures and actigraphy. High-risk individuals reported irregularity of sleep/wake times, poor sleep and circadian rhythm disruption. Poor sleep quality, nighttime awakenings, and inadequate sleep are possible predictive factors for BD. A unique study suggested that irregular rhythms increase risk of conversion. People at risk for BD showed high cortisol levels in different times of day. Studies about anatomopathology, melatonin levels, inflammatory cytokines and oxidative stress were not identified. The most important limitations were differences in sleep and rhythm measures, heterogeneity of study designs, and lack of consistency in the definition of population at risk. CONCLUSION Sleep and circadian disturbances are common in people at risk for BD. However, the pathophysiology of these alterations and the impact on BD onset are still unclear.
Collapse
|
15
|
Papale LA, Li S, Madrid A, Zhang Q, Chen L, Chopra P, Jin P, Keleş S, Alisch RS. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress. Neurobiol Dis 2016; 96:54-66. [PMID: 27576189 DOI: 10.1016/j.nbd.2016.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023] Open
Abstract
Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Sisi Li
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Qi Zhang
- Department of Statistics, University of Nebraska, Lincoln, NE, USA
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sündüz Keleş
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Reid S Alisch
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
16
|
Zhou Z, Wang Y, Tan H, Bharti V, Che Y, Wang JF. Chronic treatment with mood stabilizer lithium inhibits amphetamine-induced risk-taking manic-like behaviors. Neurosci Lett 2015. [PMID: 26219985 DOI: 10.1016/j.neulet.2015.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A lack of behavioral tests and animal models for manic-depressive bipolar disorder is recognized as an important factor limiting development of novel pharmaceutical treatments for the disorder. Repeated amphetamine-induced hyperactivity is a commonly used animal model for mania. However, hyperactivity represents only one facet of mania and is also seen in other disorders. Increased engagement in risk taking behavior is frequently observed in the manic phase of bipolar disorder. In the present study, we analyzed the effect of the most commonly used mood stabilizer lithium on repeated amphetamine treatment-induced risk-taking behaviors in rats using elevated plus maze and wire-beam bridge tests. We found that repeated amphetamine treatment not only increased locomotor activity, but also increased risk taking behaviors in rats, and further that chronic lithium treatment inhibited the amphetamine-increased risk taking behavior. Our studies suggest that these tests may be useful tools to analyze the pharmacological validity of new and improved anti-manic drugs in animals.
Collapse
Affiliation(s)
- Zhu Zhou
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Medical College of Soochow University, Suzhou, PR China
| | - Ying Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Hua Tan
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Veni Bharti
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Yi Che
- Medical College of Soochow University, Suzhou, PR China
| | - Jun-Feng Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Departments of Psychiatry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|