1
|
Vaz A, Salgado A, Patrício P, Pinto L. Patient-derived induced pluripotent stem cells: Tools to advance the understanding and drug discovery in Major Depressive Disorder. Psychiatry Res 2024; 339:116033. [PMID: 38968917 DOI: 10.1016/j.psychres.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
Major Depressive Disorder (MDD) is a pleomorphic disease with substantial patterns of symptoms and severity with mensurable deficits in several associated domains. The broad spectrum of phenotypes observed in patients diagnosed with depressive disorders is the reflection of a very complex disease where clusters of biological and external factors (e.g., response/processing of life events, intrapsychic factors) converge and mediate pathogenesis, clinical presentation/phenotypes and trajectory. Patient-derived induced pluripotent stem cells (iPSCs) enable their differentiation into specialised cell types in the central nervous system to explore the pathophysiological substrates of MDD. These models may complement animal models to advance drug discovery and identify therapeutic approaches, such as cell therapy, drug repurposing, and elucidation of drug metabolism, toxicity, and mechanisms of action at the molecular/cellular level, to pave the way for precision psychiatry. Despite the remarkable scientific and clinical progress made over the last few decades, the disease is still poorly understood, the incidence and prevalence continue to increase, and more research is needed to meet clinical demands. This review aims to summarise and provide a critical overview of the research conducted thus far using patient-derived iPSCs for the modelling of psychiatric disorders, with a particular emphasis on MDD.
Collapse
Affiliation(s)
- Andreia Vaz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Bn'ML, Behavioral and Molecular Lab, Braga, Portugal
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Bn'ML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Bn'ML, Behavioral and Molecular Lab, Braga, Portugal.
| |
Collapse
|
2
|
Barowsky S, Jung JY, Nesbit N, Silberstein M, Fava M, Loggia ML, Smoller JW, Lee PH. Cross-Disorder Genomics Data Analysis Elucidates a Shared Genetic Basis Between Major Depression and Osteoarthritis Pain. Front Genet 2021; 12:687687. [PMID: 34603368 PMCID: PMC8481820 DOI: 10.3389/fgene.2021.687687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) and major depression (MD) are two debilitating disorders that frequently co-occur and affect millions of the elderly each year. Despite the greater symptom severity, poorer clinical outcomes, and increased mortality of the comorbid conditions, we have a limited understanding of their etiologic relationships. In this study, we conducted the first cross-disorder investigations of OA and MD, using genome-wide association data representing over 247K cases and 475K controls. Along with significant positive genome-wide genetic correlations (r g = 0.299 ± 0.026, p = 9.10 × 10-31), Mendelian randomization (MR) analysis identified a bidirectional causal effect between OA and MD (βOA → MD = 0.09, SE = 0.02, z-score p-value < 1.02 × 10-5; βMD → OA = 0.19, SE = 0.026, p < 2.67 × 10-13), indicating genetic variants affecting OA risk are, in part, shared with those influencing MD risk. Cross-disorder meta-analysis of OA and MD identified 56 genomic risk loci (P meta ≤ 5 × 10-8), which show heightened expression of the associated genes in the brain and pituitary. Gene-set enrichment analysis highlighted "mechanosensory behavior" genes (GO:0007638; P gene_set = 2.45 × 10-8) as potential biological mechanisms that simultaneously increase susceptibility to these mental and physical health conditions. Taken together, these findings show that OA and MD share common genetic risk mechanisms, one of which centers on the neural response to the sensation of mechanical stimulus. Further investigation is warranted to elaborate the etiologic mechanisms of the pleiotropic risk genes, as well as to develop early intervention and integrative clinical care of these serious conditions that disproportionally affect the aging population.
Collapse
Affiliation(s)
- Sophie Barowsky
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jae-Yoon Jung
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Nicholas Nesbit
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Micah Silberstein
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Maurizio Fava
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Phil H. Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
3
|
Lisoway AJ, Chen CC, Zai CC, Tiwari AK, Kennedy JL. Toward personalized medicine in schizophrenia: Genetics and epigenetics of antipsychotic treatment. Schizophr Res 2021; 232:112-124. [PMID: 34049235 DOI: 10.1016/j.schres.2021.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a complex psychiatric disorder where genetic, epigenetic, and environmental factors play a role in disease onset, course of illness, and treatment outcome. Pharmaco(epi)genetic research presents an important opportunity to improve patient care through prediction of medication side effects and response. In this narrative review, we discuss the current state of research and important progress of both genetic and epigenetic factors involved in antipsychotic response, over the past five years. The review is largely focused on the following frequently prescribed antipsychotics: olanzapine, risperidone, aripiprazole, and clozapine. Several consistent pharmacogenetic findings have emerged, in particular pharmacokinetic genes (primarily cytochrome P450 enzymes) and pharmacodynamic genes involving dopamine, serotonin, and glutamate neurotransmission. In addition to studies analysing DNA sequence variants, there are also several pharmacoepigenetic studies of antipsychotic response that have focused on the measurement of DNA methylation. Although pharmacoepigenetics is still in its infancy, consideration of both genetic and epigenetic factors contributing to antipsychotic response and side effects no doubt will be increasingly important in personalized medicine. We provide recommendations for next steps in research and clinical evaluation.
Collapse
Affiliation(s)
- Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Cheng C Chen
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
4
|
Neurexin 1 variants as risk factors for suicide death. Mol Psychiatry 2021; 26:7436-7445. [PMID: 34168285 PMCID: PMC8709873 DOI: 10.1038/s41380-021-01190-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Suicide is a significant public health concern with complex etiology. Although the genetic component of suicide is well established, the scope of gene networks and biological mechanisms underlying suicide has yet to be defined. Previously, we reported genome-wide evidence that neurexin 1 (NRXN1), a key synapse organizing molecule, is associated with familial suicide risk. Here we present new evidence for two non-synonymous variants (rs78540316; P469S and rs199784139; H885Y) associated with increased familial risk of suicide death. We tested the impact of these variants on binding interactions with known partners and assessed functionality in a hemi-synapse formation assay. Although the formation of hemi-synapses was not altered with the P469S variant relative to wild-type, both variants increased binding to the postsynaptic binding partner, leucine-rich repeat transmembrane neuronal 2 (LRRTM2) in vitro. Our findings indicate that variants in NRXN1 and related synaptic genes warrant further study as risk factors for suicide death.
Collapse
|
5
|
Zhong Y, Yang B, Su Y, Qian Y, Cao Q, Chang S, Wang Y, Yang L. The Association with Quantitative Response to Attention-Deficit/Hyperactivity Disorder Medication of the Previously Identified Neurodevelopmental Network Genes. J Child Adolesc Psychopharmacol 2020; 30:348-354. [PMID: 32175767 DOI: 10.1089/cap.2018.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective: A recent pharmacoimaging study suggested that methylphenidate (MPH) and atomoxetine (ATX) might have common mechanisms for the treatment of attention-deficit/hyperactivity disorder (ADHD). Previous pharmacogenetic studies have by and large only involved genes in neurotransmitter systems, which accounted for very small variances. Therefore, this study aimed to investigate whether the neurodevelopmental genes identified in a prior ADHD etiology Genome-Wide Association Study (GWAS) could predict patients' responses to MPH and ATX, given the aforementioned mechanisms of action. Methods: For our sample of 241 patients with ADHD, we assessed the change in the ADHD rating scale (ADHD-RS) total symptom scores from baseline to the end of the 12th week of treatment with either MPH or ATX. We performed association analyses at the genetic single-marker, gene-based, set-based, and GWAS-based polygenic levels. Results: In our analyses, neither single nucleotide polymorphism (SNP) nor gene-level analyses yielded significant markers associated with the change in the ADHD-RS score after multiple comparison correction. The polygenic risk score model, which was based on SNPs associated with ADHD etiology at a threshold of p ≤ 0.0001 in a recent Han Chinese GWAS, predicted symptomatic improvement with ADHD medication (p = 0.018, R2 = 0.023). Conclusion: Our results provide new evidence for a small influence of neurodevelopmental genes on the efficacy of medications for ADHD.
Collapse
Affiliation(s)
- Yuanxin Zhong
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | | | - Yi Su
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Ying Qian
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Qingjiu Cao
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Li Yang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| |
Collapse
|
6
|
Hu Z, Xiao X, Zhang Z, Li M. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry 2019; 24:1400-1414. [PMID: 31138894 DOI: 10.1038/s41380-019-0438-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/31/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
Many neuropsychiatric and neurodevelopmental disorders commonly share genetic risk factors. To date, the mechanisms driving the pathogenesis of these disorders, particularly how genetic variations affect the function of risk genes and contribute to disease symptoms, remain largely unknown. Neurexins are a family of synaptic adhesion molecules, which play important roles in the formation and establishment of synaptic structure, as well as maintenance of synaptic function. Accumulating genomic findings reveal that genetic variations within genes encoding neurexins are associated with a variety of psychiatric conditions such as schizophrenia, autism spectrum disorder, and some developmental abnormalities. In this review, we focus on NRXN1, one of the most compelling psychiatric risk genes of the neurexin family. We performed a comprehensive survey and analysis of current genetic and molecular data including both common and rare alleles within NRXN1 associated with psychiatric illnesses, thus providing insights into the genetic risk conferred by NRXN1. We also summarized the neurobiological evidences, supporting the function of NRXN1 and its protein products in synaptic formation, organization, transmission and plasticity, as well as disease-relevant behaviors, and assessed the mechanistic link between the mutations of NRXN1 and synaptic and behavioral pathology in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Zhang X, Xiang Q, Zhao X, Ma L, Cui Y. Association between aripiprazole pharmacokinetics and CYP2D6 phenotypes: A systematic review and meta-analysis. J Clin Pharm Ther 2018; 44:163-173. [PMID: 30565279 DOI: 10.1111/jcpt.12780] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaodan Zhang
- Department of Pharmacy; Base for Clinical Trial, Peking University First Hospital; Beijing China
| | - Qian Xiang
- Department of Pharmacy; Base for Clinical Trial, Peking University First Hospital; Beijing China
| | - Xia Zhao
- Department of Pharmacy; Base for Clinical Trial, Peking University First Hospital; Beijing China
| | - Lingyue Ma
- Department of Pharmacy; Base for Clinical Trial, Peking University First Hospital; Beijing China
| | - Yimin Cui
- Department of Pharmacy; Base for Clinical Trial, Peking University First Hospital; Beijing China
| |
Collapse
|
8
|
Hoffmann A, Ziller M, Spengler D. Childhood-Onset Schizophrenia: Insights from Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:E3829. [PMID: 30513688 PMCID: PMC6321410 DOI: 10.3390/ijms19123829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Childhood-onset schizophrenia (COS) is a rare psychiatric disorder characterized by earlier onset, more severe course, and poorer outcome relative to adult-onset schizophrenia (AOS). Even though, clinical, neuroimaging, and genetic studies support that COS is continuous to AOS. Early neurodevelopmental deviations in COS are thought to be significantly mediated through poorly understood genetic risk factors that may also predispose to long-term outcome. In this review, we discuss findings from induced pluripotent stem cells (iPSCs) that allow the generation of disease-relevant cell types from early brain development. Because iPSCs capture each donor's genotype, case/control studies can uncover molecular and cellular underpinnings of COS. Indeed, recent studies identified alterations in neural progenitor and neuronal cell function, comprising dendrites, synapses, electrical activity, glutamate signaling, and miRNA expression. Interestingly, transcriptional signatures of iPSC-derived cells from patients with COS showed concordance with postmortem brain samples from SCZ, indicating that changes in vitro may recapitulate changes from the diseased brain. Considering this progress, we discuss also current caveats from the field of iPSC-based disease modeling and how to proceed from basic studies to improved diagnosis and treatment of COS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
9
|
Li J, Yoshikawa A, Brennan MD, Ramsey TL, Meltzer HY. Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophr Res 2018; 192:194-204. [PMID: 28431800 DOI: 10.1016/j.schres.2017.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 12/23/2022]
Abstract
Biomarkers which predict response to atypical antipsychotic drugs (AAPDs) increases their benefit/risk ratio. We sought to identify common variants in genes which predict response to lurasidone, an AAPD, by associating genome-wide association study (GWAS) data and changes (Δ) in Positive And Negative Syndrome Scale (PANSS) scores from two 6-week randomized, placebo-controlled trials of lurasidone in schizophrenia (SCZ) patients. We also included SCZ risk SNPs identified by the Psychiatric Genomics Consortium using a polygenic risk analysis. The top genomic loci, with uncorrected p<10-4, include: 1) synaptic adhesion (PTPRD, LRRC4C, NRXN1, ILIRAPL1, SLITRK1) and scaffolding (MAGI1, MAGI2, NBEA) genes, both essential for synaptic function; 2) other synaptic plasticity-related genes (NRG1/3 and KALRN); 3) the neuron-specific RNA splicing regulator, RBFOX1; and 4) ion channel genes, e.g. KCNA10, KCNAB1, KCNK9 and CACNA2D3). Some genes predicted response for patients with both European and African Ancestries. We replicated some SNPs reported to predict response to other atypical APDs in other GWAS. Although none of the biomarkers reached genome-wide significance, many of the genes and associated pathways have previously been linked to SCZ. Two polygenic modeling approaches, GCTA-GREML and PLINK-Polygenic Risk Score, demonstrated that some risk genes related to neurodevelopment, synaptic biology, immune response, and histones, also contributed to prediction of response. The top hits predicting response to lurasidone did not predict improvement with placebo. This is the first evidence from clinical trials that SCZ risk SNPs are related to clinical response to an AAPD. These results need to be replicated in an independent sample.
Collapse
Affiliation(s)
- Jiang Li
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA
| | - Akane Yoshikawa
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA
| | | | | | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
10
|
Abstract
Pharmacogenomic testing in psychiatry is becoming an established clinical procedure. Several vendors provide clinical interpretation of combinatorial pharmacogenomic testing of gene variants that have documented predictive implications regarding either pharmacologic response or adverse effects in depression and other psychiatric conditions. Such gene profiles have demonstrated improvements in outcome in depression, and reduction of cost of care of patients with inadequate clinical response. Additionally, several new gene variants are being studied to predict specific response in individuals. Many of these genes have demonstrated a role in the pathophysiology of depression or specific depressive symptoms. This article reviews the current state-of-the-art application of psychiatric pharmacogenomics.
Collapse
|
11
|
Xavier RM, Vorderstrasse A. Genetic Basis of Positive and Negative Symptom Domains in Schizophrenia. Biol Res Nurs 2017; 19:559-575. [PMID: 28691507 DOI: 10.1177/1099800417715907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a highly heritable disorder, the genetic etiology of which has been well established. Yet despite significant advances in genetics research, the pathophysiological mechanisms of this disorder largely remain unknown. This gap has been attributed to the complexity of the polygenic disorder, which has a heterogeneous clinical profile. Examining the genetic basis of schizophrenia subphenotypes, such as those based on particular symptoms, is thus a useful strategy for decoding the underlying mechanisms. This review of literature examines the recent advances (from 2011) in genetic exploration of positive and negative symptoms in schizophrenia. We searched electronic databases PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature using key words schizophrenia, symptoms, positive symptoms, negative symptoms, cognition, genetics, genes, genetic predisposition, and genotype in various combinations. We identified 115 articles, which are included in the review. Evidence from these studies, most of which are genetic association studies, identifies shared and unique gene associations for the symptom domains. Genes associated with neurotransmitter systems and neuronal development/maintenance primarily constitute the shared associations. Needed are studies that examine the genetic basis of specific symptoms within the broader domains in addition to functional mechanisms. Such investigations are critical to developing precision treatment and care for individuals afflicted with schizophrenia.
Collapse
Affiliation(s)
| | - Allison Vorderstrasse
- 2 Duke Center for Applied Genomics and Precision Medicine, Duke University School of Nursing, Durham, NC, USA
| |
Collapse
|
12
|
Nakazawa T, Kikuchi M, Ishikawa M, Yamamori H, Nagayasu K, Matsumoto T, Fujimoto M, Yasuda Y, Fujiwara M, Okada S, Matsumura K, Kasai A, Hayata-Takano A, Shintani N, Numata S, Takuma K, Akamatsu W, Okano H, Nakaya A, Hashimoto H, Hashimoto R. Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophr Res 2017; 181:75-82. [PMID: 28277309 DOI: 10.1016/j.schres.2016.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 01/25/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Matsumoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzukicho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Oncology Center, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikiya Fujiwara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Okada
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shusuke Numata
- Department of Psychiatry, Course of Integrated Brain Sciences, School of Medicine, University of Tokushima, 2-50-1 Kuramotocho, Tokushima, Tokushima 770-8503, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, D3, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, D3, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, D3, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Lanning R, Lett TA, Tiwari AK, Brandl EJ, de Luca V, Voineskos AN, Potkin SG, Lieberman JA, Meltzer HY, Müller DJ, Remington G, Kennedy JL, Zai CC. Association study between the neurexin-1 gene and tardive dyskinesia. Hum Psychopharmacol 2017; 32. [PMID: 28120489 DOI: 10.1002/hup.2568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Tardive dyskinesia (TD) is a motor side effect that may develop after long-term antipsychotic treatment. Schizophrenia has recently been associated with the Neurexin-1 (NRXN1) gene that codes for a cell adhesion molecule in synaptic communication. METHODS This study examined five NRXN1 single-nucleotide polymorphisms (SNPs) for possible association with the occurrence and severity of TD in 178 schizophrenia patients of European ancestry. RESULTS We did not find these SNPs to be significantly associated with TD. CONCLUSIONS More research is needed with additional SNPs and in bigger samples before we can completely rule out the role of NRXN1 in TD.
Collapse
Affiliation(s)
- Rachel Lanning
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tristram A Lett
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, Charité University Medicine Berlin, Berlin, Germany
| | - Arun K Tiwari
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eva J Brandl
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, Charité University Medicine Berlin, Berlin, Germany
| | - Vincenzo de Luca
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Jeffrey A Lieberman
- Department of Psychiatry, Mental Health and Neuroscience Center, the University of North Carolina at Chapel Hill School of Medicine, North Carolina, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Müller
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach. Hum Genet 2016; 136:13-37. [PMID: 27896429 PMCID: PMC5214768 DOI: 10.1007/s00439-016-1749-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Collapse
|
15
|
Brandl EJ, Lett TA, Chowdhury NI, Tiwari AK, Bakanidze G, Meltzer HY, Potkin SG, Lieberman JA, Kennedy JL, Müller DJ. The role of the ITIH3 rs2535629 variant in antipsychotic response. Schizophr Res 2016; 176:131-135. [PMID: 27396837 DOI: 10.1016/j.schres.2016.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION There is mounting evidence that schizophrenia risk variants influence response to antipsychotic medication. Common single nucleotide polymorphisms (SNPs) in or near the inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3) gene have been repeatedly associated with schizophrenia and related psychiatric disorders in genome-wide association studies. Here, we provide the first study to assess the relevance of the ITIH3 rs2535629 SNP in response to antipsychotic medication. METHODS The rs2535629 SNP was genotyped in N=256 patients receiving various antipsychotics for up to 26weeks. Treatment response was assessed using the Brief Psychiatric Rating Scale (BPRS) including its positive and negative subscales. Follow-up analyses were performed after stratifying for ethnicity and medication. RESULTS We found significant association of rs2535629 with improvement of negative symptoms in patients of European ancestry after six months of clozapine treatment (F1,87=8.8, pcorr=0.032). Patients homozygous for the minor A-allele showed the best improvement of negative BPRS scores. However, we observed no association between rs2535629 and changes in total BPRS score in the entire sample or the clozapine-treated subgroup. DISCUSSION Although there was no association of genotype with overall changes in BPRS scores, the greater improvement of negative symptoms in minor allele carriers indicates that rs2535629 may help to identify a subset of schizophrenia patients with better treatment response to clozapine. Therefore, our findings provide the first suggestive evidence that rs2535629 is relevant in antipsychotic response.
Collapse
Affiliation(s)
- E J Brandl
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany; Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - T A Lett
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - N I Chowdhury
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - A K Tiwari
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - G Bakanidze
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - S G Potkin
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, CA, USA
| | - J A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York City, NY, USA
| | - J L Kennedy
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - D J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Abstract
Neurexin 1 (NRXN1), a presynaptic cell adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including autism, intellectual disability and schizophrenia. To gain insight into NRXN1's involvement in human cortical development we used quantitative real-time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms, NRXN1-α and NRXN1-β, in prefrontal cortex from fetal stages to aging. In addition, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison with non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, markedly increasing with gestational age. In the postnatal dorsolateral prefrontal cortex, expression levels were negatively correlated with age, peaking at birth until ~3 years of age, after which levels declined markedly to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared with non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human dorsolateral prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders.
Collapse
|
17
|
Fabbri C, Serretti A. Genetics of long-term treatment outcome in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:17-24. [PMID: 26297903 DOI: 10.1016/j.pnpbp.2015.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 01/07/2023]
Abstract
Bipolar disorder (BD) shows one of the strongest genetic predispositions among psychiatric disorders and the identification of reliable genetic predictors of treatment response could significantly improve the prognosis of the disease. The present study investigated genetic predictors of long-term treatment-outcome in 723 patients with BD type I from the STEP-BD (Systematic Treatment Enhancement Program for Bipolar Disorder) genome-wide dataset. BD I patients with >6months of follow-up and without any treatment restriction (reflecting a natural setting scenario) were included. Phenotypes were the total and depressive episode rates and the occurrence of one or more (hypo)manic/mixed episodes during follow-up. Quality control of genome-wide data was performed according to standard criteria and linear/logistic regression models were used as appropriate under an additive hypothesis. Top genes were further analyzed through a pathway analysis. Genes previously involved in the susceptibility to BD (DFNB31, SORCS2, NRXN1, CNTNAP2, GRIN2A, GRM4, GRIN2B), antidepressant action (DEPTOR, CHRNA7, NRXN1), and mood stabilizer or antipsychotic action (NTRK2, CHRNA7, NRXN1) may affect long-term treatment outcome of BD. Promising findings without previous strong evidence were TRAF3IP2-AS1, NFYC, RNLS, KCNJ2, RASGRF1, NTF3 genes. Pathway analysis supported particularly the involvement of molecules mediating the positive regulation of MAPK cascade and learning/memory processes. Further studies focused on the outlined genes may be helpful to provide validated markers of BD treatment outcome.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
18
|
Ko J, Choii G, Um JW. The balancing act of GABAergic synapse organizers. Trends Mol Med 2016; 21:256-68. [PMID: 25824541 DOI: 10.1016/j.molmed.2015.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 12/14/2022]
Abstract
GABA (γ-aminobutyric acid) is the main neurotransmitter at inhibitory synapses in the mammalian brain. It is essential for maintaining the excitation and inhibition (E/I) ratio, whose imbalance underlies various brain diseases. Emerging information about inhibitory synapse organizers provides a novel molecular framework for understanding E/I balance at the synapse, circuit, and systems levels. This review highlights recent advances in deciphering these components of the inhibitory synapse and their roles in the development, transmission, and circuit properties of inhibitory synapses. We also discuss how their dysfunction may lead to a variety of brain disorders, suggesting new therapeutic strategies based on balancing the E/I ratio.
Collapse
|
19
|
Gareeva AE, Traks T, Koks S, Khusnutdinova EK. The role of neurotrophins and neurexins genes in the risk of paranoid schizophrenia in Russians and Tatars. RUSS J GENET+ 2015. [DOI: 10.1134/s102279541506006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Kästner A, Begemann M, Michel TM, Everts S, Stepniak B, Bach C, Poustka L, Becker J, Banaschewski T, Dose M, Ehrenreich H. Autism beyond diagnostic categories: characterization of autistic phenotypes in schizophrenia. BMC Psychiatry 2015; 15:115. [PMID: 25968177 PMCID: PMC4436160 DOI: 10.1186/s12888-015-0494-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/29/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Behavioral phenotypical continua from health to disease suggest common underlying mechanisms with quantitative rather than qualitative differences. Until recently, autism spectrum disorders and schizophrenia were considered distinct nosologic entities. However, emerging evidence contributes to the blurring of symptomatic and genetic boundaries between these conditions. The present study aimed at quantifying behavioral phenotypes shared by autism spectrum disorders and schizophrenia to prepare the ground for biological pathway analyses. METHODS Specific items of the Positive and Negative Syndrome Scale were employed and summed up to form a dimensional autism severity score (PAUSS). The score was created in a schizophrenia sample (N = 1156) and validated in adult high-functioning autism spectrum disorder (ASD) patients (N = 165). To this end, the Autism Diagnostic Observation Schedule (ADOS), the Autism (AQ) and Empathy Quotient (EQ) self-rating questionnaires were applied back to back with the newly developed PAUSS. RESULTS PAUSS differentiated between ASD, schizophrenia and a disease-control sample and substantially correlated with the Autism Diagnostic Observation Schedule. Patients with ADOS scores ≥12 obtained highest, those with scores <7 lowest PAUSS values. AQ and EQ were not found to vary dependent on ADOS diagnosis. ROC curves for ADOS and PAUSS resulted in AuC values of 0.9 and 0.8, whereas AQ and EQ performed at chance level in the prediction of ASD. CONCLUSIONS This work underscores the convergence of schizophrenia negative symptoms and autistic phenotypes. PAUSS evolved as a measure capturing the continuous nature of autistic behaviors. The definition of extreme-groups based on the dimensional PAUSS may permit future investigations of genetic constellations modulating autistic phenotypes.
Collapse
Affiliation(s)
- Anne Kästner
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Tanja Maria Michel
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Sarah Everts
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Beata Stepniak
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Christiane Bach
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany.
| | - Luise Poustka
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany.
| | - Joachim Becker
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany.
| | - Matthias Dose
- kbo-Isar-Amper-Klinikum Taufkirchen, Taufkirchen (Vils), Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|