1
|
Bilkei-Gorzo A, Schurmann B, Schneider M, Kraemer M, Nidadavolu P, Beins EC, Müller CE, Dvir-Ginzberg M, Zimmer A. Bidirectional Effect of Long-Term Δ 9-Tetrahydrocannabinol Treatment on mTOR Activity and Metabolome. ACS Pharmacol Transl Sci 2024; 7:2637-2649. [PMID: 39296258 PMCID: PMC11406684 DOI: 10.1021/acsptsci.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 09/21/2024]
Abstract
Brain aging is associated with cognitive decline, reduced synaptic plasticity, and altered metabolism. The activity of mechanistic target of rapamycin (mTOR) has a major impact on aging by regulating cellular metabolism. Although reduced mTOR signaling has a general antiaging effect, it can negatively affect the aging brain by reducing synaptogenesis and thus cognitive functions. Increased mTOR activity facilitates aging and is responsible for the amnestic effect of the cannabinoid receptor 1 agonist Δ9-tetrahydrocannabinol (THC) in higher doses. Long-term low-dose Δ9-THC had an antiaging effect on the brain by restoring cognitive abilities and synapse densities in old mice. Whether changes in mTOR signaling and metabolome are associated with its positive effects on the aging brain is an open question. Here, we show that Δ9-THC treatment has a tissue-dependent and dual effect on mTOR signaling and the metabolome. In the brain, Δ9-THC treatment induced a transient increase in mTOR activity and in the levels of amino acids and metabolites involved in energy production, followed by an increased synthesis of synaptic proteins. Unexpectedly, we found a similar reduction in the mTOR activity in adipose tissue and in the level of amino acids and carbohydrate metabolites in blood plasma as in animals on a low-calorie diet. Thus, long-term Δ9-THC treatment first increases the level of energy and synaptic protein production in the brain, followed by a reduction in mTOR activity and metabolic processes in the periphery. Our study suggests that a dual effect on mTOR activity and the metabolome could be the basis for an effective antiaging and pro-cognitive medication.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Britta Schurmann
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Marion Schneider
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Michael Kraemer
- Institute of Forensic Medicine, Medical Faculty, University of Bonn, Bonn 53111, Germany
| | - Prakash Nidadavolu
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Eva C Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Christa E Müller
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Mona Dvir-Ginzberg
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| |
Collapse
|
2
|
Echeverria-Villalobos M, Guevara Y, Mitchell J, Ryskamp D, Conner J, Bush M, Periel L, Uribe A, Weaver TE. Potential perioperative cardiovascular outcomes in cannabis/cannabinoid users. A call for caution. Front Cardiovasc Med 2024; 11:1343549. [PMID: 38978789 PMCID: PMC11228818 DOI: 10.3389/fcvm.2024.1343549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 07/10/2024] Open
Abstract
Background Cannabis is one of the most widely used psychoactive substances. Its components act through several pathways, producing a myriad of side effects, of which cardiovascular events are the most life-threatening. However, only a limited number of studies address cannabis's perioperative impact on patients during noncardiac surgery. Methods Studies were identified by searching the PubMed, Medline, EMBASE, and Google Scholar databases using relevant keyword combinations pertinent to the topic. Results Current evidence shows that cannabis use may cause several cardiovascular events, including abnormalities in cardiac rhythm, myocardial infarction, heart failure, and cerebrovascular events. Additionally, cannabis interacts with anticoagulants and antiplatelet agents, decreasing their efficacy. Finally, the interplay of cannabis with inhalational and intravenous anesthetic agents may lead to adverse perioperative cardiovascular outcomes. Conclusions The use of cannabis can trigger cardiovascular events that may depend on factors such as the duration of consumption, the route of administration of the drug, and the dose consumed, which places these patients at risk of drug-drug interactions with anesthetic agents. However, large prospective randomized clinical trials are needed to further elucidate gaps in the body of knowledge regarding which patient population has a greater risk of perioperative complications after cannabis consumption.
Collapse
Affiliation(s)
| | - Yosira Guevara
- Department of Anesthesiology, St Elizabeth’s Medical Center, Brighton, MA, United States
| | - Justin Mitchell
- Department of Anesthesiology & Perioperative Medicine, UCLA Medical Center, Los Angeles, CA, United States
| | - David Ryskamp
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Joshua Conner
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Margo Bush
- University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States
| | - Luis Periel
- Touro College of Osteopathic Medicine, New York, NW, United States
| | - Alberto Uribe
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan E. Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
3
|
Meza C, Stefan C, Staines WR, Feinstein A. The effects of cannabis abstinence on cognition and resting state network activity in people with multiple sclerosis: A preliminary study. Neuroimage Clin 2024; 43:103622. [PMID: 38815510 PMCID: PMC11166868 DOI: 10.1016/j.nicl.2024.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
We previously reported that people with multiple sclerosis (pwMS) who have been using cannabis frequently over many years can have significant cognitive improvements accompanied by concomitant task-specific changes in brain activation following 28 days of cannabis abstinence. We now hypothesize that the default Mode Network (DMN), known to modulate cognition, would also show an improved pattern of activation align with cognitive improvement following 28 days of drug abstinence. Thirty three cognitively impaired pwMS who were frequent cannabis users underwent a neuropsychological assessment and fMRI at baseline. Individuals were then assigned to a cannabis continuation (CC, n = 15) or withdrawal (CW, n = 18) group and the cognitive and imaging assessments were repeated after 28 days. Compliance with cannabis withdrawal was checked with regular urine monitoring. Following acquisition of resting state fMRI (rs-fMRI), data were processed using independent component analysis (ICA) to identify the DMN spatial map. Between and within group analyses were carried out using dual regression for voxel-wise comparisons of the DMN. Clusters of voxels were considered statistically significant if they survived threshold-free cluster enhancement (TFCE) correction at p < 0.05. The two groups were well matched demographically and neurologically at baseline. The dual regression analysis revealed no between group differences at baseline in the DMN. By day 28, the CW group in comparison to the CC group had increased activation in the left posterior cingulate, and right, angular gyrus (p < 0.05 for both, TFCE). A within group analysis for the CC group revealed no changes in resting state (RS) networks. Within group analysis of the CW group revealed increased activation at day 28 versus baseline in the left posterior cingulate, right angular gyrus, left hippocampus (BA 36), and the right medial prefrontal cortex (p < 0.05). The CW group showed significant improvements in multiple cognitive domains. In summary, our study revealed that abstaining from cannabis for 28 days reverses activation of DMN activity in pwMS in association with improved cognition across several domains.
Collapse
Affiliation(s)
- Cecilia Meza
- Sunnybrook Research Institute, Division of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Cristiana Stefan
- Clinical Laboratory and Diagnostic Services, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - W Richard Staines
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Anthony Feinstein
- Sunnybrook Research Institute, Division of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
5
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
6
|
Reece AS, Hulse GK. Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3360. [PMID: 36834053 PMCID: PMC9967951 DOI: 10.3390/ijerph20043360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
As global interest in the therapeutic potential of cannabis and its' derivatives for the management of selected diseases increases, it is increasingly imperative that the toxic profile of cannabinoids be thoroughly understood in order to correctly assess the balance between the therapeutic risks and benefits. Modern studies across a number of jurisdictions, including Canada, Australia, the US and Europe have confirmed that some of the most worrying and severe historical reports of both congenital anomalies and cancer induction following cannabis exposure actually underestimate the multisystem thousand megabase-scale transgenerational genetic damage. These findings from teratogenic and carcinogenic literature are supported by recent data showing the accelerated patterns of chronic disease and the advanced DNA methylation epigenomic clock age in cannabis exposed patients. Together, the increased multisystem carcinogenesis, teratogenesis and accelerated aging point strongly to cannabinoid-related genotoxicity being much more clinically significant than it is widely supposed and, thus, of very considerable public health and multigenerational impact. Recently reported longitudinal epigenome-wide association studies elegantly explain many of these observed effects with considerable methodological sophistication, including multiple pathways for the inhibition of the normal chromosomal segregation and DNA repair, the inhibition of the basic epigenetic machinery for DNA methylation and the demethylation and telomerase acceleration of the epigenomic promoter hypermethylation characterizing aging. For cancer, 810 hits were also noted. The types of malignancy which were observed have all been documented epidemiologically. Detailed epigenomic explications of the brain, heart, face, uronephrological, gastrointestinal and limb development were provided, which amply explained the observed teratological patterns, including the inhibition of the key morphogenic gradients. Hence, these major epigenomic insights constituted a powerful new series of arguments which advanced both our understanding of the downstream sequalae of multisystem multigenerational cannabinoid genotoxicity and also, since mechanisms are key to the causal argument, inveighed strongly in favor of the causal nature of the relationship. In this introductory conceptual overview, we present the various aspects of this novel synthetic paradigmatic framework. Such concepts suggest and, indeed, indicate numerous fields for further investigation and basic science research to advance the exploration of many important issues in biology, clinical medicine and population health. Given this, it is imperative we correctly appraise the risk-benefit ratio for each potential cannabis application, considering the potency, severity of disease, stage of human development and duration of use.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
7
|
Reece AS, Hulse GK. Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16721. [PMID: 36554603 PMCID: PMC9778714 DOI: 10.3390/ijerph192416721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Twelve separate streams of empirical data make a strong case for cannabis-induced accelerated aging including hormonal, mitochondriopathic, cardiovascular, hepatotoxic, immunological, genotoxic, epigenotoxic, disruption of chromosomal physiology, congenital anomalies, cancers including inheritable tumorigenesis, telomerase inhibition and elevated mortality. METHODS Results from a recently published longitudinal epigenomic screen were analyzed with regard to the results of recent large epidemiological studies of the causal impacts of cannabis. We also integrate theoretical syntheses with prior studies into these combined epigenomic and epidemiological results. RESULTS Cannabis dependence not only recapitulates many of the key features of aging, but is characterized by both age-defining and age-generating illnesses including immunomodulation, hepatic inflammation, many psychiatric syndromes with a neuroinflammatory basis, genotoxicity and epigenotoxicity. DNA breaks, chromosomal breakage-fusion-bridge morphologies and likely cycles, and altered intergenerational DNA methylation and disruption of both the histone and tubulin codes in the context of increased clinical congenital anomalies, cancers and heritable tumors imply widespread disruption of the genome and epigenome. Modern epigenomic clocks indicate that, in cannabis-dependent patients, cannabis advances cellular DNA methylation age by 25-30% at age 30 years. Data have implications not only for somatic but also stem cell and germ line tissues including post-fertilization zygotes. This effect is likely increases with the square of chronological age. CONCLUSION Recent epigenomic studies of cannabis exposure provide many explanations for the broad spectrum of cannabis-related teratogenicity and carcinogenicity and appear to account for many epidemiologically observed findings. Further research is indicated on the role of cannabinoids in the aging process both developmentally and longitudinally, from stem cell to germ cell to blastocystoids to embryoid bodies and beyond.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
8
|
Cong Z, Fu Y, Chen N, Zhang L, Yao C, Wang Y, Yao Z, Hu B. Individuals with cannabis use are associated with widespread morphological alterations in the subregions of the amygdala, hippocampus, and pallidum. Drug Alcohol Depend 2022; 239:109595. [PMID: 35961268 DOI: 10.1016/j.drugalcdep.2022.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/02/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cannabis is the most frequently used illicit drug worldwide. Although multiple structural MRI studies of individuals with cannabis use (CB) have been undertaken, the reports of the volume alterations in the amygdala, hippocampus, and pallidum are not consistent. This study aims to detect subregion-level morphological alterations, analyze the correlation areas with cannabis usage characteristics, and gain new insights into the neuro mechanisms of CB. METHODS By leveraging the novel surface-based subcortical morphometry method, 20 CB and 22 age- and sex-matched healthy controls (HC) were included to explore their volumetric and morphological differences in the three subcortical structures. Afterward, the correlation analysis between surface morphological eigenvalues and cannabis usage characteristics was performed. RESULTS Compared with volumetric measures, the surface-based subcortical morphometry method detected more significant global morphological deformations in the left amygdala, right hippocampus, and right pallidum (overall-p < 0.05, corrected). More obvious morphological alterations (atrophy or expansion) were observed in specific subregions (vertex-based p-value<0.05, uncorrected) of the three subcortical structures. Both positive and negative subregional correlation areas were reported by the correlation analysis. CONCLUSIONS The current study illuminated new pathophysiologic mechanisms in the amygdala, hippocampus, and pallidum at the subregion level, which may inform the subsequent smaller-scale CB research.
Collapse
Affiliation(s)
- Zhaoyang Cong
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chaofan Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
9
|
A Meta-Analysis of fMRI Studies of Youth Cannabis Use: Alterations in Executive Control, Social Cognition/Emotion Processing, and Reward Processing in Cannabis Using Youth. Brain Sci 2022; 12:brainsci12101281. [PMID: 36291215 PMCID: PMC9599849 DOI: 10.3390/brainsci12101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Adolescent cannabis use (CU) is associated with adverse health outcomes and may be increasing in response to changing cannabis laws. Recent imaging studies have identified differences in brain activity between adult CU and controls that are more prominent in early onset users. Whether these differences are present in adolescent CU and relate to age/developmental stage, sex, or cannabis exposure is unknown. Methods: A systematic review and subsequent effect-size seed-based d mapping (SDM) meta-analysis were conducted to examine differences in blood-oxygen-level-dependent (BOLD) response during fMRI studies between CU and non-using typically developing (TD) youth. Supplemental analyses investigated differences in BOLD signal in CU and TD youth as a function of sex, psychiatric comorbidity, and the dose and severity of cannabis exposure. Results: From 1371 citations, 45 fMRI studies were identified for inclusion in the SDM meta-analysis. These studies compared BOLD response contrasts in 1216 CU and 1486 non-using TD participants. In primary meta-analyses stratified by cognitive paradigms, CU (compared to TD) youth showed greater activation in the rostral medial prefrontal cortex (rmPFC) and decreased activation in the dorsal mPFC (dmPFC) and dorsal anterior cingulate cortex (dACC) during executive control and social cognition/emotion processing, respectively. In meta-regression analyses and subgroup meta-analyses, sex, cannabis use disorder (CUD) severity, and psychiatric comorbidity were correlated with brain activation differences between CU and TD youth in mPFC and insular cortical regions. Activation differences in the caudate, thalamus, insula, dmPFC/dACC, and precentral and postcentral gyri varied as a function of the length of abstinence. Conclusions: Using an SDM meta-analytic approach, this report identified differences in neuronal response between CU and TD youth during executive control, emotion processing, and reward processing in cortical and subcortical brain regions that varied as a function of sex, CUD severity, psychiatric comorbidity, and length of abstinence. Whether aberrant brain function in CU youth is attributable to common predispositional factors, cannabis-induced neuroadaptive changes, or both warrants further investigation.
Collapse
|
10
|
Xu H, Li D, Yin B. Aberrant hippocampal shape development in young adults with heavy cannabis use: Evidence from a longitudinal study. J Psychiatr Res 2022; 152:343-351. [PMID: 35785577 DOI: 10.1016/j.jpsychires.2022.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Cannabis is one of the most commonly used illicit drugs globally. Mounting evidence indicates that cannabis use, particularly consumption during young adulthood, is related to adverse mental and behavioral outcomes and an increased risk of the onset and relapse of psychosis. However, the neuromechanism underpinnings of heavy cannabis use (HCU) in young adults remain largely unknown, and no study has yet investigated the development of hippocampal shape in young adults with HCU. Twenty young adults with HCU and 22 matched non-cannabis-use healthy controls (HCs) were enrolled. Neuroimaging scanning and clinical assessments for all participants were performed at baseline (BL) and 3-year follow-up (FU). The vertex-wise shape analysis was conducted to investigate aberrant hippocampal shape development in young adults with HCU. Aberrant shape development pattern of the hippocampus was observed in young adults with HCU. There was no significant difference in hippocampal shape between the groups at BL, but young adults with HCU at FU exhibited significant shape atrophy of the right dorsal anterior hippocampus related to HCs. In addition, there was a significantly lower growth rate of the right hippocampal shape. Furthermore, there were significant associations of heavy cannabis use, as indicated by the age at onset first and frequent cannabis use, with the growth rate of hippocampal shape in young adults with HCU. The aberrant hippocampal shape development may reflect the effect of heavy cannabis use on young adults and it may be a potential target for heavy cannabis use treatment for young adults.
Collapse
Affiliation(s)
- Hui Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Peter Boris Centre for Addictions Research, McMaster University/St. Joseph's Healthcare Hamilton, 100 West 5th Street, Hamilton, ON L8N 3K7, Canada.
| | - Dandong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
11
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Sen S, An H, Sollman M, Oakes J, Eron J, Robertson K, Powers W. Reduction in cerebral oxygen metabolism in subcortical regions may be a biomarker of cognitive decline in people living with human immunodeficiency virus. Eur J Neurol 2022; 29:1062-1074. [PMID: 34821434 DOI: 10.1111/ene.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Regional cerebral blood flow (rCBF) and oxygen metabolism (rCMRO2 ) in whole brain, white matter, gray matter and lenticular nuclei were studied in people living with human immunodeficiency virus (PLHIV) as well as HIV-associated neurocognitive disorder (HAND). METHODS Treatment-naïve PLHIV underwent neurocognitive assessment and magnetic resonance (MR) measurement of rCBF and rCMRO2 with repeat after 12 months of antiretroviral therapy (ART). Age- and sex-matched controls underwent single MR measurements. Regional CBF and rCMRO2 were compared amongst symptomatic, asymptomatic, normal HAND and controls using analysis of variance. Longitudinal analysis of HAND worsening (≥1 category) was assessed after 12 months of ART and correlated with rCBF and rCMRO2 measured by MR imaging using the paired-sample t test. RESULTS Thirty PLHIV completed baseline and 12-month assessments (29 with rCMRO2 measurement). At baseline HAND assessment, 13% had no cognitive impairment, 27% had asymptomatic neurocognitive impairment, 60% had mild neurocognitive disorder and none had HIV-associated dementia. At 12 months, 13% had no cognitive impairment, 20% had asymptomatic neurocognitive impairment, 50% had mild neurocognitive disorder and 17% had HIV-associated dementia. In those without HAND worsening (N = 21) rCMRO2 remained stable and in those with HAND worsening (N = 8) rCMRO2 measurement declined from baseline to 12 months in white matter (2.05 ± 0.40 to 1.73 ± 0.51, p = 0.03) and lenticular nuclei (4.32 ± 0.39 to 4.00 ± 0.51, p = 0.05). CONCLUSIONS In recently diagnosed PLHIV, no association was found between rCBF or rCMRO2 and cognitive impairment at baseline. There was a reduction in rCMRO2 in those with worsening of cognitive function at 12 months on ART. Reduction in rCMRO2 may be a biomarker of cognitive decline in PLHIV.
Collapse
Affiliation(s)
- Souvik Sen
- Prisma Health/University of South Carolina, Columbia, South Carolina, USA
| | - Hongyu An
- Washington University, Saint Louis, Missouri, USA
| | - Myriam Sollman
- Prisma Health/University of South Carolina, Columbia, South Carolina, USA
| | - Jonathan Oakes
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joseph Eron
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kevin Robertson
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - William Powers
- University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Francis AM, Bissonnette JN, MacNeil SE, Crocker CE, Tibbo PG, Fisher DJ. Interaction of sex and cannabis in adult in vivo brain imaging studies: A systematic review. Brain Neurosci Adv 2022; 6:23982128211073431. [PMID: 35097219 PMCID: PMC8793398 DOI: 10.1177/23982128211073431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis has been shown to cause structural and functional neurocognitive changes in heavy users. Cannabis use initiation aligns with brain development trajectories; therefore, it is imperative that the potential neurological implications of cannabis use are understood. Males and females reach neurodevelopmental milestones at different rates making it necessary to consider biological sex in all cannabis and brain-based research. Through use of a systamatic review in accordance with PRISMA guidelines, we aimed to understand the interaction between biological sex and cannabis use on brain-based markers. In total, 18 articles containing a sex-based analysis of cannabis users were identified. While the majority of studies (n = 11) reported no sex by cannabis use interactions on brain-based markers, those that reported findings (n = 8) suggest females may be more susceptible to cannabis' neurotoxic effects. Unfortunately, a large portion of the literature was excluded due to no sex-based analysis. In addition, studies that reported no sex differences often contained a reduced number of females which may result in some studies being underpowered for sex-based analyses, making it difficult to draw firm conclusions. Suggestions to improve cannabis and sex-based reseach are proposed.
Collapse
Affiliation(s)
- Ashley M. Francis
- Department of Psychology, Saint Mary’s University, Halifax, NS, Canada
| | - Jenna N. Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | - Sarah E. MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | - Candice E. Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Derek J. Fisher
- Department of Psychology, Saint Mary’s University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| |
Collapse
|
14
|
Hergert DC, Robertson-Benta C, Sicard V, Schwotzer D, Hutchison K, Covey DP, Quinn DK, Sadek JR, McDonald J, Mayer AR. Use of Medical Cannabis to Treat Traumatic Brain Injury. J Neurotrauma 2021; 38:1904-1917. [PMID: 33256496 DOI: 10.1089/neu.2020.7148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is not a single pharmacological agent with demonstrated therapeutic efficacy for traumatic brain injury (TBI). With recent legalization efforts and the growing popularity of medical cannabis, patients with TBI will inevitably consider medical cannabis as a treatment option. Pre-clinical TBI research suggests that cannabinoids have neuroprotective and psychotherapeutic properties. In contrast, recreational cannabis use has consistently shown to have detrimental effects. Our review identified a paucity of high-quality studies examining the beneficial and adverse effects of medical cannabis on TBI, with only a single phase III randomized control trial. However, observational studies demonstrate that TBI patients are using medical and recreational cannabis to treat their symptoms, highlighting inconsistencies between public policy, perception of potential efficacy, and the dearth of empirical evidence. We conclude that randomized controlled trials and prospective studies with appropriate control groups are necessary to fully understand the efficacy and potential adverse effects of medical cannabis for TBI.
Collapse
Affiliation(s)
- Danielle C Hergert
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Cidney Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Veronik Sicard
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Daniela Schwotzer
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Kent Hutchison
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Dan P Covey
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Davin K Quinn
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joseph R Sadek
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Jacob McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA.,Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Psychology Department, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
15
|
Reece AS, Hulse GK. Co-occurrence across time and space of drug- and cannabinoid- exposure and adverse mental health outcomes in the National Survey of Drug Use and Health: combined geotemporospatial and causal inference analysis. BMC Public Health 2020; 20:1655. [PMID: 33148213 PMCID: PMC7640473 DOI: 10.1186/s12889-020-09748-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Whilst many studies have linked increased drug and cannabis exposure to adverse mental health (MH) outcomes their effects on whole populations and geotemporospatial relationships are not well understood. METHODS Ecological cohort study of National Survey of Drug Use and Health (NSDUH) geographically-linked substate-shapefiles 2010-2012 and 2014-2016 supplemented by five-year US American Community Survey. Drugs: cigarettes, alcohol abuse, last-month cannabis use and last-year cocaine use. MH: any mental illness, major depressive illness, serious mental illness and suicidal thinking. DATA ANALYSIS two-stage, geotemporospatial, robust generalized linear regression and causal inference methods in R. RESULTS 410,138 NSDUH respondents. Average response rate 76.7%. When drug and sociodemographic variables were combined in geospatial models significant terms including tobacco, alcohol, cannabis exposure and various ethnicities remained in final models for all four major mental health outcomes. Interactive terms including cannabis were related to any mental illness (β-estimate = 1.97 (95%C.I. 1.56-2.37), P < 2.2 × 10- 16), major depressive episode (β-estimate = 2.03 (1.54-2.52), P = 3.6 × 10- 16), serious mental illness (SMI, β-estimate = 2.04 (1.48-2.60), P = 1.0 × 10- 12), suicidal ideation (β-estimate = 1.99 (1.52-2.47), P < 2.2 × 10- 16) and in each case cannabis alone was significantly associated (from β-estimate = - 3.43 (- 4.46 - -2.42), P = 3.4 × 10- 11) with adverse MH outcomes on complex interactive regression surfaces. Geospatial modelling showed a monotonic upward trajectory of SMI which doubled (3.62 to 7.06%) as cannabis use increased. Extrapolated to whole populations cannabis decriminalization (4.26%, (4.18, 4.34%)), Prevalence Ratio (PR) = 1.035(1.034-1.036), attributable fraction in the exposed (AFE) = 3.28%(3.18-3.37%), P < 10- 300) and legalization (4.75% (4.65, 4.84%), PR = 1.155 (1.153-1.158), AFE = 12.91% (12.72-13.10%), P < 10- 300) were associated with increased SMI vs. illegal status (4.26, (4.18-4.33%)). CONCLUSIONS Data show all four indices of mental ill-health track cannabis exposure across space and time and are robust to multivariable adjustment for ethnicity, socioeconomics and other drug use. MH deteriorated with cannabis legalization. Cannabis use-MH data are consistent with causal relationships in the forward direction and include dose-response and temporal-sequential relationships. Together with similar international reports and numerous mechanistic studies preventative action to reduce cannabis use is indicated.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Department of Psychiatry, University of Western Australia, Crawley, Western Australia, Australia. .,Department of Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Gary Kenneth Hulse
- Department of Psychiatry, University of Western Australia, Crawley, Western Australia, Australia.,Department of Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
16
|
Sami M, Cole JH, Kempton MJ, Annibale L, Das D, Kelbrick M, Eranti S, Collier T, Onyejiaka C, O'Neill A, Lythgoe DJ, McGuire P, Williams SCR, Bhattacharyya S. Cannabis use in patients with early psychosis is associated with alterations in putamen and thalamic shape. Hum Brain Mapp 2020; 41:4386-4396. [PMID: 32687254 PMCID: PMC7502838 DOI: 10.1002/hbm.25131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
Around half of patients with early psychosis have a history of cannabis use. We aimed to determine if there are neurobiological differences in these the subgroups of persons with psychosis with and without a history of cannabis use. We expected to see regional deflations in hippocampus as a neurotoxic effect and regional inflations in striatal regions implicated in addictive processes. Volumetric, T1w MRIs were acquired from people with a diagnosis psychosis with (PwP + C = 28) or without (PwP - C = 26) a history of cannabis use; and Controls with (C + C = 16) or without (C - C = 22) cannabis use. We undertook vertex-based shape analysis of the brainstem, amygdala, hippocampus, globus pallidus, nucleus accumbens, caudate, putamen, thalamus using FSL FIRST. Clusters were defined through Threshold Free Cluster Enhancement and Family Wise Error was set at p < .05. We adjusted analyses for age, sex, tobacco and alcohol use. The putamen (bilaterally) and the right thalamus showed regional enlargement in PwP + C versus PwP - C. There were no areas of regional deflation. There were no significant differences between C + C and C - C. Cannabis use in participants with psychosis is associated with morphological alterations in subcortical structures. Putamen and thalamic enlargement may be related to compulsivity in patients with a history of cannabis use.
Collapse
Affiliation(s)
- Musa Sami
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - James H. Cole
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Matthew J. Kempton
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Luciano Annibale
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Debasis Das
- Leicestershire Partnership NHS TrustLondonUK
| | | | | | - Tracy Collier
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | | | - Aisling O'Neill
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - David J. Lythgoe
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Philip McGuire
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Steve C. R. Williams
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Sagnik Bhattacharyya
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| |
Collapse
|
17
|
Associations between cannabis use and retinal vessel diameter in young adults. Schizophr Res 2020; 219:62-68. [PMID: 30837202 DOI: 10.1016/j.schres.2019.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Cannabis appears to have vascular effects that may have implications for cerebrovascular function, but no studies have directly visualized the microvasculature in living cannabis users. The current study used retinal imaging, a tool taken from ophthalmology, to visualize the small retinal microvessels in cannabis users. We compared retinal arteriolar (small arteries) and venular (small veins) diameters in 55 frequent cannabis users and 51 comparison individuals with a mean age of 19.25 years (SD = 2.43). Results indicated that mean arteriolar diameter was statistically significantly wider for cannabis users (M = 157.98, SE = 1.42) than for comparison individuals (M = 153.56, SE = 1.46; F(1,103) = 4.67, p = .033), even after controlling for a variety of covariates and after excluding from analyses cannabis users who had used cannabis in the past 24 h. There was no statistically significant difference in retinal venular diameter between cannabis users and comparison individuals. Findings suggest that frequent cannabis use is associated with wider retinal arterioles, which might represent a residual vasodilatory effect of recent cannabis use or impaired autoregulation resulting from chronic cannabis use. Retinal imaging is a non-invasive, cost-effective tool for visualizing the microvasculature in living individuals and can be combined, in future research, with neuroimaging and other measures of retinal vascular function to better understand the acute and longer-term effects of cannabis use on the microvasculature.
Collapse
|
18
|
Sex-related differences in subjective, but not neural, cue-elicited craving response in heavy cannabis users. Drug Alcohol Depend 2020; 209:107931. [PMID: 32113057 PMCID: PMC8173440 DOI: 10.1016/j.drugalcdep.2020.107931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/27/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Studies indicate that female cannabis users progress through the milestones of cannabis use disorder (CUD) more quickly than male users, likely due to greater subjective craving response in women relative to men. While studies have reported sex-related differences in subjective craving, differences in neural response and the relative contributions of neural and behavioral response remain unclear. METHODS We examined sex-related differences in neural and behavioral response to cannabis cues and cannabis use measures in 112 heavy cannabis users (54 females). We used principal component analysis to determine the relative contributions of neural and behavioral response and cannabis use measures. RESULTS We found that principal component (PC) 1, which accounts for the most variance in the dataset, was correlated with neural response to cannabis cues with no differences between male and female users (p = 0.21). PC2, which accounts for the second-most variance, was correlated with subjective craving such that female users exhibited greater subjective craving relative to male users (p = 0.003). We also found that CUD symptoms correlated with both PC1 and PC2, corroborating the relationship between craving and CUD severity. CONCLUSIONS These results indicate that neural activity primarily underlies response to cannabis cues and that a complex relationship characterizes a convergent neural response and a divergent subjective craving response that differs between the sexes. Accounting for these differences will increase efficacy of treatments through personalized approaches.
Collapse
|
19
|
Desai R, Singh S, Patel K, Goyal H, Shah M, Mansuri Z, Patel S, Mahuwala ZK, Goldstein LB, Qureshi AI. Stroke in young cannabis users (18-49 years): National trends in hospitalizations and outcomes. Int J Stroke 2019; 15:535-539. [PMID: 31870242 DOI: 10.1177/1747493019895651] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent legalization of therapeutic and recreational cannabis use makes it imperative to have an insight into odds and trends in young-onset stroke-related hospitalizations among cannabis users (18-49 years). METHODS The National Inpatient Sample dataset (2007-2014) was utilized to assess national trends, odds of young-onset stroke-related hospitalizations, and outcomes among cannabis users vs. nonusers using provided discharge weights, strata, and cluster design. The rates are described per 100,000 hospitalizations among cannabis users and non-users. RESULTS A total of 3,307,310 hospitalizations were identified among young adults with current or previous cannabis use. Of these, 34,857 (1.1%) were related to young-onset stroke. A relative increase of 13.92% (553 in 2007 to 630 in 2014; ptrend < 0.001) in young-onset stroke admissions was reported among cannabis users. The odds of any stroke (OR 1.16, 95% CI 1.14-1.19, p < 0.001) and acute ischemic stroke (OR 1.41, 95% CI 1.31-1.51, p < 0.001) hospitalizations were considerably higher among cannabis users as compared to nonusers. In-hospital mortality rates were increasing (3.7% to 4.3%) among cannabis users whereas decreasing (7.7% to 5.9%) in nonusers from 2007 to 2014 (ptrend < 0.001). The mean length of stay and the hospitalization charges showed increasing trends in cannabis-related young-onset stroke admissions. There was an increasing trend in young-onset stroke admissions among male cannabis users (578 to 701; ptrend < 0.001) but not among females (516 to 457; ptrend = 0.14). The maximum rise in the young-onset stroke-related admissions was seen in African Americans (743 to 996; ptrend < 0.001). CONCLUSIONS We identified rising trends and higher risk (16% higher of overall young-onset stroke, 41% higher of acute ischemic stroke) of stroke-related hospitalizations and worse outcomes among cannabis users aged 18-49 years from 2007 to 2014.
Collapse
Affiliation(s)
- Rupak Desai
- Division of Cardiology, Atlanta VA Medical Center, Decatur, GA, USA
| | - Sandeep Singh
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Krupa Patel
- Department of Medicine, Avalon University School of Medicine, Willemstad, Curaçao
| | - Hemant Goyal
- Department of Internal Medicine, The Wright Center of Graduate Medical Education, Scranton, PA, USA
| | - Manan Shah
- Department of Neurology, Augusta University, Augusta, GA, USA
| | - Zeeshan Mansuri
- Department of Psychiatry, Texas Tech University Health Sciences Center at Permian Basin, Midland, TX, USA
| | - Smit Patel
- Department of Neurology, University of Connecticut, Hartford, CT, USA
| | | | | | | |
Collapse
|
20
|
Jacobus J, Courtney KE, Hodgdon EA, Baca R. Cannabis and the developing brain: What does the evidence say? Birth Defects Res 2019; 111:1302-1307. [PMID: 31385460 DOI: 10.1002/bdr2.1572] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Cannabis use during adolescence has been linked to deleterious effects on brain integrity. This article summarizes findings from two prospective investigations (3 and 6 years, on average) on adolescent cannabis use from our laboratory that utilize structural neuroimaging and neurocognitive assessment approaches. Across most studies, findings suggest recency, frequency, and age of onset of cannabis use are likely key variables in predicting poorer neural health outcomes. There is some evidence that preexisting differences in brain architecture may also contribute to vulnerability and outcome differences. Ongoing large-scale prospective studies of youth will be able to disentangle how both cannabis use as well as pre and postexposure differences play a role in divergent outcomes among youth who use cannabis.
Collapse
Affiliation(s)
- Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, California
| | - Kelly E Courtney
- Department of Psychiatry, University of California, San Diego, California
| | | | - Rachel Baca
- Department of Psychiatry, University of California, San Diego, California
| |
Collapse
|
21
|
Zaytseva Y, Horáček J, Hlinka J, Fajnerová I, Androvičová R, Tintěra J, Salvi V, Balíková M, Hložek T, Španiel F, Páleníček T. Cannabis-induced altered states of consciousness are associated with specific dynamic brain connectivity states. J Psychopharmacol 2019; 33:811-821. [PMID: 31154891 DOI: 10.1177/0269881119849814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cannabis, and specifically one of its active compounds delta-9-tetrahydrocannabinol in recreational doses, has a variety of effects on cognitive processes. Most studies employ resting state functional magnetic resonance imaging techniques to assess the stationary effects of cannabis and to-date one report addressed the impact of delta-9-tetrahydrocannabinol on the dynamics of whole-brain functional connectivity. METHODS Using a repeated-measures, within-subjects design, 19 healthy occasional cannabis users (smoking cannabis ⩽2 per week) underwent resting state functional magnetic resonance imaging scans. Each subject underwent two scans: in the intoxicated condition, shortly after smoking a cannabis cigarette, and in the non-intoxicated condition, with the subject being free from cannabinoids for at least one week before. All sessions were randomized and performed in a four-week interval. Data were analysed employing a standard independent component analysis approach with subsequent tracking of the functional connectivity dynamics, which allowed six connectivity clusters (states) to be individuated. RESULTS Using standard independent component analysis in resting state functional connectivity, a group effect was found in the precuneus connectivity. With a dynamic independent component analysis approach, we identified one transient connectivity state, characterized by high connectivity within and between auditory and somato-motor cortices and anti-correlation with subcortical structures and the cerebellum that was only found during the intoxicated condition. Behavioural measures of the subjective experiences of changed perceptions and tetrahydrocannabinol plasma levels during intoxication were associated with this state. CONCLUSIONS With the help of the dynamic connectivity approach we could elucidate neural correlates of the transitory perceptual changes induced by delta-9-tetrahydrocannabinol in cannabis users, and possibly identify a biomarker of cannabis intoxication.
Collapse
Affiliation(s)
- Yuliya Zaytseva
- 1 National Institute of Mental Health, Klecany, Czech Republic.,3 Human Science Centre, Ludwig-Maximilian University, Munich, Germany
| | - Jiří Horáček
- 1 National Institute of Mental Health, Klecany, Czech Republic.,2 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jaroslav Hlinka
- 1 National Institute of Mental Health, Klecany, Czech Republic.,4 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
| | - Iveta Fajnerová
- 1 National Institute of Mental Health, Klecany, Czech Republic.,2 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Renata Androvičová
- 1 National Institute of Mental Health, Klecany, Czech Republic.,2 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Virginio Salvi
- 5 Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Marie Balíková
- 6 Institute of Forensic Medicine and Toxicology, Charles University in Prague, Czech Republic
| | - Tomáš Hložek
- 6 Institute of Forensic Medicine and Toxicology, Charles University in Prague, Czech Republic
| | - Filip Španiel
- 1 National Institute of Mental Health, Klecany, Czech Republic.,2 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Tomáš Páleníček
- 1 National Institute of Mental Health, Klecany, Czech Republic.,2 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
22
|
Drazanova E, Ruda-Kucerova J, Kratka L, Stark T, Kuchar M, Maryska M, Drago F, Starcuk Z, Micale V. Different effects of prenatal MAM vs. perinatal THC exposure on regional cerebral blood perfusion detected by Arterial Spin Labelling MRI in rats. Sci Rep 2019; 9:6062. [PMID: 30988364 PMCID: PMC6465353 DOI: 10.1038/s41598-019-42532-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/02/2019] [Indexed: 01/05/2023] Open
Abstract
Clinical studies consistently report structural impairments (i.e.: ventricular enlargement, decreased volume of anterior cingulate cortex or hippocampus) and functional abnormalities including changes in regional cerebral blood flow in individuals suffering from schizophrenia, which can be evaluated by magnetic resonance imaging (MRI) techniques. The aim of this study was to assess cerebral blood perfusion in several schizophrenia-related brain regions using Arterial Spin Labelling MRI (ASL MRI, 9.4 T Bruker BioSpec 94/30USR scanner) in rats. In this study, prenatal exposure to methylazoxymethanol acetate (MAM, 22 mg/kg) at gestational day (GD) 17 and the perinatal treatment with Δ-9-tetrahydrocannabinol (THC, 5 mg/kg) from GD15 to postnatal day 9 elicited behavioral deficits consistent with schizophrenia-like phenotype, which is in agreement with the neurodevelopmental hypothesis of schizophrenia. In MAM exposed rats a significant enlargement of lateral ventricles and perfusion changes (i.e.: increased blood perfusion in the circle of Willis and sensorimotor cortex and decreased perfusion in hippocampus) were detected. On the other hand, the THC perinatally exposed rats did not show differences in the cerebral blood perfusion in any region of interest. These results suggest that although both pre/perinatal insults showed some of the schizophrenia-like deficits, these are not strictly related to distinct hemodynamic features.
Collapse
Affiliation(s)
- Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, University of Technology, Brno, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Michal Maryska
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, Catania, Italy
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, Catania, Italy
- National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
23
|
Zimmermann K, Kendrick KM, Scheele D, Dau W, Banger M, Maier W, Weber B, Ma Y, Hurlemann R, Becker B. Altered striatal reward processing in abstinent dependent cannabis users: Social context matters. Eur Neuropsychopharmacol 2019; 29:356-364. [PMID: 30658938 DOI: 10.1016/j.euroneuro.2019.01.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/18/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
Public perception of cannabis as relatively harmless, alongside claimed medical benefits, have led to moves towards its legalization. Yet, long-term consequences of cannabis dependence, and whether they differ qualitatively from other drugs, are still poorly understood. A key feature of addictive drugs is that chronic use leads to adaptations in striatal reward processing, blunting responsivity to the substance itself and natural (non-drug) rewards. Against this background, the present study investigated whether cannabis dependence is associated with lasting alterations in behavioral and neural responses to social reward in 23 abstinent cannabis-dependent men and 24 matched non-using controls. In an interpersonal pleasant touch fMRI paradigm, participants were led to believe they were in physical closeness of or touched (CLOSE, TOUCH) by either a male or female experimenter (MALE, FEMALE), allowing contextual modulation of the perceived pleasantness and associated neural responses. Upon female compared to male touch, dependent cannabis users displayed a significantly attenuated increase of pleasantness experience compared to healthy controls. Controls responded to female as compared to male interaction with increased striatal activation whereas cannabis users displayed the opposite activation pattern, with stronger alterations being associated with a higher lifetime exposure to cannabis. Neural processing of pleasant touch in dependent cannabis users was found to be intact. These findings demonstrate that cannabis dependence is linked to blunted striatal processing of non-drug rewards and suggest that these alterations may contribute to social processing deficits.
Collapse
Affiliation(s)
- Kaeli Zimmermann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Keith M Kendrick
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, Clinical Hospital of the Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave 2006, 611731 Chengdu, China
| | - Dirk Scheele
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Wolfgang Dau
- Department of Addiction and Psychotherapy, LVR-Clinic Bonn, 53111 Bonn, Germany
| | - Markus Banger
- Department of Addiction and Psychotherapy, LVR-Clinic Bonn, 53111 Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Bernd Weber
- Department of Epileptology, Center for Economics and Neuroscience, University of Bonn, Germany; Department of NeuroCognition, Life & Brain Center, 53105 Bonn, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute of Brain Research, Beijing Normal University, 100875 Beijing, China
| | - René Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, Clinical Hospital of the Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Xiyuan Ave 2006, 611731 Chengdu, China.
| |
Collapse
|
24
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
25
|
Wei Z, Xu J, Liu P, Chen L, Li W, van Zijl P, Lu H. Quantitative assessment of cerebral venous blood T 2 in mouse at 11.7T: Implementation, optimization, and age effect. Magn Reson Med 2017; 80:521-528. [PMID: 29271045 DOI: 10.1002/mrm.27046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/30/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop a non-contrast-agent MRI technique to quantify cerebral venous T2 in mice. METHODS We implemented and optimized a T2 -relaxation-under-spin-tagging (TRUST) sequence on an 11.7 Tesla animal imaging system. A flow-sensitive-alternating-inversion-recovery (FAIR) module was used to generate control and label images, pair-wise subtraction of which yielded blood signals. Then, a T2 -preparation module was applied to produce T2 -weighted images, from which blood T2 was quantified. We conducted a series of technical studies to optimize the imaging slice position, inversion slab thickness, post-labeling delay (PLD), and repetition time. We also performed three physiological studies to examine the venous T2 dependence on hyperoxia (N = 4), anesthesia (N = 3), and brain aging (N = 5). RESULTS Our technical studies suggested that, for efficient data acquisition with minimal bias in estimated T2 , a preferred TRUST protocol was to place the imaging slice at the confluence of sagittal sinuses with an inversion-slab thickness of 2.5-mm, a PLD of 1000 ms and a repetition time of 3.5 s. Venous T2 values under normoxia and hyperoxia (inhaling pure oxygen) were 26.9 ± 1.7 and 32.3 ± 2.2 ms, respectively. Moreover, standard isoflurane anesthesia resulted in a higher venous T2 compared with dexmedetomidine anesthesia (N = 3; P = 0.01) which is more commonly used in animal functional MRI studies to preserve brain function. Venous T2 exhibited a decrease with age (N = 5; P < 0.001). CONCLUSION We have developed and optimized a noninvasive method to quantify cerebral venous blood T2 in mouse at 11.7 T. This method may prove useful in studies of brain physiology and pathophysiology in animal models. Magn Reson Med 80:521-528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Peiying Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Wenbo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|