1
|
Kuijer EJ, Bailey SJ, Heal DJ, Smith S, Wonnacott S, Bailey CP. Electrophysiological analysis of paraventricular thalamic neurons co-expressing kappa and mu opioid receptors. Neuropharmacology 2025; 272:110407. [PMID: 40074169 DOI: 10.1016/j.neuropharm.2025.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
The paraventricular thalamus (PVT) is a central node in the integration of stress- and reward-related information that may serve as a pivotal site for opioid receptors to exert their effects. Kappa opioid receptors (KOPrs) and mu opioid receptors (MOPrs) have dissociable and opposing roles in circuits of stress and reward. Interestingly, both are highly expressed in the PVT, however it is not known how aversive KOPr and rewarding MOPr signalling converges to dictate PVT activity and, by proxy, whole brain effects. We have investigated the function of KOPrs and MOPrs in single PVT neurons using whole-cell voltage-clamp recordings in brain slices from female and male mice (4-8 weeks). The majority of PVT neurons (69 %) co-expressed KOPr and MOPr. Activation of either receptor produced outward K+ currents, with no age and sex differences. In neurons co-expressing both opioid receptors, the MOPr-induced K+ current reversed around the theoretical equilibrium potential, whilst the KOPr current did not reverse at any holding potential tested. Furthermore, investigation of apparent inward currents produced by MOPr inverse agonists suggested the presence of tonically active MOPrs, predominantly in the anterior PVT. Activation of both KOPrs and MOPrs decreased glutamatergic input to PVT neurons by around 40 %, whereas only KOPr activation decreased GABAergic input, by 46 %. Together these data suggest that the balance of activation of KOPrs and MOPrs in the PVT plays a critical role in integrating stress- and reward-related signals.
Collapse
Affiliation(s)
- E J Kuijer
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - S J Bailey
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - D J Heal
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom; DevelRx Ltd, BioCity, Nottingham, NG1 1GF, United Kingdom
| | - S Smith
- DevelRx Ltd, BioCity, Nottingham, NG1 1GF, United Kingdom
| | - S Wonnacott
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - C P Bailey
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
2
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Liu X, Zhang X, Wang D, Cao Y, Zhang L, Li Z, Zhang Q, Shen Y, Lu X, Fan K, Liu M, Wei J, Hu S, Liu H. A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice. Brain Behav 2025; 15:e70218. [PMID: 39740781 DOI: 10.1002/brb3.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Pain is a prevalent comorbidity in numerous clinical conditions and causes suffering; however, the mechanism of pain is intricate, and the neural circuitry underlying pain in the brain remains incompletely elucidated. More research into the perception and modulation of pain within the central nervous system is essential. The nucleus accumbens (NAc) plays a pivotal role in the regulation of animal behavior, and extensive research has unequivocally demonstrated its significant involvement in the occurrence and development of pain. NAc receives projections from various other neural nuclei within the brain, including the paraventricular nucleus of the thalamus (PVT). In this experiment, we demonstrate that the specific glutamatergic neural circuit projection from PVT to NAc (PVTGlut→NAc) is implicated in the modulation of inflammatory pain in mice. METHODS We compared the difference in pain thresholds between complete Freund's adjuvant (CFA)-induced inflammatory pain models and controls. Then in a well-established mouse model of CFA-induced inflammatory pain, immunofluorescence staining was utilized to evaluate changes in c-Fos protein expression within PVT neurons. To investigate the role of PVTGlut→NAc in the modulation of pain, we used optogenetics to modulate this neural circuit, and nociceptive behavioral tests were employed to investigate the functional role of the PVTGlut→NAc circuit in the modulation of inflammatory pain. RESULTS In the mice with the inflammatory pain group, both the paw withdrawal latencies (PWLs) and paw withdrawal thresholds (PWTs) of the right hind paw were decreased compared to the control group. In addition, compared to the control group, CFA-induced inflammatory pain led to increased c-Fos protein expression in PVT, which means that some of the neurons in this area of the brain region have been activated. Following the injection of retrograde transport fluorescent-labeled virus into NAc, glutamatergic neurons projecting from the PVT to NAc were observed, confirming the projection relationship between PVT and NAc. In the experiments in optogenetic regulation, normal mice exhibited pain behavior when the PVTGlut→NAc circuit was stimulated by a 473 nm blue laser, resulting in decreased PWLs and PWTs compared to the control group, which means activating this neural circuit can lead to painful behaviors. In the CFA-induced pain group, inhibition of the PVTGlut→NAc circuit by a 589 nm yellow laser alleviated pain behavior, leading to increased PWLs and PWTs compared to the control group, representing the fact that inhibition of this neural circuit relieves pain behaviors. CONCLUSIONS The findings unveil a pivotal role of the PVTGlut→NAc circuit in modulating inflammatory pain induced by CFA in mice.
Collapse
Affiliation(s)
- Xi Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Anesthesiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xi Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongxu Wang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ya Cao
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ling Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Zhonghua Li
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Qin Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Yu Shen
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Xian Lu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Keyu Fan
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Mingxia Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Jingqiu Wei
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Education & Training, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siping Hu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - He Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
4
|
Flores-Ramirez FJ, Illenberger JM, Martin-Fardon R. Interaction between corticotropin-releasing factor, orexin, and dynorphin in the infralimbic cortex may mediate exacerbated alcohol-seeking behavior. Neurobiol Stress 2024; 33:100695. [PMID: 39640001 PMCID: PMC11617300 DOI: 10.1016/j.ynstr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
A major challenge for the treatment of alcohol use disorder (AUD) is relapse to alcohol use, even after protracted periods of self-imposed abstinence. Stress significantly contributes to the chronic relapsing nature of AUD, given its long-lasting ability to elicit intense craving and precipitate relapse. As individuals transition to alcohol dependence, compensatory allostatic mechanisms result in insults to hypothalamic-pituitary-adrenal axis function, mediated by corticotropin-releasing factor (CRF), which is subsequently hypothesized to alter brain reward pathways, influence affect, elicit craving, and ultimately perpetuate problematic drinking and relapse vulnerability. Orexin (OX; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and has been shown to interact with CRF. Interestingly, most hypothalamic cells that express Ox mRNA also express Pdyn mRNA. Both dynorphin and OX are located in the same synaptic vesicles, and they are co-released. The infralimbic cortex (IL) of the medial prefrontal cortex (mPFC) has emerged as being directly involved in the compulsive nature of alcohol consumption during dependence. The IL is a CRF-rich region that receives OX projections from the hypothalamus and where OX receptor mRNA has been detected. Although not thoroughly understood, anatomical and behavioral pharmacology data suggest that CRF, OX, and dynorphin may interact, particularly in the IL, and that functional interactions between these three systems in the IL may be critical for the etiology and pervasiveness of compulsive alcohol seeking in dependent subjects that may render them vulnerable to relapse. The present review presents evidence of the role of the IL in AUD and discusses functional interactions between CRF, OX, and dynorphin in this structure and how they are related to exacerbated alcohol drinking and seeking.
Collapse
Affiliation(s)
- Francisco J. Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychology, California State University, San Marcos, CA, USA
| | | | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Franco M, Mendonsa B, Martin-Fardon R. Pivotal role of orexin signaling in the posterior paraventricular nucleus of the thalamus during the stress-induced reinstatement of oxycodone-seeking behavior. J Psychopharmacol 2024; 38:647-660. [PMID: 38888086 PMCID: PMC11407285 DOI: 10.1177/02698811241260989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND The orexin (OX) system has received increasing interest as a potential target for treating substance use disorder. OX transmission in the posterior paraventricular nucleus of the thalamus (pPVT), an area activated by highly salient stimuli that are both reinforcing and aversive, mediates cue- and stress-induced reinstatement of reward-seeking behavior. Oral administration of suvorexant (SUV), a dual OX receptor (OXR) antagonist (DORA), selectively reduced conditioned reinstatement of oxycodone-seeking behavior and stress-induced reinstatement of alcohol-seeking behavior in dependent rats. AIMS This study tested whether OXR blockade in the pPVT with SUV reduces oxycodone or sweetened condensed milk (SCM) seeking elicited by conditioned cues or stress. METHODS Male Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i.v., 8 h/day) or SCM (0.1 ml, 2:1 dilution [v/v], 30 min/day). After extinction, we tested the ability of intra-pPVT SUV (15 µg/0.5 µl) to prevent reinstatement of oxycodone or SCM seeking elicited by conditioned cues or footshock stress. RESULTS The rats acquired oxycodone and SCM self-administration, and oxycodone intake correlated with signs of physical opioid withdrawal, confirming dependence. Following extinction, the presentation of conditioned cues or footshock elicited reinstatement of oxycodone- and SCM-seeking behavior. Intra-pPVT SUV blocked stress-induced reinstatement of oxycodone seeking but not conditioned reinstatement of oxycodone or SCM seeking or stress-induced reinstatement of SCM seeking. CONCLUSIONS The results indicate that OXR signaling in the pPVT is critical for stress-induced reinstatement of oxycodone seeking, further corroborating OXRs as treatment targets for opioid use disorder.
Collapse
|
6
|
Flores-Ramirez FJ, Illenberger JM, Pascasio G, Terenius L, Martin-Fardon R. LY2444296, a κ-opioid receptor antagonist, selectively reduces alcohol drinking in male and female Wistar rats with a history of alcohol dependence. Sci Rep 2024; 14:5804. [PMID: 38461355 PMCID: PMC10925033 DOI: 10.1038/s41598-024-56500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Alcohol use disorder (AUD) remains a major public health concern. The dynorphin (DYN)/κ-opioid receptor (KOP) system is involved in actions of alcohol, particularly its withdrawal-associated negative affective states. This study tested the ability of LY2444296, a selective, short-acting, KOP antagonist, to decrease alcohol self-administration in dependent male and female Wistar rats at 8 h abstinence. Animals were trained to orally self-administer 10% alcohol (30 min/day for 21 sessions) and were made dependent via chronic intermittent alcohol vapor exposure for 6 weeks or exposed to air (nondependent). After 6 weeks, the effect of LY2444296 (0, 3, and 10 mg/kg, p.o.) was tested on alcohol self-administration at 8 h of abstinence. A separate cohort of rats was prepared in parallel, and their somatic withdrawal signs and alcohol self-administration were measured after LY2444296 administration at 8 h, 2 weeks, and 4 weeks abstinence. LY2444296 at 3 and 10 mg/kg significantly reduced physical signs of withdrawal in dependent rats at 8 h abstinence, only. Furthermore, 3 and 10 mg/kg selectively decreased alcohol self-administration in dependent rats at only 8 h abstinence. These results highlight the DYN/KOP system in actions of alcohol during acute abstinence, suggesting KOP antagonism could be beneficial for mitigating acute withdrawal signs and, in turn, significantly reduce excessive alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Francisco J Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | - Jessica M Illenberger
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Glenn Pascasio
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
7
|
Illenberger JM, Flores-Ramirez FJ, Matzeu A, Lütjens R, Martin-Fardon R. ADX106772, an mGlu2 receptor positive allosteric modulator, selectively attenuates oxycodone taking and seeking. Neuropharmacology 2023; 238:109666. [PMID: 37463637 PMCID: PMC10529136 DOI: 10.1016/j.neuropharm.2023.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Opioid abuse and overdose have risen to epidemic proportions in the United States. Oxycodone is the most abused prescription opioid. Treatments for opioid use disorder (OUD) seek to reduce vulnerability to relapse by reducing sources of reinforcement to seek drug (i.e., acute drug effects or drug withdrawal/craving). Accumulating evidence that glutamate release elicits drug-seeking behaviors has generated interest in pharmacotherapies targeting the glutamate system. Agonists and positive allosteric modulators of the metabotropic glutamate 2 (mGlu2) receptor decrease glutamate activity, reducing drug taking and seeking. The present study tested whether the mGlu2 receptor positive allosteric modulator ADX106772 reduces oxycodone self-administration and the conditioned reinstatement of oxycodone seeking without affecting behaviors directed toward a highly palatable nondrug reinforcer (sweetened condensed milk). Male Wistar rats were trained to self-administer oxycodone (0.15 mg/kg/infusion, i.v., 12 h/day) or sweetened condensed milk (SCM; diluted 2:1 v/v in H2O, orally, 30 min/day) for 13 days in the presence of a contextual/discriminative stimulus (SD), and the ability of ADX106772 (0, 0.3, 1, 3 and-10 mg/kg, s. c.) to decrease self-administration was tested. The rats then underwent extinction training, during which oxycodone, SCM, and the SD were withheld. After extinction, the ability of ADX106772 to prevent SD-induced conditioned reinstatement of oxycodone and SCM seeking was tested. ADX106772 reduced oxycodone self-administration and conditioned reinstatement without affecting SCM self-administration or conditioned reinstatement. ADX106772 reduced oxycodone taking and seeking and did not affect the motivation for the palatable conventional reinforcer, SCM, suggesting that activating mGlu2 receptors with a positive allosteric modulator is a potential approach for prescription OUD treatment.
Collapse
Affiliation(s)
- Jessica M Illenberger
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | | | - Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
8
|
Li Y, Jiang T, Du M, He S, Huang N, Cheng B, Yan C, Tang W, Gao W, Guo H, Li Q, Wang Q. Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction. Exp Mol Med 2023; 55:2417-2432. [PMID: 37907746 PMCID: PMC10689812 DOI: 10.1038/s12276-023-01112-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 11/02/2023] Open
Abstract
Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.
Collapse
Affiliation(s)
- Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Ning Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wenxin Tang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Flores-Ramirez FJ, Varodayan FP, Patel RR, Illenberger JM, Di Ottavio F, Roberto M, Martin-Fardon R. Blockade of orexin receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. Br J Pharmacol 2023; 180:1500-1515. [PMID: 36537731 PMCID: PMC10577928 DOI: 10.1111/bph.16015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE A major problem managing alcohol use disorder is the high vulnerability to relapse, even after long periods of abstinence. Chronic alcohol use dysregulates stress responsivity, rendering this system hyporesponsive and making individuals vulnerable to relapse. Orexin (hypocretin) plays a role in diverse physiological processes, including stress. Orexin neurons in the hypothalamus, project to the infralimbic cortex. This study asked does infralimbic cortex orexin transmission play a significant role in stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. EXPERIMENTAL APPROACH Male and female rats were trained to self-administer 10% alcohol (3 weeks) and then made dependent via chronic intermittent alcohol vapour exposure. Following extinction (5 days·week-1 at 8 h abstinence for 10 sessions), rats received an intra- infralimbic cortex microinfusion of the OX1/2 antagonist TCS 1102 (15 μg/0.5 μl per side) and then tested for footshock stress-induced reinstatement of alcohol seeking. In a separate cohort, orexin regulation of infralimbic cortex neuronal activity at the time of reinstatement was investigated using ex vivo electrophysiology. KEY RESULTS TCS 1102 prevented reinstatement in dependent animals only. Moreover, Hcrtr mRNA expression in the hypothalamus and Hcrtr1/2 in the infralimbic cortex increased in alcohol-dependent animals at the time of testing. Dependence dampened basal orexin/OX receptor influence over infralimbic cortex GABAergic synapses (using TCS 1102) allow for greater stimulated orexin effects. CONCLUSION AND IMPLICATIONS Infralimbic cortex transmission is implicate in stress-induced reinstatement of alcohol-seeking behaviour in subjects with a history of alcohol dependence and show maladaptive recruitment of infralimbic cortex transmission by alcohol dependence.
Collapse
Affiliation(s)
| | - Florence P. Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Francesca Di Ottavio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
Tyree SM, Jennings KJ, Gonzalez OC, Li SB, Nicholson JR, von Heimendahl M, de Lecea L. Optogenetic and pharmacological interventions link hypocretin neurons to impulsivity in mice. Commun Biol 2023; 6:74. [PMID: 36658362 PMCID: PMC9852239 DOI: 10.1038/s42003-023-04409-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neurons in the lateral hypothalamus expressing the neuropeptide Hypocretin, also known as orexin, are known critical modulators of arousal stability. However, their role in the different components of the arousal construct such as attention and decision making is poorly understood. Here we study Hypocretin neuronal circuit dynamics during stop action impulsivity in a Go/NoGo task in mice. We show that Hypocretin neuronal activity correlates with anticipation of reward. We then assessed the causal role of Hypocretin neuronal activity using optogenetics in a Go/NoGo task. We show that stimulation of Hypocretin neurons during the cue period dramatically increases the number of premature responses. These effects are mimicked by amphetamine, reduced by atomoxetine, a norepinephrine uptake inhibitor, and blocked by a Hypocretin receptor 1 selective antagonist. We conclude that Hypocretin neurons have a key role in the integration of salient stimuli during wakefulness to produce appropriate and timely responses to rewarding and aversive cues.
Collapse
Affiliation(s)
- Susan M. Tyree
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA ,Present Address: Atlantia Clinical Trials, Cork, Ireland
| | - Kimberly J. Jennings
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA ,grid.55460.320000000121548364Present Address: University of Texas, Austin, TX USA
| | - Oscar C. Gonzalez
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA
| | - Shi-bin Li
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA
| | - Janet R. Nicholson
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Moritz von Heimendahl
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Luis de Lecea
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA USA
| |
Collapse
|
11
|
Li X, Zhai Q, Gou X, Quan M, Li Y, Zhang X, Deng B, Tian Y, Wang Q, Hou L. Involvement of Paired Immunoglobulin-Like Receptor B in Cognitive Dysfunction Through Hippocampal-Dependent Synaptic Plasticity Impairments in Mice Subjected to Chronic Sleep Restriction. Mol Neurobiol 2023; 60:1132-1149. [PMID: 36417104 PMCID: PMC9899186 DOI: 10.1007/s12035-022-03127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Sleep loss is often associated with cognitive dysfunction. Alterations in the structure and function of synapses in the hippocampus are thought to underlie memory storage. Paired immunoglobulin-like receptor B (PirB) plays a negative role in various neurological diseases by inhibiting axon regeneration and synaptic plasticity. However, the contributions of PirB to the mechanisms underlying the changes in synaptic plasticity after sleep loss that ultimately promote deficits in cognitive function have not been well elucidated. Here, we showed that chronic sleep restriction (CSR) mice displayed cognitive impairment and synaptic deficits accompanied by upregulation of PirB expression in the hippocampus. Mechanistically, PirB caused the dysregulation of actin through the RhoA/ROCK2/LIMK1/cofilin signalling pathway, leading to abnormal structural and functional plasticity, which in turn resulted in cognitive dysfunction. PirB knockdown alleviated synaptic deficits and cognitive impairment after CSR by inhibiting the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Moreover, we found that fasudil, a widely used ROCK2 inhibitor, could mimic the beneficial effect of PirB knockdown and ameliorate synaptic deficits and cognitive impairment, further demonstrating that PirB induced cognitive dysfunction after CSR via the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Our study sheds new light on the role of PirB as an important mediator in modulating the dysfunction of synaptic plasticity and cognitive function via the RhoA/ROCK2/LIMK1/cofilin signalling pathway, which indicated that hippocampal PirB is a promising therapeutic target for counteracting cognitive impairment after CSR. This illustration depicts the signalling pathway by PirB in mediating cognitive impairment and synaptic deficits in CSR mice. In the hippocampus of CSR mice, the expression level of PirB was significantly increased. In addition, CSR increases RhoA and ROCK2 levels and reduces levels of both LIMK1 and cofilin phosphorylation. PirB knockdown reverses cognitive impairment and synaptic plasticity disorders caused by CSR through the RhoA/ROCK2/LIMK1/cofilin signalling pathway.
Collapse
Affiliation(s)
- Xuying Li
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China ,Department of Anesthesiology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, 570000 Hainan China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Minxue Quan
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yi Tian
- Department of Anesthesiology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, 570000 Hainan China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lichao Hou
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| |
Collapse
|
12
|
Kołosowska K, Lehner M, Skórzewska A, Gawryluk A, Tomczuk F, Sobolewska A, Turzyńska D, Liguz-Lęcznar M, Bednarska-Makaruk M, Maciejak P, Wisłowska-Stanek A. Molecular pattern of a decrease in the rewarding effect of cocaine after an escalating-dose drug regimen. Pharmacol Rep 2023; 75:85-98. [PMID: 36586075 PMCID: PMC9889529 DOI: 10.1007/s43440-022-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Long-term cocaine exposure leads to dysregulation of the reward system and initiates processes that ultimately weaken its rewarding effects. Here, we studied the influence of an escalating-dose cocaine regimen on drug-associated appetitive behavior after a withdrawal period, along with corresponding molecular changes in plasma and the prefrontal cortex (PFC). METHODS We applied a 5 day escalating-dose cocaine regimen in rats. We assessed anxiety-like behavior at the beginning of the withdrawal period in the elevated plus maze (EPM) test. The reinforcement properties of cocaine were evaluated in the Conditioned Place Preference (CPP) test along with ultrasonic vocalization (USV) in the appetitive range in a drug-associated context. We assessed corticosterone, proopiomelanocortin (POMC), β-endorphin, CART 55-102 levels in plasma (by ELISA), along with mRNA levels for D2 dopaminergic receptor (D2R), κ-receptor (KOR), orexin 1 receptor (OX1R), CART 55-102, and potential markers of cocaine abuse: miRNA-124 and miRNA-137 levels in the PFC (by PCR). RESULTS Rats subjected to the escalating-dose cocaine binge regimen spent less time in the cocaine-paired compartment, and presented a lower number of appetitive USV episodes. These changes were accompanied by a decrease in corticosterone and CART levels, an increase in POMC and β-endorphin levels in plasma, and an increase in the mRNA for D2R and miRNA-124 levels, but a decrease in the mRNA levels for KOR, OX1R, and CART 55-102 in the PFC. CONCLUSIONS The presented data reflect a part of a bigger picture of a multilevel interplay between neurotransmitter systems and neuromodulators underlying processes associated with cocaine abuse.
Collapse
Affiliation(s)
- Karolina Kołosowska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Gawryluk
- grid.419305.a0000 0001 1943 2944Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Filip Tomczuk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Danuta Turzyńska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- grid.419305.a0000 0001 1943 2944Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Bednarska-Makaruk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Piotr Maciejak
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
13
|
Illenberger JM, Flores-Ramirez FJ, Matzeu A, Mason BJ, Martin-Fardon R. Suvorexant, an FDA-approved dual orexin receptor antagonist, reduces oxycodone self-administration and conditioned reinstatement in male and female rats. Front Pharmacol 2023; 14:1127735. [PMID: 37180716 PMCID: PMC10172671 DOI: 10.3389/fphar.2023.1127735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: The Department of Health and Human Services reports that prescription pain reliever (e.g., oxycodone) misuse was initiated by 4,400 Americans each day in 2019. Amid the opioid crisis, effective strategies to prevent and treat prescription opioid use disorder (OUD) are pressing. In preclinical models, the orexin system is recruited by drugs of abuse, and blockade of orexin receptors (OX receptors) prevents drug-seeking behavior. The present study sought to determine whether repurposing suvorexant (SUV), a dual OX receptor antagonist marketed for the treatment of insomnia, can treat two features of prescription OUD: exaggerated consumption and relapse. Methods: Male and female Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i. v., 8 h/day) in the presence of a contextual/discriminative stimulus (SD) and the ability of SUV (0-20 mg/kg, p. o.) to decrease oxycodone self-administration was tested. After self-administration testing, the rats underwent extinction training, after which we tested the ability of SUV (0 and 20 mg/kg, p. o.) to prevent reinstatement of oxycodone seeking elicited by the SD. Results: The rats acquired oxycodone self-administration and intake was correlated with the signs of physical opioid withdrawal. Additionally, females self-administered approximately twice as much oxycodone as males. Although SUV had no overall effect on oxycodone self-administration, scrutiny of the 8-h time-course revealed that 20 mg/kg SUV decreased oxycodone self-administration during the first hour in males and females. The oxycodone SD elicited strong reinstatement of oxycodone-seeking behavior that was significantly more robust in females. Suvorexant blocked oxycodone seeking in males and reduced it in females. Conclusions: These results support the targeting of OX receptors for the treatment for prescription OUD and repurposing SUV as pharmacotherapy for OUD.
Collapse
|
14
|
Flores-Ramirez FJ, Illenberger JM, Pascasio GE, Matzeu A, Mason BJ, Martin-Fardon R. Alternative use of suvorexant (Belsomra ®) for the prevention of alcohol drinking and seeking in rats with a history of alcohol dependence. Front Behav Neurosci 2022; 16:1085882. [PMID: 36620860 PMCID: PMC9813433 DOI: 10.3389/fnbeh.2022.1085882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Alcohol use disorder (AUD) is one of the most treatment-resistant medical conditions globally. The orexin (Orx) system regulates diverse physiological processes, including stress, and is a system of interest for the development of pharmaceuticals to treat substance use disorders, particularly AUD. The present study tested the ability of the dual orexin receptor antagonist suvorexant (SUV), marketed by Merck as Belsomra®, for the treatment of insomnia, to decrease alcohol self-administration and the stress-induced reinstatement of alcohol-seeking behavior in male Wistar rats with a history of alcohol dependence. Rats were trained to orally self-administer 10% alcohol (30 min/day for 3 weeks) and were either made dependent via chronic intermittent alcohol vapor exposure (14 h ON, 10 h OFF) for 6 weeks or exposed to air (non-dependent). Starting on week 7, the effect of SUV (0-20 mg/kg, p.o.) was tested on alcohol self-administration at acute abstinence (8 h after vapor was turned OFF) twice weekly. A separate cohort of rats that were prepared in parallel was removed from alcohol vapor exposure and then subjected to extinction training for 14 sessions. Once extinction was achieved, the rats received SUV (0 and 5 mg/kg, p.o.) and were tested for the footshock stress-induced reinstatement of alcohol-seeking behavior. Suvorexant at 5, 10, and 20 mg/kg selectively decreased alcohol intake in dependent rats. Furthermore, 5 mg/kg SUV prevented the stress-induced reinstatement of alcohol-seeking behavior in dependent rats only. These results underscore the significance of targeting the Orx system for the treatment of substance use disorders generally and suggest that repurposing SUV could be an alternative approach for the treatment of AUD.
Collapse
|
15
|
Kourosh-Arami M, Gholami M, Alavi-Kakhki SS, Komaki A. Neural correlates and potential targets for the contribution of orexin to addiction in cortical and subcortical areas. Neuropeptides 2022; 95:102259. [PMID: 35714437 DOI: 10.1016/j.npep.2022.102259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023]
Abstract
The orexin (hypocretin) is one of the hypothalamic neuropeptides that plays a critical role in some behaviors including feeding, sleep, arousal, reward processing, and drug addiction. This variety of functions can be described by a united function for orexins in translating states of heightened motivation, for example during physiological requirement states or following exposure to reward opportunities, into planned goal-directed behaviors. An addicted state is characterized by robust activation of orexin neurons from the environment, which triggers downstream circuits to facilitate behavior directed towards obtaining the drug. Two orexin receptors 1 (OX1R) and 2 (OX2R) are widely distributed in the brain. Here, we will introduce and describe the cortical and subcortical brain areas involved in addictive-like behaviors and the impact of orexin on addiction.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Sajjad Alavi-Kakhki
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Mattar P, Uribe-Cerda S, Pezoa C, Guarnieri T, Kotz CM, Teske JA, Morselli E, Perez-Leighton C. Brain site-specific regulation of hedonic intake by orexin and DYN peptides: role of the PVN and obesity. Nutr Neurosci 2022; 25:1105-1114. [PMID: 33151127 DOI: 10.1080/1028415x.2020.1840049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The orexin peptides promote hedonic intake and other reward behaviors through different brain sites. The opioid dynorphin peptides are co-released with orexin peptides but block their effects on reward in the ventral tegmental area (VTA). We previously showed that in the paraventricular hypothalamic nucleus (PVN), dynorphin and not orexin peptides enhance hedonic intake, suggesting they have brain-site-specific effects. Obesity alters the expression of orexin and dynorphin receptors, but whether their expression across different brain sites is important to hedonic intake is unclear. We hypothesized that hedonic intake is regulated by orexin and dynorphin peptides in PVN and that hedonic intake in obesity correlates with expression of their receptors. Here we show that in mice, injection of DYN-A1-13 (an opioid dynorphin peptide) in the PVN enhanced hedonic intake, whereas in the VTA, injection of OXA (orexin-A, an orexin peptide) enhanced hedonic intake. In PVN, OXA blunted the increase in hedonic intake caused by DYN-A1-13. In PVN, injection of norBNI (opioid receptor antagonist) reduced hedonic intake but a subsequent OXA injection failed to increase hedonic intake, suggesting that OXA activity in PVN is not influenced by endogenous opioid activity. In the PVN, DYN-A1-13 increased the intake of the less-preferred food in a two-food choice task. In obese mice fed a cafeteria diet, orexin 1 receptor mRNA across brain sites involved in hedonic intake correlated with fat preference but not caloric intake. Together, these data support that orexin and dynorphin peptides regulate hedonic intake in an opposing manner with brain-site-specific effects.
Collapse
Key Words
- CeA, central amygdala
- DH, dorsal hypothalamus
- DYN, dynorphin
- KOR, kappa opioid receptor
- LH, lateral hypothalamus
- NAc, nucleus accumbens
- OFC, orbitofrontal cortex
- OR, opioid receptor
- OX1R, orexin 1 receptor
- OX2R, orexin 2 receptor
- OXA, 1orexin-A
- Orexin
- PVN, paraventricular hypothalamic nucleus
- PVT, paraventricular thalamic nucleus
- VH, ventral hypothalamus
- VTA, ventral tegmental area
- cafeteria diet
- dynorphin
- fat
- feeding behavior
- food choice
- hedonic intake
- hypocretin
- hypothalamus
- norBNI, nor-binaltorphimine
- obesity
- opioid receptors
- orexin 1 receptor
Collapse
Affiliation(s)
- P Mattar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Uribe-Cerda
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Pezoa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Guarnieri
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - J A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - E Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Perez-Leighton
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
18
|
Matzeu A, Martin-Fardon R. Blockade of corticotropin-releasing factor receptor 1 in the central amygdala prevents cocaine-seeking behaviour induced by orexin-A administered to the posterior paraventricular nucleus of the thalamus in male rats. J Psychiatry Neurosci 2021; 46:E459-E471. [PMID: 34318655 PMCID: PMC8519495 DOI: 10.1503/jpn.200213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Orexin-A (OrxA) administration in the posterior paraventricular nucleus of the thalamus (pPVT) reinstates extinguished cocaine-seeking behaviour following extended access to the drug (a model of dependence). The pPVT receives and integrates information associated with emotionally salient events and sends excitatory inputs to brain regions involved in the expression of emotional states, such as those driving cocaine-seeking behaviour (i.e., the nucleus accumbens, the central nucleus of the amygdala [CeA], the basolateral amygdala, the bed nucleus of the stria terminalis [BNST] and the prefrontal cortex). METHODS We monitored the activation pattern of these regions (measured by Fos) during cocaine-seeking induced by OrxA administered to the pPVT. The BNST and CeA emerged as being selectively activated. To test whether the functionality of these regions was pivotal during OrxA-induced cocaine-seeking behaviour, we transiently inactivated these regions concomitantly with OrxA administration to the pPVT. We then tested the participation of corticotropin-releasing factor receptors (CRF1) in the CeA during OrxA-induced cocaine-seeking using the CRF1 antagonist CP154526. RESULTS We observed selective activation of the CeA and BNST during cocaine-seeking induced by OrxA administered to the pPVT, but only transient inactivation of the CeA prevented cocaine-seeking behaviour. Administration of CP154526 to the CeA prevented OrxAinduced cocaine-seeking behaviour. LIMITATIONS The use of only male rats could have been a limitation. Other limitations could have been the use of an indirect approach to test the hypothesis that administration of OrxA to the pPVT drives cocaine-seeking via CRF1 signalling in the CeA, and a lack of analysis of the participation of CeA subregions. CONCLUSION Cocaine-seeking behaviour induced by OrxA administered to the pPVT is driven by activation of the CeA via CRF1 signalling.
Collapse
Affiliation(s)
- Alessandra Matzeu
- From The Scripps Research Institute, La Jolla, California, USA (Matzeu, Martin-Fardon)
| | - Rémi Martin-Fardon
- From The Scripps Research Institute, La Jolla, California, USA (Matzeu, Martin-Fardon)
| |
Collapse
|
19
|
Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021; 15:706713. [PMID: 34220458 PMCID: PMC8250420 DOI: 10.3389/fnint.2021.706713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
In this review, we highlight evidence that supports a role for the paraventricular nucleus of the thalamus (PVT) in motivated behavior. We include a neuroanatomical and neurochemical overview, outlining what is known of the cellular makeup of the region and its most prominent afferent and efferent connections. We discuss how these connections and distinctions across the anterior-posterior axis correspond to the perceived function of the PVT. We then focus on the hypothalamic-thalamic-striatal circuit and the neuroanatomical and functional placement of the PVT within this circuit. In this regard, the PVT is ideally positioned to integrate information regarding internal states and the external environment and translate it into motivated actions. Based on data that has emerged in recent years, including that from our laboratory, we posit that orexinergic (OX) innervation from the lateral hypothalamus (LH) to the PVT encodes the incentive motivational value of reward cues and thereby alters the signaling of the glutamatergic neurons projecting from the PVT to the shell of the nucleus accumbens (NAcSh). The PVT-NAcSh pathway then modulates dopamine activity and resultant cue-motivated behaviors. As we and others apply novel tools and approaches to studying the PVT we will continue to refine the anatomical, cellular, and functional definitions currently ascribed to this nucleus and further elucidate its role in motivated behaviors.
Collapse
Affiliation(s)
- Amanda G. Iglesias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021; 44:538-549. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Early anatomical evidence suggested that the paraventricular nucleus of the thalamus (PVT) regulates arousal, as well as emotional and motivated behaviors. We discuss recent studies using modern techniques which now confirm and expand the involvement of the rodent PVT in these functions. Despite the emerging notion that the PVT is implicated in various behavioral processes, a recurrent theme is that activity in this brain region depends on internal state information arriving from the hypothalamus and brainstem, and is influenced by prior experience. We propose that the primary function of the PVT is to detect homeostatic challenges by integrating information about prior experiences, competing needs, and internal state to guide adaptive behavioral responses aimed at restoring homeostasis.
Collapse
|
21
|
Rowson SA, Pleil KE. Influences of Stress and Sex on the Paraventricular Thalamus: Implications for Motivated Behavior. Front Behav Neurosci 2021; 15:636203. [PMID: 33716683 PMCID: PMC7953143 DOI: 10.3389/fnbeh.2021.636203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is a critical neural hub for the regulation of a variety of motivated behaviors, integrating stress and reward information from environmental stimuli to guide discrete behaviors via several limbic projections. Neurons in the PVT are activated by acute and chronic stressors, however several roles of the PVT in behavior modulation emerge only following repeated stress exposure, pointing to a role for hypothalamic pituitary adrenal (HPA) axis modulation of PVT function. Further, there may be a reciprocal relationship between the PVT and HPA axis in which chronic stress-induced recruitment of the PVT elicits an additional role for the PVT to regulate motivated behavior by modulating HPA physiology and thus the neuroendocrine response to stress itself. This complex interaction may make the PVT and its role in influencing motivated behavior particularly susceptible to chronic stress-induced plasticity in the PVT, especially in females who display increased susceptibility to stress-induced maladaptive behaviors associated with neuropsychiatric diseases. Though literature is describing the sex-specific effects of acute and chronic stress exposure on HPA axis activation and motivated behaviors, the impact of sex on the role of the PVT in modulating the behavioral and neuroendocrine response to stress is less well established. Here, we review what is currently known regarding the acute and chronic stress-induced activation and behavioral role of the PVT in male and female rodents. We further explore stress hormone and neuropeptide signaling mechanisms by which the HPA axis and PVT interact and discuss the implications for sex-dependent effects of chronic stress on the PVT's role in motivated behaviors.
Collapse
Affiliation(s)
| | - Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
22
|
Matzeu A, Martin-Fardon R. Cocaine-Seeking Behavior Induced by Orexin A Administration in the Posterior Paraventricular Nucleus of the Thalamus Is Not Long-Lasting: Neuroadaptation of the Orexin System During Cocaine Abstinence. Front Behav Neurosci 2021; 15:620868. [PMID: 33708078 PMCID: PMC7940839 DOI: 10.3389/fnbeh.2021.620868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023] Open
Abstract
Hypothalamic orexin (Orx) projections to the paraventricular nucleus of the thalamus (PVT) have received growing interest because of their role in drug-seeking behavior. Using an established model of cocaine dependence (i.e., long access [LgA] to cocaine), we previously showed that OrxA injections in the posterior PVT (pPVT) reinstated extinguished cocaine-seeking behavior in rats after an intermediate period of abstinence (2-3 weeks). Considering the long-lasting nature of drug-seeking behavior, the present study examined whether the priming effect of intra-pPVT OrxA administration was preserved after a period of protracted abstinence (4-5 weeks) in rats that self-administered cocaine under LgA conditions. Furthermore, to better understand whether a history of cocaine dependence affects the Orx system-particularly the hypothalamic Orx↔pPVT connection-the number of Orx-expressing cells in the lateral hypothalamus (LH), dorsomedial hypothalamus (DMH), and perifornical area (PFA) and number of orexin receptor 1 (OrxR1)- and OrxR2-expressing cells in the pPVT were quantified. Orexin A administration in the pPVT induced cocaine-seeking behavior after intermediate abstinence, as reported previously. At protracted abstinence, however, the priming effect of OrxA was absent. A higher number of cells that expressed Orx was observed in the LH/DMH/PFA at both intermediate and protracted abstinence. In the pPVT, the number of OrxR2-expressing cells was significantly higher only at intermediate abstinence, with no changes in the number of OrxR1-expressing cells. These data build on our previous findings that the hypothalamic Orx↔pPVT connection is strongly recruited shortly after cocaine abstinence and demonstrate that the priming effect of OrxA is not long lasting. Furthermore, these findings suggest that throughout abstinence, the Orx↔pPVT connection undergoes neuroadaptive changes, reflected by alterations of the number of OrxR2-expressing cells in the pPVT.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
23
|
Zhou K, Zhu L, Hou G, Chen X, Chen B, Yang C, Zhu Y. The Contribution of Thalamic Nuclei in Salience Processing. Front Behav Neurosci 2021; 15:634618. [PMID: 33664657 PMCID: PMC7920982 DOI: 10.3389/fnbeh.2021.634618] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The brain continuously receives diverse information about the external environment and changes in the homeostatic state. The attribution of salience determines which stimuli capture attention and, therefore, plays an essential role in regulating emotions and guiding behaviors. Although the thalamus is included in the salience network, the neural mechanism of how the thalamus contributes to salience processing remains elusive. In this mini-review, we will focus on recent advances in understanding the specific roles of distinct thalamic nuclei in salience processing. We will summarize the functional connections between thalamus nuclei and other key nodes in the salience network. We will highlight the convergence of neural circuits involved in reward and pain processing, arousal, and attention control in thalamic structures. We will discuss how thalamic activities represent salience information in associative learning and how thalamic neurons modulate adaptive behaviors. Lastly, we will review recent studies which investigate the contribution of thalamic dysfunction to aberrant salience processing in neuropsychiatric disorders, such as drug addiction, posttraumatic stress disorder (PTSD), and schizophrenia. Based on emerging evidence from both human and rodent research, we propose that the thalamus, different from previous studies that as an information relay, has a broader role in coordinating the cognitive process and regulating emotions.
Collapse
Affiliation(s)
- Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Lin Zhu
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Guoqiang Hou
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xueyu Chen
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Bo Chen
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
24
|
Orexin-A differentially modulates inhibitory and excitatory synaptic transmission in rat inner retina. Neuropharmacology 2021; 187:108492. [PMID: 33582153 DOI: 10.1016/j.neuropharm.2021.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.
Collapse
|
25
|
Curtis GR, Oakes K, Barson JR. Expression and Distribution of Neuropeptide-Expressing Cells Throughout the Rodent Paraventricular Nucleus of the Thalamus. Front Behav Neurosci 2021; 14:634163. [PMID: 33584216 PMCID: PMC7873951 DOI: 10.3389/fnbeh.2020.634163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to make significant contributions to affective and motivated behavior, but a comprehensive description of the neurochemicals expressed in the cells of this brain region has never been presented. While the PVT is believed to be composed of projection neurons that primarily use as their neurotransmitter the excitatory amino acid, glutamate, several neuropeptides have also been described in this brain region. In this review article, we combine published literature with our observations from the Allen Brain Atlas to describe in detail the expression and distribution of neuropeptides in cells throughout the mouse and rat PVT, with a special focus on neuropeptides known to be involved in behavior. Several themes emerge from this investigation. First, while the majority of neuropeptides are expressed across the antero-posterior axis of the PVT, they generally exist in a gradient, in which expression is most dense but not exclusive in either the anterior or posterior PVT, although other neuropeptides display somewhat more equal expression in the anterior and posterior PVT but have reduced expression in the middle PVT. Second, we find overall that neuropeptides involved in arousal are more highly expressed in the anterior PVT, those involved in depression-like behavior are more highly expressed in the posterior PVT, and those involved in reward are more highly expressed in the medial PVT, while those involved in the intake of food and drugs of abuse are distributed throughout the PVT. Third, the pattern and content of neuropeptide expression in mice and rats appear not to be identical, and many neuropeptides found in the mouse PVT have not yet been demonstrated in the rat. Thus, while significantly more work is required to uncover the expression patterns and specific roles of individual neuropeptides in the PVT, the evidence thus far supports the existence of a diverse yet highly organized system of neuropeptides in this nucleus. Determined in part by their location within the PVT and their network of projections, the function of the neuropeptides in this system likely involves intricate coordination to influence both affective and motivated behavior.
Collapse
Affiliation(s)
- Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kathleen Oakes
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020; 14:599710. [PMID: 33240054 PMCID: PMC7683390 DOI: 10.3389/fnint.2020.599710] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Neural systems involved in processing natural rewards and drugs of abuse overlap and exposure to drugs of abuse induce neuroadaptations that can cause compulsive-like behavior. For example, the recruitment of the orexin (Orx) system by drugs of abuse has been proposed to induce neuroadaptations that in turn alter its function, reflected by maladaptive, compulsive, and addictive behavior. Orexin neurons project to the paraventricular nucleus of the thalamus (PVT)—particularly the posterior part (pPVT), a structure that plays a key role in stress regulation. This study investigated whether Orx transmission in the pPVT plays a role in stress-induced reinstatement of reward-seeking behavior toward ethanol (EtOH) and a highly palatable food reward [sweetened condensed milk (SCM)] in rats and whether this role changes with EtOH dependence. After being trained to orally self-administer EtOH or SCM, the rats were made dependent (EtOHD and SCMD) by chronic intermittent EtOH vapor exposure. The control nondependent groups (EtOHND and SCMND) were exposed to air. Following extinction, the rats were tested for stress-induced reinstatement of EtOH- and SCM-seeking behavior. Stress reinstated EtOH- and SCM-seeking behavior in all groups (EtOHD/ND and SCMD/ND). Administration of the dual Orx receptor (OrxR) antagonist TCS1102 (15 μg) in the pPVT prevented stress-induced reinstatement only in dependent rats (EtOHD and SCMD). In parallel, the qPCR analysis showed that Orx mRNA expression in the hypothalamus and OrxR1/R2 mRNA expression in the pPVT were increased at the time of testing in the EtOHD and SCMD groups. These results are the first to implicate Orx transmission in the pPVT in the stress-induced reinstatement of reward-seeking behavior in EtOH dependent rats and indicate the maladaptive recruitment of Orx transmission in the pPVT by EtOH dependence.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
27
|
Kowalewski S, Czarzasta K, Puchalska L, Szczepańska-Sadowska E, Wsol A, Cudnoch-Jędrzejewska A. Interaction of Orexin A and Vasopressin in the Brain Plays a Role in Blood Pressure Regulation in WKY and SHR Rats. Med Sci Monit 2020; 26:e926825. [PMID: 33048914 PMCID: PMC7568440 DOI: 10.12659/msm.926825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Orexin A (OXA) and vasopressin (AVP) exert a central hypertensive effect due to an increase in sympathetic nerve activity. To date, little is known about the interaction of these 2 neuropeptides in the central regulation of blood pressure. The present study compared the consequences of infusion into the left cerebral ventricle (ICV) of OXA on mean arterial blood pressure (MABP) in normotensive (WKY) and spontaneously hypertensive (SHR) rats, and explored whether the central pressor action of OXA in these 2 strains depends on activation of brain AVP V1a receptors (V1aR). Material/Methods Ten groups of experiments were performed on 12-week-old WKY and SHR rats implanted with ICV cannulas for infusion of OXA (3 nmol) and V1aR antagonist (V1aRANT, 500 ng), administered separately and together. Levels of V1aR and OXR in the medulla oblongata of WKY and SHR rats were compared in separate series. Results We found that: 1) OXA significantly increased MABP only in WKY rats, 2) V1aRANT prevented an increase in MABP induced by OXA in WKY rats and decreased MABP in SHR rats, 3) OXA abolished the hypotensive action of V1aRANT in SHR rats, and 4) SHR rats had significantly higher levels of OX1R and V1aR proteins and OX1R mRNA in the brain medulla. Conclusions The present study shows that OXA and AVP can interact in the brain to affect blood pressure regulation, and that this interaction differs in normotension and hypertension.
Collapse
Affiliation(s)
- Stanisław Kowalewski
- Department of Experimental and Clinical Physiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Liana Puchalska
- Department of Experimental and Clinical Physiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Szczepańska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Wsol
- Department of Experimental and Clinical Physiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
29
|
Bulleyaconitine A Inhibits Visceral Nociception and Spinal Synaptic Plasticity through Stimulation of Microglial Release of Dynorphin A. Neural Plast 2020; 2020:1484087. [PMID: 32565774 PMCID: PMC7262664 DOI: 10.1155/2020/1484087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Visceral pain is one of the most common types of pain and particularly in the abdomen is associated with gastrointestinal diseases. Bulleyaconitine A (BAA), isolated from Aconitum bulleyanum, is prescribed in China to treat chronic pain. The present study is aimed at evaluating the mechanisms underlying BAA visceral antinociception. Methods The rat model of chronic visceral hypersensitivity was set up by colonic perfusion of 2,4,6-trinitrobenzene sulfonic acid (TNBS) on postnatal day 10 with coapplication of heterotypic intermittent chronic stress (HeICS). Results The rat model of chronic visceral hypersensitivity exhibited remarkable abdominal withdrawal responses and mechanical hyperalgesia in hind paws, which were dose-dependently attenuated by single subcutaneous of administration of BAA (30 and 90 μg/kg). Pretreatment with the microglial inhibitor minocycline, dynorphin A antiserum, and κ-opioid receptor antagonist totally blocked BAA-induced visceral antinociception and mechanical antihyperalgesia. Spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn lamina II neurons were recorded by using whole-cell patch clamp. Its frequency (but not amplitude) from TNBS-treated rats was remarkably higher than that from naïve rats. BAA (1 μM) significantly reduced the frequency of sEPSCs from TNBS-treated rats but not naïve rats. BAA-inhibited spinal synaptic plasticity was blocked by minocycline, the dynorphin A antiserum, and κ-opioid receptor antagonist. Dynorphin A also inhibited spinal synaptic plasticity in a κ-opioid receptor-dependent manner. Conclusions These results suggest that BAA produces visceral antinociception by stimulating spinal microglial release of dynorphin A, which activates presynaptic κ-opioid receptors in afferent neurons and inhibits spinal synaptic plasticity, highlighting a novel interaction mode between microglia and neurons.
Collapse
|
30
|
Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res 2020; 1731:146164. [PMID: 30796894 PMCID: PMC6702109 DOI: 10.1016/j.brainres.2019.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Cocaine abuse remains a pervasive public health problem, and treatments thus far have proven ineffective for long-term abstinence maintenance. Intensive research on the neurobiology underlying drug abuse has led to the consideration of many candidate transmitter systems to target for intervention. Among these, the hypocretin/orexin (hcrt/ox) neuropeptide system holds largely untapped yet clinically viable therapeutic potential. Hcrt/ox originates from the hypothalamus and projects widely across the mammalian central nervous system to produce neuroexcitatory actions via two excitatory G-protein coupled receptor subtypes. Functionally, hcrt/ox promotes arousal/wakefulness and facilitates energy homeostasis. In the early 2000s, hcrt/ox transmission was shown to underlie mating behavior in male rats suggesting a novel role in reward-seeking. Soon thereafter, hcrt/ox neurons were shown to respond to drug-associated stimuli, and hcrt/ox transmission was found to facilitate motivated responding for intravenous cocaine. Notably, blocking hcrt/ox transmission using systemic or site-directed pharmacological antagonists markedly reduced motivated drug-taking as well as drug-seeking in tests of relapse. This review will unfold the current state of knowledge implicating hcrt/ox receptor transmission in the context of cocaine abuse and provide detailed background on animal models and underlying midbrain circuits. Specifically, attention will be paid to the mesoaccumbens, tegmental, habenular, pallidal and preoptic circuits. The review will conclude with discussion of recent preclinical studies assessing utility of suvorexant - the first and only FDA-approved hcrt/ox receptor antagonist - against cocaine-associated behaviors.
Collapse
Affiliation(s)
- Steven J Simmons
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Taylor A Gentile
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020; 168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
The neuropeptide hypocretin/orexin plays a broad and important role in physiological functions ranging from addiction, stress, and anxiety to sleep, energy metabolism, and homeostatic regulation. A number of recent reviews addressing the importance of orexin for different addictive behaviors, especially the contribution of orexin-1-receptors (Ox1Rs) in responding for intoxicants in higher-motivation individuals and situations, and orexin-2-receptor (Ox2Rs) in stress-related aspects of addictive responding. This may parallel the importance of more lateral orexin neurons in the hypothalamus for reward and more medial for stress and arousal. However, there is clearly also some crossover, which may reflect, in part, where positive and negative conditioning (reward- and relief-seeking) are both present concurrently in established addiction, and also where orexin signaling can differ in subregions of a particular brain region. Here, we attempt to examine and synthesize some of the most recent work addressing orexin functions in addiction, including a particular role for Ox1Rs for driving responding in higher-motivation individuals and under higher levels of effort. While there are some commonalities across addictive substances addressed here (alcohol, cocaine, opiates), there are also some differences, which may relate to several factors including the speed of intoxication with a given substance. Together, recent findings have shed important insight and clues into what a more unified role of Ox1Rs might entail, and critical areas for future work. In addition, these many studies support the development of Ox1R blockers for use in humans to counteract addiction and other disorders of motivation. This article is part of the special issue on Neuropeptides.
Collapse
|
32
|
Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020; 167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hypocretin/orexin neurons are distributed restrictively in the hypothalamus, a brain region known to orchestrate diverse functions including sleep, reward processing, food intake, thermogenesis, and mood. Since the hypocretins/orexins were discovered more than two decades ago, extensive studies have accumulated concrete evidence showing the pivotal role of hypocretin/orexin in diverse neural modulation. New method of viral-mediated tracing system offers the possibility to map the monosynaptic inputs and detailed anatomical connectivity of Hcrt neurons. With the development of powerful research techniques including optogenetics, fiber-photometry, cell-type/pathway specific manipulation and neuronal activity monitoring, as well as single-cell RNA sequencing, the details of how hypocretinergic system execute functional modulation of various behaviors are coming to light. In this review, we focus on the function of neural pathways from hypocretin neurons to target brain regions. Anatomical and functional inputs to hypocretin neurons are also discussed. We further briefly summarize the development of pharmaceutical compounds targeting hypocretin signaling. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Inbar K, Levi LA, Bernat N, Odesser T, Inbar D, Kupchik YM. Cocaine Dysregulates Dynorphin Modulation of Inhibitory Neurotransmission in the Ventral Pallidum in a Cell-Type-Specific Manner. J Neurosci 2020; 40:1321-1331. [PMID: 31836660 PMCID: PMC7002149 DOI: 10.1523/jneurosci.1262-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022] Open
Abstract
Cocaine-driven changes in the modulation of neurotransmission by neuromodulators are poorly understood. The ventral pallidum (VP) is a key structure in the reward system, in which GABA neurotransmission is regulated by opioid neuropeptides, including dynorphin. However, it is not known whether dynorphin acts differently on different cell types in the VP and whether its effects are altered by withdrawal from cocaine. Here, we trained wild-type, D1-Cre, A2A-Cre, or vGluT2-Cre:Ai9 male and female mice in a cocaine conditioned place preference protocol followed by 2 weeks of abstinence, and then recorded GABAergic synaptic input evoked either electrically or optogenetically onto identified VP neurons before and after applying dynorphin. We found that after cocaine CPP and abstinence dynorphin attenuated inhibitory input to VPGABA neurons through a postsynaptic mechanism. This effect was absent in saline mice. Furthermore, this effect was seen specifically on the inputs from nucleus accumbens medium spiny neurons expressing either the D1 or the D2 dopamine receptor. Unlike its effect on VPGABA neurons, dynorphin surprisingly potentiated the inhibitory input on VPvGluT2 neurons, but this effect was abolished after cocaine CPP and abstinence. Thus, dynorphin has contrasting influences on GABA input to VPGABA and VPvGluT2 neurons and these influences are affected differentially by cocaine CPP and abstinence. Collectively, our data suggest a role for dynorphin in withdrawal through its actions in the VP. As VPGABA and VPvGluT2 neurons have contrasting effects on drug-seeking behavior, our data may indicate a complex role for dynorphin in withdrawal from cocaine.SIGNIFICANCE STATEMENT The ventral pallidum consists mainly of GABAergic reward-promoting neurons, but it also encloses a subgroup of aversion-promoting glutamatergic neurons. Dynorphin, an opioid neuropeptide abundant in the ventral pallidum, shows differential modulation of GABA input to GABAergic and glutamatergic pallidal neurons and may therefore affect both the rewarding and aversive aspects of withdrawal. Indeed, abstinence after repeated exposure to cocaine alters dynorphin actions in a cell-type-specific manner; after abstinence dynorphin suppresses the inhibitory drive on the "rewarding" GABAergic neurons but ceases to modulate the inhibitory drive on the "aversive" glutamatergic neurons. This reflects a complex role for dynorphin in cocaine reward and abstinence.
Collapse
Affiliation(s)
- Kineret Inbar
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Liran A Levi
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Nimrod Bernat
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Tal Odesser
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Dorrit Inbar
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| | - Yonatan M Kupchik
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel 9112102
| |
Collapse
|
34
|
Orexin-1 Receptor Signaling in Ventral Pallidum Regulates Motivation for the Opioid Remifentanil. J Neurosci 2019; 39:9831-9840. [PMID: 31641055 DOI: 10.1523/jneurosci.0255-19.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Signaling at the orexin-1 receptor (OxR1) is important for motivated drug taking. Using a within-session behavioral economics (BE) procedure, we previously found that pharmacologic blockade of the OxR1 decreased motivation (increased demand elasticity) for the potent and short-acting opioid remifentanil and reduced low-effort remifentanil consumption. However, the mechanism through which orexin regulates remifentanil demand is currently unknown. Previous work implicated OxR1 signaling within ventral pallidum (VP) as a potential target. VP is densely innervated by orexin fibers and is known to regulate opioid reward. Accordingly, this study sought to determine the role of VP OxR1 signaling in remifentanil demand and cue-induced reinstatement of remifentanil seeking in male rats. Intra-VP microinjections of the OxR1 antagonist SB-334867 (SB) decreased motivation (increased demand elasticity; α) for remifentanil without affecting remifentanil consumption at low effort. Baseline α values predicted the degree of cue-induced remifentanil seeking, and microinjection of SB into VP attenuated this behavior without affecting extinction responding. Baseline α values also predicted SB efficacy, such that SB was most effective in attenuating reinstatement behavior in highly motivated rats. Together, these findings support a selective role for VP OxR1 signaling in motivation for the opioid remifentanil. Our findings also highlight the utility of BE in predicting relapse propensity and efficacy of treatment with OxR1 antagonists.SIGNIFICANCE STATEMENT Abuse of opioids has risen rapidly and continues to be a major health crisis. Thus, there is an urgent need to better understand the neurobiological and behavioral mechanisms underlying opioid addiction. Here, we investigate the role of orexin-1 receptor signaling (OxR1) within ventral pallidum (VP) in remifentanil demand and cue-induced reinstatement of remifentanil seeking. Using a within-session behavioral economics procedure, we show that intra-VP microinjections of the OxR1 antagonist SB-334867 decreased motivation (increased demand elasticity) without affecting remifentanil consumption at low effort. We also found that SB microinjected intra-VP attenuated cue-induced reinstatement of remifentanil seeking. Together, our results support a role for VP OxR1 signaling in opioid reward.
Collapse
|
35
|
The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24:1284-1295. [PMID: 30377299 PMCID: PMC6491268 DOI: 10.1038/s41380-018-0291-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Sleep and wakefulness control in the mammalian brain requires the coordination of various discrete interconnected neurons. According to the most conventional sleep model, wake-promoting neurons (WPNs) and sleep-promoting neurons (SPNs) compete for network dominance, creating a systematic "switch" that results in either the sleep or awake state. WPNs and SPNs are ubiquitous in the brainstem and diencephalon, areas that together contain <1% of the neurons in the human brain. Interestingly, many of these WPNs and SPNs co-express and co-release various types of the neurotransmitters that often have opposing modulatory effects on the network. Co-transmission is often beneficial to structures with limited numbers of neurons because it provides increasing computational capability and flexibility. Moreover, co-transmission allows subcortical structures to bi-directionally control postsynaptic neurons, thus helping to orchestrate several complex physiological functions such as sleep. Here, we present an in-depth review of co-transmission in hypothalamic WPNs and SPNs and discuss its functional significance in the sleep-wake network.
Collapse
|
36
|
Wiskerke J, James MH, Aston-Jones G. The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res 2019; 1731:146222. [PMID: 31002819 DOI: 10.1016/j.brainres.2019.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
There is considerable clinical interest in the neuropeptide orexin/hypocretin for its ability to regulate motivation and reward as well as arousal and wakefulness. For instance, antagonists for the orexin-1 receptor (OxR1) are thought to hold great promise for treating drug addiction and disorders associated with overeating, as these compounds repeatedly have been found to suppress seeking of various drugs of abuse as well as highly palatable foods in preclinical models. Given the hypothesized role of OxR1 signaling in cue-driven motivation, an outstanding question is whether pharmacologically blocking this receptor affects cognitive functioning. Response inhibition - the ability to cancel ongoing behavior - is one aspect of cognitive control that may be particularly relevant. Response inhibition deficits are commonly associated with a range of psychiatric disorders and neurological diseases, including substance use disorders and obesity. Moreover, OxR1 signaling recently has been implicated in waiting impulsivity, another aspect of inhibitory control. Here, we investigated the effects of the OxR1 antagonist SB-334867 on response inhibition in a rat version of the stop-signal reaction time task. Results show that acutely blocking OxR1 had minimal effects on response inhibition or attentional functioning. In contrast, this manipulation reduced motivation to perform the task and earn food rewards, consistent with other recent findings. These results add to the growing body of literature implicating OxR1 in the regulation of motivation and suggest that effects of pharmacological compounds such as SB-334867 on drug-seeking behavior are not related to effects on response inhibition.
Collapse
Affiliation(s)
- Joost Wiskerke
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA; Present address: Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Morgan H James
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA; Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | | |
Collapse
|
37
|
Zhou K, Zhu Y. The paraventricular thalamic nucleus: A key hub of neural circuits underlying drug addiction. Pharmacol Res 2019; 142:70-76. [PMID: 30772461 DOI: 10.1016/j.phrs.2019.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
Drug addiction is a chronic relapsing brain disease characterized by compulsive, out-of-control drug use and the appearance of negative somatic and emotional consequences when drug access is prevented. The limited efficacy of treatment urges researchers toward a deeper understanding of the neural mechanism of drug addiction. Brain circuits that regulate reward and motivation are considered to be the neural substrate of drug addiction. An increasing body of literature indicates that the paraventricular thalamic nucleus (PVT) could serve as a key node in the neurocircuits that control goal-directed behaviors. In this review, we summarize the anatomical and functional evidence that the PVT regulates drug-related behaviors. The PVT receives extensive inputs from the brainstem and hypothalamus, and is reciprocally connected with the limbic system. Neurons in the PVT are recruited by drug exposure as well as cues and context associated with drug taking. Pathway-specific perturbation studies have begun to decipher the precise role of PVT circuits in drug-related behaviors. We also highlight recent findings about the involvement of neural plasticity of the PVT pathways in drug addiction and provide perspectives on future studies.
Collapse
Affiliation(s)
- Kuikui Zhou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yingjie Zhu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
38
|
Farrell MR, Schoch H, Mahler SV. Modeling cocaine relapse in rodents: Behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:33-47. [PMID: 29305936 PMCID: PMC6034989 DOI: 10.1016/j.pnpbp.2018.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder, in that most addicted individuals who choose to quit taking drugs fail to maintain abstinence in the long-term. Relapse is especially likely when recovering addicts encounter risk factors like small "priming" doses of drug, stress, or drug-associated cues and locations. In rodents, these same factors reinstate cocaine seeking after a period of abstinence, and extensive preclinical work has used priming, stress, or cue reinstatement models to uncover brain circuits underlying cocaine reinstatement. Here, we review common rat models of cocaine relapse, and discuss how specific features of each model influence the neural circuits recruited during reinstated drug seeking. To illustrate this point, we highlight the surprisingly specific roles played by ventral pallidum subcircuits in cocaine seeking reinstated by either cocaine-associated cues, or cocaine itself. One goal of such studies is to identify, and eventually to reverse the specific circuit activity that underlies the inability of some humans to control their drug use. Based on preclinical findings, we posit that circuit activity in humans also differs based on the triggers that precipitate craving and relapse, and that associated neural responses could help predict the triggers most likely to elicit relapse in a given person. If so, examining circuit activity could facilitate diagnosis of subgroups of addicted people, allowing individualized treatment based on the most problematic risk factors.
Collapse
Affiliation(s)
- Mitchell R Farrell
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States
| | - Hannah Schoch
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States.
| |
Collapse
|
39
|
Schmeichel BE, Matzeu A, Koebel P, Vendruscolo LF, Sidhu H, Shahryari R, Kieffer BL, Koob GF, Martin-Fardon R, Contet C. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats. Neuropsychopharmacology 2018; 43:2373-2382. [PMID: 29703996 PMCID: PMC6180106 DOI: 10.1038/s41386-018-0054-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
The hypocretin/orexin (HCRT) neuropeptide system regulates feeding, arousal state, stress responses, and reward, especially under conditions of enhanced motivational relevance. In particular, HCRT neurotransmission facilitates drug-seeking behavior in circumstances that demand increased effort and/or motivation to take the drug. The present study used a shRNA-encoding adeno-associated viral vector to knockdown Hcrt expression throughout the dorsal hypothalamus in adult rats and determine the role of HCRT in cocaine self-administration. Chronic Hcrt silencing did not impact cocaine self-administration under short-access conditions, but robustly attenuated cocaine intake under extended access conditions, a model that mimics key features of compulsive cocaine taking. In addition, Hcrt silencing decreased motivation for both cocaine and a highly palatable food reward (i.e., sweetened condensed milk; SCM) under a progressive ratio schedule of reinforcement, but did not alter responding for SCM under a fixed ratio schedule. Importantly, Hcrt silencing did not affect food or water consumption, and had no consequence for general measures of arousal and stress reactivity. At the molecular level, chronic Hcrt knockdown reduced the number of neurons expressing dynorphin (DYN), and to a smaller extent melanin-concentrating hormone (MCH), in the dorsal hypothalamus. These original findings support the hypothesis that HCRT neurotransmission promotes operant responding for both drug and non-drug rewards, preferentially under conditions requiring a high degree of motivation. Furthermore, the current study provides compelling evidence for the involvement of the HCRT system in cocaine self-administration also under low-effort conditions in rats allowed extended access, possibly via functional interactions with DYN and MCH signaling.
Collapse
Affiliation(s)
- Brooke E Schmeichel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| | - Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Pascale Koebel
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roxana Shahryari
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brigitte L Kieffer
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Douglas Institute Research Centre, McGill University, Montréal, QC, Canada
| | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
40
|
Simmons SJ, Leyrer-Jackson JM, Oliver CF, Hicks C, Muschamp JW, Rawls SM, Olive MF. DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants. ACS Chem Neurosci 2018; 9:2379-2394. [PMID: 29714473 DOI: 10.1021/acschemneuro.8b00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cathinone is a plant alkaloid found in khat leaves of perennial shrubs grown in East Africa. Similar to cocaine, cathinone elicits psychostimulant effects which are in part attributed to its amphetamine-like structure. Around 2010, home laboratories began altering the parent structure of cathinone to synthesize derivatives with mechanisms of action, potencies, and pharmacokinetics permitting high abuse potential and toxicity. These "synthetic cathinones" include 4-methylmethcathinone (mephedrone), 3,4-methylenedioxypyrovalerone (MDPV), and the empathogenic agent 3,4-methylenedioxymethcathinone (methylone) which collectively gained international popularity following aggressive online marketing as well as availability in various retail outlets. Case reports made clear the health risks associated with these agents and, in 2012, the Drug Enforcement Agency of the United States placed a series of synthetic cathinones on Schedule I under emergency order. Mechanistically, cathinone and synthetic derivatives work by augmenting monoamine transmission through release facilitation and/or presynaptic transport inhibition. Animal studies confirm the rewarding and reinforcing properties of synthetic cathinones by utilizing self-administration, place conditioning, and intracranial self-stimulation assays and additionally show persistent neuropathological features which demonstrate a clear need to better understand this class of drugs. This Review will thus detail (i) historical context of cathinone use and the rise of "dark" synthetic derivatives, (ii) structural features and mechanisms of synthetic cathinones, (iii) behavioral effects observed clinically and in animals under controlled laboratory conditions, and (iv) neurotransmitters and circuits that may be targeted to manage synthetic cathinone abuse in humans.
Collapse
Affiliation(s)
- Steven J. Simmons
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | | | - Chicora F. Oliver
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Callum Hicks
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - John W. Muschamp
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Scott M. Rawls
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
41
|
Uribe-Cerda S, Morselli E, Perez-Leighton C. Updates on the neurobiology of food reward and their relation to the obesogenic environment. Curr Opin Endocrinol Diabetes Obes 2018; 25:292-297. [PMID: 30063551 DOI: 10.1097/med.0000000000000427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To summarize recent findings about the neurobiological control of food reward and discuss their relevance for hedonic food intake and obesity in our current obesogenic environment. RECENT FINDINGS Recent data show new roles for circuits involving neuronal subpopulations within the central amyglada (CeA) and lateral hypothalamus in the regulation of feeding and reward in rodents under free and operant conditions and also in restrain from reward consumption. Recent work also shows that the orbitofrontal cortex (OFC) codes for subjective perception of food features during reward assessment of individual foods and that activity in the nucleus accumbens (NAc) codes for anticipation for reward, which can be blocked by time-locked neurostimulation of NAc. SUMMARY New data illustrates that different aspects of hedonic intake and food reward are coded in a distributed brain network. In particular, as our obesogenic environment facilitates access to palatable food and promotes cue-induced feeding, neuronal circuits related to control of impulsivity, food valuation and duration of hedonic intake episodes might have a significant role in our ability to control food intake and development of obesity by excess intake.
Collapse
Affiliation(s)
- Sofia Uribe-Cerda
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Food Science and Nutrition Department, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Adolescent cannabinoid exposure induces irritability-like behavior and cocaine cross-sensitization without affecting the escalation of cocaine self-administration in adulthood. Sci Rep 2018; 8:13893. [PMID: 30224774 PMCID: PMC6141462 DOI: 10.1038/s41598-018-31921-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 11/26/2022] Open
Abstract
Cannabis use is typically initiated during adolescence and is a significant risk factor for the development of cocaine use in adulthood. However, no preclinical studies have examined the effects of adolescent cannabinoid exposure on cocaine dependence in adulthood using the escalation model of cocaine self-administration and the assessment of negative emotional states. In the present study, we found that exposure to the cannabinoid receptor agonist WIN55,212-2 (WIN) in adolescence produced irritability-like behavior and psychomotor cross-sensitization to cocaine in adolescence. In adulthood, rats were allowed to self-administer cocaine. The acquisition of cocaine self-administration was lower in rats with adolescent WIN exposure compared with controls. However, both WIN-exposed and control rats escalated their cocaine intake at the same rate, had similar responding under a progressive-ratio schedule of reinforcement, and had similar psychomotor responses to cocaine. Interestingly, the increase in irritability-like behavior that was previously observed in adolescence after WIN exposure persisted into adulthood. Whether the persisting increase in irritability-like behavior after WIN exposure has translational relevance remains to be studied. In summary, these results suggest that psychoactive cannabinoid exposure during adolescence is unlikely to have a major effect on the escalation of cocaine intake or the development of compulsive-like responding per se in adulthood in a rat model of cocaine self-administration. However, whether the persisting irritability-like behavior may predispose an individual to mood-related impairments in adulthood or predict such impairments warrants further investigation.
Collapse
|
43
|
Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018; 9:720. [PMID: 30210441 PMCID: PMC6121102 DOI: 10.3389/fneur.2018.00720] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023] Open
Abstract
The long-lasting vulnerability to relapse remains the main challenge for the successful treatment of drug addiction. Neural systems that are involved in processing natural rewards and drugs of abuse overlap. However, neuroplasticity that is caused by drug exposure may be responsible for maladaptive, compulsive, and addictive behavior. The orexin (Orx) system participates in regulating numerous physiological processes, including energy metabolism, arousal, and feeding, and is recruited by drugs of abuse. The Orx system is differentially recruited by drugs and natural rewards. Specifically, we found that the Orx system is more engaged by drugs than by non-drugs, such as sweetened condensed milk (SCM) or a glucose saccharin solution (GSS), in an operant model of reward seeking. Although stimuli (S+) that are conditioned to cocaine (COC), ethanol, and SCM/GSS equally elicited reinstatement, Orx receptor blockade reversed conditioned reinstatement for drugs vs. non-drugs. Moreover, the hypothalamic recruitment of Orx cells was greater in rats that were tested with the COC S+ vs. SCM S+, indicating of a preferential role for the Orx system in perseverative, compulsive-like COC seeking and not behavior that is motivated by palatable food. Accumulating evidence indicates that the paraventricular nucleus of the thalamus (PVT), which receives major Orx projections, mediates drug-seeking behavior. All Orx neurons contain dynorphin (Dyn), and Orx and Dyn are co-released. In the VTA, they play opposing roles in reward and motivation. To fully understand the physiological and behavioral roles of Orx transmission in the PVT, one important consideration is that Orx neurons that project to the PVT may co-release Orx with another peptide, such as Dyn. The PVT expresses both Orx receptors and κ opioid receptors, suggesting that Orx and Dyn act in tandem when released in the PVT, in addition to the VTA. The present review discusses recent findings that suggest the maladaptive recruitment of Orx/Dyn-PVT neurotransmission by drugs of abuse vs. a highly palatable food reward.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
44
|
Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1663-1680. [PMID: 29508004 PMCID: PMC5949267 DOI: 10.1007/s00213-018-4871-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
The hypocretin/orexin (ORX) system has been repeatedly demonstrated to regulate motivation for drugs of abuse, including alcohol. In particular, ORX seems to be critically involved in highly motivated behaviors, as is observed in high-seeking individuals in a population, in the seeking of highly palatable substances, and in models of dependence. It seems logical that this system could be considered as a potential target for treatment for addiction, particularly alcohol addiction, as ORX pharmacological manipulations significantly reduce drinking. However, the ORX system also plays a role in a wide range of other behaviors, emotions, and physiological functions and is disrupted in a number of non-dependence-associated disorders. It is therefore important to consider how the ORX system might be optimally targeted for potential treatment for alcohol use disorders either in combination with or separate from its role in other functions or diseases. This review will focus on the role of ORX in alcohol-associated behaviors and whether and how this system could be targeted to treat alcohol use disorders while avoiding impacts on other ORX-relevant functions. A brief overview of the ORX system will be followed by a discussion of some of the factors that makes it particularly intriguing as a target for alcohol addiction treatment, a consideration of some potential challenges associated with targeting this system and, finally, some future directions to optimize new treatments.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 528 Tobin Hall, 135 Hicks Way, Amherst, MA, 01003, USA.
| |
Collapse
|