1
|
Sannigrahi A, De N, Bhunia D, Bhadra J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg Chem 2025; 155:108146. [PMID: 39817998 DOI: 10.1016/j.bioorg.2025.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges. In Addition, we explore future perspectives and potential limitations of PNA-based technologies, highlighting the need for further research and development to fully realize their therapeutic and biotechnological potential.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nayan De
- Institute for System Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Debmalya Bhunia
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| | - Jhuma Bhadra
- Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India.
| |
Collapse
|
2
|
Kost C, Scheffer U, Kalden E, Göbel MW. Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols. ChemistryOpen 2025; 14:e202400157. [PMID: 39460429 PMCID: PMC11808266 DOI: 10.1002/open.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 10/28/2024] Open
Abstract
In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pKa of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.
Collapse
Affiliation(s)
- Catharina Kost
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Elisabeth Kalden
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| | - Michael Wilhelm Göbel
- Institut für Organische Chemie und Chemische BiologieGoethe-Universität, Frankfurt am MainMax-von-Laue-Str. 7D-60438Frankfurt am MainGermany
| |
Collapse
|
3
|
Wei K, Xu Y, Nie C, Wei Q, Xie P, Chen T, Jiang J, Chu X. A Multifunctional Peptide Nucleic Acid/Peptide Copolymer-Based Dual-Mode Biosensor with Macrophage-Hitchhiking for Enhanced Tumor Imaging and Urinalysis. J Am Chem Soc 2024. [PMID: 39563630 DOI: 10.1021/jacs.4c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Biosensors are capable of diagnosing tumors through imaging in vivoor liquid biopsy, but they face the challenges of inefficient delivery into tumor sites and the lack of reliable tumor-associated biomarkers. Herein, we constructed a dual-mode biosensor based on a multifunctional peptide nucleic acid (PNA)/peptide copolymer and DNA tetrahedron for tumor imaging and urinalysis. The biosensor could enter the cancer cells to initiate a microRNA-21-specific catalytic hairpin assembly reaction after cleavage by matrix-metalloprotease (MMP) in the tumor microenvironment, and the MMP cleavage product was released into the bloodstream and then was filtered out by the kidney. As PNA was a synthetic DNA analogue that could not be degraded by nucleases and proteases, it could serve as a reliable synthetic biomarker and be easily detected by high-performance liquid chromatography in urine. Importantly, the biosensor was hitchhiked on the macrophage membrane to realize efficient delivery in the depth of tumor utilizing the macrophage ability of actively homing to the tumor site and infiltrating into the tumor. The results indicated that the signal output of the biosensor was improved remarkably and mice with a tumor volume as little as 30-40 mm3 could be reliably discriminated through urine assay. This innovative macrophage-hitchhiking dual-mode biosensor holds a great potential as a non-invasive and convenient tool for tumor diagnosis and tumor progression evaluation.
Collapse
Affiliation(s)
- Kaiji Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yu Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiaomei Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ping Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tingting Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
López-Tena M, Farrera-Soler L, Barluenga S, Winssinger N. Pseudo-Complementary G:C Base Pair for Mixed Sequence dsDNA Invasion and Its Applications in Diagnostics (SARS-CoV-2 Detection). JACS AU 2023; 3:449-458. [PMID: 36873687 PMCID: PMC9975836 DOI: 10.1021/jacsau.2c00588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Pseudo-complementary oligonucleotides contain artificial nucleobases designed to reduce duplex formation in the pseudo-complementary pair without compromising duplex formation to targeted (complementary) oligomers. The development of a pseudo-complementary A:T base pair, Us:D, was important in achieving dsDNA invasion. Herein, we report pseudo-complementary analogues of the G:C base pair leveraged on steric and electrostatic repulsion between the cationic phenoxazine analogue of cytosine (G-clamp, C+) and N-7 methyl guanine (G+), which is also cationic. We show that while complementary peptide nucleic acids (PNA) form a much more stable homoduplex than the PNA:DNA heteroduplex, oligomers based on pseudo-C:G complementary PNA favor PNA:DNA hybridization. We show that this enables dsDNA invasion at physiological salt concentration and that stable invasion complexes are obtained with low equivalents of PNAs (2-4 equiv). We harnessed the high yield of dsDNA invasion for the detection of RT-RPA amplicon using a lateral flow assay (LFA) and showed that two strains of SARS-CoV-2 can be discriminated owing to single nucleotide resolution.
Collapse
|
6
|
Lanthanide (III) complexes (Ln = Er and Yb) based on polypyridyl ligand: Synthesis, crystal structure, DNA-binding activity and interaction with human serum protein in vitro. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
McGorman B, Fantoni NZ, O'Carroll S, Ziemele A, El-Sagheer AH, Brown T, Kellett A. Enzymatic Synthesis of Chemical Nuclease Triplex-Forming Oligonucleotides with Gene-Silencing Applications. Nucleic Acids Res 2022; 50:5467-5481. [PMID: 35640595 PMCID: PMC9177962 DOI: 10.1093/nar/gkac438] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are short, single-stranded oligomers that hybridise to a specific sequence of duplex DNA. TFOs can block transcription and thereby inhibit protein production, making them highly appealing in the field of antigene therapeutics. In this work, a primer extension protocol was developed to enzymatically prepare chemical nuclease TFO hybrid constructs, with gene-silencing applications. Click chemistry was employed to generate novel artificial metallo-nuclease (AMN)-dNTPs, which were selectively incorporated into the TFO strand by a DNA polymerase. This purely enzymatic protocol was then extended to facilitate the construction of 5-methylcytosine (5mC) modified TFOs that displayed increased thermal stability. The utility of the enzymatically synthesised di-(2-picolyl)amine (DPA)-TFOs was assessed and compared to a specifically prepared solid-phase synthesis counterpart through gel electrophoresis, quantitative PCR, and Sanger sequencing, which revealed similar recognition and damage properties to target genes. The specificity was then enhanced through coordinated designer intercalators-DPQ and DPPZ-and high-precision DNA cleavage was achieved. To our knowledge, this is the first example of the enzymatic production of an AMN-TFO hybrid and is the largest base modification incorporated using this method. These results indicate how chemical nuclease-TFOs may overcome limitations associated with non-molecularly targeted metallodrugs and open new avenues for artificial gene-editing technology.
Collapse
Affiliation(s)
- Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nicolò Zuin Fantoni
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK
| | - Sinéad O'Carroll
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Anna Ziemele
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK.,Department of Science and Mathematics, Suez University, Faculty of Petroleum and Mining, Engineering, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
8
|
Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peptide nucleic acid (PNA) is an analog of natural nucleic acids, where the sugar-phosphate backbone of DNA is replaced by an electrostatically neutral N-(2-aminoethyl)glycine backbone. This unique peptide-based backbone enables PNAs to form a very stable duplex with the complementary nucleic acids via Watson–Crick base pairing since there is no electrostatic repulsion between PNA and DNA·RNA. With this high nucleic acid affinity, PNAs have been used in a wide range of fields, from biological applications such as gene targeting, to engineering applications such as probe and sensor developments. In addition to single-stranded DNA, PNA can also recognize double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is hard to achieve with other artificial nucleic acids and is expected to be a promising method to recognize dsDNA in cellula or in vivo since the invasion does not require the prior denaturation of dsDNA. In this paper, we provide basic knowledge of PNA and mainly focus on the research of PNA invasion.
Collapse
|
9
|
Lyu M, Kong L, Yang Z, Wu Y, McGhee CE, Lu Y. PNA-Assisted DNAzymes to Cleave Double-Stranded DNA for Genetic Engineering with High Sequence Fidelity. J Am Chem Soc 2021; 143:9724-9728. [PMID: 34156847 DOI: 10.1021/jacs.1c03129] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNAzymes have been widely used in many sensing and imaging applications but have rarely been used for genetic engineering since their discovery in 1994, because their substrate scope is mostly limited to single-stranded DNA or RNA, whereas genetic information is stored mostly in double-stranded DNA (dsDNA). To overcome this major limitation, we herein report peptide nucleic acid (PNA)-assisted double-stranded DNA nicking by DNAzymes (PANDA) as the first example to expand DNAzyme activity toward dsDNA. We show that PANDA is programmable in efficiently nicking or causing double strand breaks on target dsDNA, which mimics protein nucleases and can act as restriction enzymes in molecular cloning. In addition to being much smaller than protein enzymes, PANDA has a higher sequence fidelity compared with CRISPR/Cas under the condition we tested, demonstrating its potential as a novel alternative tool for genetic engineering and other biochemical applications.
Collapse
|
10
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
11
|
Investigation of the Characteristics of NLS-PNA: Influence of NLS Location on Invasion Efficiency. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptide nucleic acid can recognise sequences in double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is a promising method for the recognition of dsDNA in cellula because peptide nucleic acid (PNA) invasion does not require the prior denaturation of dsDNA. To increase its applicability, we developed PNAs modified with a nuclear localisation signal (NLS) peptide. In this study, the characteristics of NLS-modified PNAs were investigated for the future design of novel peptide-modified PNAs.
Collapse
|
12
|
Jiang L, Sun Y, Chen Y, Nan P. From DNA to Nerve Agents – The Biomimetic Catalysts for the Hydrolysis of Phosphate Esters. ChemistrySelect 2020. [DOI: 10.1002/slct.202001947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, College of Chemical Engineering China University of Petroleum (East China) Changjiang West Road, No.66. Qingdao 266580 China
| | - Yujiao Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, College of Chemical Engineering China University of Petroleum (East China) Changjiang West Road, No.66. Qingdao 266580 China
| | - Yuxue Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, College of Chemical Engineering China University of Petroleum (East China) Changjiang West Road, No.66. Qingdao 266580 China
| | - Pengli Nan
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, College of Chemical Engineering China University of Petroleum (East China) Changjiang West Road, No.66. Qingdao 266580 China
| |
Collapse
|
13
|
Chakraborty M, Mondal S, Cardin C, Rheingold AL, Das Mukhopadhyay C, Kumar Chattopadhyay S. Yb(III), Sm(III) and La(III) complexes of a tetradentate pyridoxal Schiff base ligand: Their DNA-binding activity and bio-imaging applications. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Harumoto T, Shigi N, Tsumoto K, Komiyama M. Site-specific Manipulation of Mitochondrial DNA by Artificial Restriction DNA Cutter. CHEM LETT 2019. [DOI: 10.1246/cl.190572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimasa Harumoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Narumi Shigi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
15
|
|
16
|
Abo El-Maali N, Wahman AY, Aly AA, Nassar AY, Sayed DM. Estimating of the binding constant of the anticancer 5-fluorouracil with Samarium and Europium. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
He Y, Lopez A, Zhang Z, Chen D, Yang R, Liu J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Shigi N, Mizuno Y, Kunifuda H, Matsumura K, Komiyama M. Promotion of Single-Strand Invasion of PNA to Double-Stranded DNA by Pseudo-Complementary Base Pairing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Narumi Shigi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Mizuno
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hiroko Kunifuda
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazunari Matsumura
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
19
|
Rajendran A, Shigi N, Sumaoka J, Komiyama M. Affinity Isolation of Defined Genomic Fragments Cleaved by Nuclease S1-based Artificial Restriction DNA Cutter. ACTA ACUST UNITED AC 2019; 76:e76. [PMID: 30753751 DOI: 10.1002/cpnc.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human genome is highly susceptible to various modifications, lesions, and damage. To analyze lesions and proteins bound to a defined region of the human genome, the genome should be fragmented at desired sites and the region of interest should be isolated. The few available methods for isolating a desired region of the human genome have serious drawbacks and can only be applied to specific sequences or require tedious experimental procedures. We have recently developed a novel method to isolate a desired fragment of the genome released by site-specific scission of DNA using a pair of pseudo-complementary peptide nucleic acids (pcPNAs) and S1 nuclease. When conjugated to biotin, one of the pcPNAs can be used to affinity purify the cleavage product. Here we report a detailed protocol to isolate defined kilobase-length DNA fragments that can be applied to plasmid or genomic DNA and is not limited by sequence. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Arivazhagan Rajendran
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan.,Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Narumi Shigi
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Sumaoka
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.,Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, Tokyo, Japan
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.,College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
20
|
Rajendran A, Shigi N, Sumaoka J, Komiyama M. Artificial Restriction DNA Cutter Using Nuclease S1 for Site-Selective Scission of Genomic DNA. ACTA ACUST UNITED AC 2019; 76:e72. [PMID: 30720929 DOI: 10.1002/cpnc.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By combining a pair of pseudo-complementary peptide nucleic acids (pcPNAs) with S1 nuclease, a novel tool to cut DNA at a predetermined site can be obtained. Complementary pcPNAs invade the DNA duplex and base pair to each strand of a target site, creating single-stranded regions that are cleaved by S1 nuclease. The scission site can be freely modulated by the design of pcPNAs. This method can be used to cleave a single site in the human genome. This protocol presents experimental details for site-selective scission using this versatile new tool. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Arivazhagan Rajendran
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan.,Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Narumi Shigi
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Sumaoka
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.,Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, Tokyo, Japan
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.,College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
21
|
Hibino M, Aiba Y, Watanabe Y, Shoji O. Peptide Nucleic Acid Conjugated with Ruthenium-Complex Stabilizing Double-Duplex Invasion Complex Even under Physiological Conditions. Chembiochem 2018; 19:1601-1604. [PMID: 29797750 DOI: 10.1002/cbic.201800256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 02/03/2023]
Abstract
Peptide nucleic acid (PNA) can form a stable duplex with DNA, and, accordingly, directly recognize double-stranded DNA through the formation of a double-duplex invasion complex, wherein a pair of complementary PNA strands form two PNA/DNA duplexes. Because invasion does not require prior denaturation of DNA, PNA holds great potential for in cellulo or in vivo applications. To broaden the applicability of PNA invasion, we developed a new conjugate of PNA with a ruthenium complex. This Ru-PNA conjugate exhibits higher DNA-binding affinity, which results in enhanced invasion efficiency, even under physiological conditions.
Collapse
Affiliation(s)
- Masaki Hibino
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-Cho Chikusa-Ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
22
|
Rajendran A, Shigi N, Sumaoka J, Komiyama M. One-Pot Isolation of a Desired Human Genome Fragment by Using a Biotinylated pcPNA/S1 Nuclease Combination. Biochemistry 2018; 57:2908-2912. [PMID: 29722525 DOI: 10.1021/acs.biochem.8b00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scission of the human genome at predetermined sites and isolation of a particular fragment are of great interest for the analysis of lesion/modification sites, in proteomics, and for gene therapy. However, methods for human genome scission and specific fragment isolation are limited. Here, we report a novel one-pot method for the site-specific scission of DNA by using a biotinylated pcPNA/S1 nuclease combination and isolation of a desired fragment by streptavidin-coated magnetic beads. The proof of concept was initially demonstrated for the clipping of plasmid DNA and isolation of the required fragment. Our method was then successfully applied for the isolation of a fragment from the cell-derived human genome.
Collapse
Affiliation(s)
- Arivazhagan Rajendran
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Narumi Shigi
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Jun Sumaoka
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8577 , Japan
| |
Collapse
|
23
|
Mahmoud WH, Mahmoud NF, Mohamed GG. New nanobidentate Schiff base ligand of 2-aminophenol with 2-acetyl ferrocene with some lanthanide metal ions: synthesis, characterization and Hepatitis A, B, C and breast cancer docking studies. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1391379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Walaa H. Mahmoud
- Faculty of Science, Chemistry Department, Cairo University, Giza, Egypt
| | - Nessma F. Mahmoud
- Faculty of Science, Chemistry Department, Cairo University, Giza, Egypt
| | - Gehad G. Mohamed
- Faculty of Science, Chemistry Department, Cairo University, Giza, Egypt
- Egypt Nanotechnology Center, Cairo University, 6th October City, Egypt
| |
Collapse
|
24
|
Applications of PNA-Based Artificial Restriction DNA Cutters. Molecules 2017; 22:molecules22101586. [PMID: 28934140 PMCID: PMC6151779 DOI: 10.3390/molecules22101586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
More than ten years ago, artificial restriction DNA cutters were developed by combining two pseudo-complementary peptide nucleic acid (pcPNA) strands with either Ce(IV)/EDTA or S1 nuclease. They have remarkably high site-specificity and can cut only one predetermined site in the human genome. In this article, recent progress of these man-made tools have been reviewed. By cutting the human genome site-selectively, desired fragments can be clipped from either the termini of chromosomes (telomeres) or from the middle of genome. These fragments should provide important information on the biological functions of complicated genome system. DNA/RNA hybrid duplexes, which are formed in living cells, are also site-selectively hydrolyzed by these cutters. In order to further facilitate the applications of the artificial DNA cutters, various chemical modifications have been attempted. One of the most important successes is preparation of PNA derivatives which can form double-duplex invasion complex even under high salt conditions. This is important for in vivo applications, since the inside of living cells is abundant of metal ions. Furthermore, site-selective DNA cutters which require only one PNA strand, in place of a pair of pcPNA strands, are developed. This progress has opened a way to new fields of PNA-based biochemistry and biotechnology.
Collapse
|
25
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
26
|
Komiyama M. Design of Highly Active Ce(IV) Catalysts for DNA Hydrolysis and Their Applications. CHEM LETT 2016. [DOI: 10.1246/cl.160786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Akisawa T, Yamada K, Nagatsugi F. Synthesis of peptide nucleic acids (PNA) with a crosslinking agent to RNA and effective inhibition of dicer. Bioorg Med Chem Lett 2016; 26:5902-5906. [PMID: 27838183 DOI: 10.1016/j.bmcl.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022]
Abstract
Peptide nucleic acids (PNAs) are structural mimics of nucleic acids that form stable hybrids with DNA and RNA. Due to these characteristics, PNAs are widely used as biochemical tools, for example, in antisense/antigene therapy. In this study, we have synthesized PNAs incorporating 2-amino-6-vinylpurine (AVP) for the covalent targeting of single-stranded DNA and RNA, and evaluated their reactivities for these targets. PNA containing AVP at the N-terminal position showed a high reactivity to uracil in RNA and thymine in DNA at the complementary site with AVP. In addition, the crosslinking reactions to pre-miR122 with PNA containing AVP increased the inhibition effect for the Dicer processing of pre-miR122 in vitro.
Collapse
Affiliation(s)
- Takuya Akisawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| | - Ken Yamada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan.
| |
Collapse
|
28
|
Zhao C, Sun Y, Ren J, Qu X. Recent progress in lanthanide complexes for DNA sensing and targeting specific DNA structures. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Futai K, Sumaoka J, Komiyama M. Fabrication of DNA/RNA Hybrids Through Sequence-Specific Scission of Both Strands by pcPNA-S1 Nuclease Combination. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:233-44. [PMID: 27057646 DOI: 10.1080/15257770.2015.1131294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
By combining two strands of pseudo-complementary peptide nucleic acid (pcPNA) with S1 nuclease, a tool for site-selective and dual-strand scission of DNA/RNA hybrids has been developed. Both of the DNA and the RNA strands in the hybrids are hydrolyzed at desired sites to provide unique sticky ends. The scission fragments are directly ligated with other DNA/RNA hybrids by using T4 DNA ligase, resulting in the formation of desired recombinant DNA/RNA hybrids.
Collapse
|
30
|
Gasiorek M, Schneider HJ. Unwinding DNA and RNA with Synthetic Complexes: On the Way to Artificial Helicases. Chemistry 2015; 21:18328-32. [PMID: 26503404 DOI: 10.1002/chem.201502738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 01/04/2023]
Abstract
Synthetic helicases can be designed on the basis of ligands that bind more strongly to single-stranded nucleic acids than to double-stranded nucleic acids. This can be achieved with ligands containing phenyl groups, which intercalate into single strands, but due to their small size not into double strands. Moreover, two phenyl rings are combined with a distance that allows bis-intercalation with only single strands and not double strands. In this respect, such ligands also mimic single-strand binding (SSB) proteins. Exploration with more than 23 ligands, mostly newly synthesised, shows that the distance between the phenyl rings and between those and the linker influence the DNA unwinding efficiency, which can reach a melting point decrease of almost ΔTm =50 °C at much lower concentrations than that with any other known artificial helicases. Conformational pre-organisation of the ligand plays a decisive role in optimal efficiency. Substituents at the phenyl rings have a large effect, and increase, for example, in the order of H<F<Cl<Br, which illustrates the strong role of dispersive interactions in intercalation. Studies with homopolymers revealed significant selectivity: for example, with a ligand concentration of 40 μM at 35 °C, only GC double strands melt (ΔTm =48 °C), whereas the AT strand remains untouched, and with poly(rA)-poly(rU) as an RNA model one observes unfolding at 29 °C with a concentration of only 30 μM.
Collapse
Affiliation(s)
- Martin Gasiorek
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany)
| | - Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany).
| |
Collapse
|
31
|
Shigi N, Rajendran A, Wang X, Kunifuda H, Sumaoka J, Komiyama M. Affinity Isolation of Desired Restriction Fragment from Human Genome Using Double-duplex Invasion of Biotin-bound Pseudo-complementary PNA. CHEM LETT 2015. [DOI: 10.1246/cl.150682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Narumi Shigi
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| | | | - Xiaohui Wang
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| | - Hiroko Kunifuda
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| | - Jun Sumaoka
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| |
Collapse
|
32
|
Aiba Y, Ohyama J, Komiyama M. Transfection of PNA–NLS Conjugates into Human Cells Using Partially Complementary Oligonucleotides. CHEM LETT 2015. [DOI: 10.1246/cl.150733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuichiro Aiba
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
- Research Center for Advanced Science and Technology, The University of Tokyo
| | - Junpei Ohyama
- Research Center for Advanced Science and Technology, The University of Tokyo
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
- Research Center for Advanced Science and Technology, The University of Tokyo
| |
Collapse
|
33
|
Ishizuka T, Xu Y, Komiyama M. Clipping of Telomere from Human Chromosomes Using a Chemistry-Based Artificial Restriction DNA Cutter. ACTA ACUST UNITED AC 2015; 61:6.13.1-6.13.13. [PMID: 26344230 DOI: 10.1002/0471142700.nc0613s61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The detection of individual telomere lengths of human chromosomes can provide crucial information on genome stability, cancer, and telomere-related diseases. However, current methods to measure telomere length entail shortcomings that have limited their use. Recently, we have developed a method for detection of individual telomere lengths (DITL) that uses a chemistry-based DNA-cutting approach. The most beneficial feature of the DITL approach is to cleave the sequence adjacent to the telomere followed by resolution of the telomere length at the nucleotide level of a single chromosome. In this unit, a protocol for successful detection of individual telomere lengths from individual chromosomes is described in detail.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
34
|
Hong IS, Greenberg MM. Sequence selective tagging of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) using PNAs. Bioorg Med Chem Lett 2015; 25:4918-4921. [PMID: 26051648 DOI: 10.1016/j.bmcl.2015.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a commonly formed DNA lesion that is useful as a biomarker for oxidative stress. Methods for detecting 8-oxodGuo at specific positions within DNA could be useful for correlating DNA damage with mutational hotspots and repair enzyme accessibility. We describe a method for covalently linking ('tagging') peptide nucleic acids (PNAs) containing terminal nucleophiles under oxidative conditions to 8-oxodGuo at specific sites within DNA. Several nucleophiles were examined and the ε-amine of lysine was selected for further studies. As little as 10 fmol of 8-oxodGuo were detected by gel shift using (32)P-labeled target DNA and no tagging of dG at the same site or 8-oxodGuo at a distal site was detected when potassium ferricyanide was used as oxidant in substrates as long as 221 bp.
Collapse
Affiliation(s)
- In Seok Hong
- Johns Hopkins University, Department of Chemistry, Baltimore, CA 21218, United States; Kongju National University, Department of Chemistry, 182, Shinkwan-dong, Kongju, Chungnam 314-701, Republic of Korea
| | - Marc M Greenberg
- Johns Hopkins University, Department of Chemistry, Baltimore, CA 21218, United States.
| |
Collapse
|
35
|
Aiba Y, Honda Y, Komiyama M. Promotion of double-duplex invasion of peptide nucleic acids through conjugation with nuclear localization signal peptide. Chemistry 2015; 21:4021-6. [PMID: 25640012 DOI: 10.1002/chem.201406085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/10/2022]
Abstract
Pseudo-complementary peptide nucleic acid (pcPNA), as one of the most widely used synthetic DNA analogues, invades double-stranded DNA according to Watson-Crick rules to form invasion complexes. This unique mode of DNA recognition induces structural changes at the invasion site and can be used for a range of applications. In this paper, pcPNA is conjugated with a nuclear localization signal (NLS) peptide, and its invading activity is notably promoted both thermodynamically and kinetically. Thus, the double-duplex invasion complex is formed promptly at low pcPNA concentrations under high salt conditions, where the invasion otherwise never occurs. Furthermore, NLS-modified pcPNA is successfully employed for site-selective DNA scission, and the targeted DNA is selectively cleaved under conditions that are not conducive for DNA cutters using unmodified pcPNAs. This strategy of pcPNA modification is expected to be advantageous and promising for a range of in vitro and in vivo applications.
Collapse
Affiliation(s)
- Yuichiro Aiba
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan); Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Present address: Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041 (USA)
| | | | | |
Collapse
|
36
|
Komiyama M. Chemical modifications of artificial restriction DNA cutter (ARCUT) to promote its in vivo and in vitro applications. ARTIFICIAL DNA, PNA & XNA 2014; 5:e1112457. [PMID: 26744220 PMCID: PMC5329899 DOI: 10.1080/1949095x.2015.1112457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/10/2023]
Abstract
Recently, completely chemistry-based tools for site-selective scission of DNA (ARCUT) have been prepared by combining 2 strands of pseudo-complementary PNA (pcPNA: site-selective activator) and a Ce(IV)-EDTA complex (molecular scissors). Its site-specificity is sufficient to cut the whole human genome at one predetermined site. In this first-generation ARCUT, however, there still remain several problems to be solved for wider applications. This review presents recent approaches to solve these problems. They are divided into (i) covalent modification of pcPNA with other functional groups and (ii) new strategies using conventional PNA, in place of pcPNA, as site-selective activator. Among various chemical modifications, conjugation with positively-charged nuclear localization signal peptide is especially effective. Furthermore, unimolecular activators, a single strand of which successfully activates the target site in DNA for site-selective scission, have been also developed. As the result of these modifications, the site-selective scission by Ce(IV)-EDTA was achieved promptly even under high salt conditions which are otherwise unfavourable for double-duplex invasion. Furthermore, it has been shown that "molecular crowding effect," which characterizes the inside of living cells, enormously promotes the invasion, and thus the invasion seems to proceed effectively and spontaneously in the cells. Strong potential of pcPNA for further applications in vivo and in vitro has been confirmed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance; University of Tsukuba; Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Sumaoka J, Komiyama M. Molecular Crowding Facilitates Double-duplex Invasion of Pseudo-complementary Peptide Nucleic Acid in High-salt Medium. CHEM LETT 2014. [DOI: 10.1246/cl.140620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jun Sumaoka
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
- Research Center for Advanced Science and Technology, The University of Tokyo
- School of Media Science, Tokyo University of Technology
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
- Research Center for Advanced Science and Technology, The University of Tokyo
| |
Collapse
|
38
|
Lin WTD, Huang PJJ, Pautler R, Liu J. The group trend of lanthanides binding to DNA and DNAzymes with a complex but symmetric pattern. Chem Commun (Camb) 2014; 50:11859-62. [DOI: 10.1039/c4cc05551a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Li X, Muneoka S, Shigi N, Sumaoka J, Komiyama M. Clipping of predetermined fragments from the human genome by S1 nuclease-PNA combinations. Chem Commun (Camb) 2014; 50:8674-6. [PMID: 24958630 DOI: 10.1039/c4cc01420k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By combining S1 nuclease with two strands of pseudo-complementary peptide nucleic acid (pcPNA), the whole human genome was selectively cut at targeted sites, and desired fragments were clipped from the genome.
Collapse
Affiliation(s)
- Xia Li
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577 Japan.
| | | | | | | | | |
Collapse
|
40
|
Aiba Y, Hamano Y, Kameshima W, Araki Y, Wada T, Accetta A, Sforza S, Corradini R, Marchelli R, Komiyama M. PNA-NLS conjugates as single-molecular activators of target sites in double-stranded DNA for site-selective scission. Org Biomol Chem 2014; 11:5233-8. [PMID: 23820872 DOI: 10.1039/c3ob40947c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Artificial DNA cutters have been developed by us in our previous studies by combining two strands of pseudo-complementary peptide nucleic acid (pcPNA) with Ce(IV)-EDTA-promoted hydrolysis. The pcPNAs have two modified nucleobases (2,6-diaminopurine and 2-thiouracil) instead of conventional A and T, and can invade double-stranded DNA to activate the target site for the scission. This system has been applied to site-selective scissions of plasmid, λ-phage, E. coli genomic DNA, and human genomic DNA. Here, we have reported a still simpler and more convenient DNA cutter obtained by conjugating peptide nucleic acid (PNA) with a nuclear localization signal (NLS) peptide. This new DNA cutter requires only one PNA strand (instead of two) bearing conventional (non-pseudo-complementary) nucleobases. This PNA-NLS conjugate effectively activated the target site in double-stranded DNA and induced site-selective scission by Ce(IV)-EDTA. The complex formation between the conjugate and DNA was concretely evidenced by spectroscopic results based on time-resolved fluorescence. The target scission site of this new system was straightforwardly determined by the Watson-Crick base pairing rule, and mismatched sequences were clearly discriminated. Importantly, even highly GC-rich regions, which are difficult to be targeted by a previous strategy using pcPNA, were successfully targeted. All these features of the present DNA cutter make it promising for various future applications.
Collapse
Affiliation(s)
- Yuichiro Aiba
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ito K, Shigi N, Komiyama M. An artificial restriction DNA cutter for site-selective gene insertion in human cells. Chem Commun (Camb) 2014; 49:6764-6. [PMID: 23778429 DOI: 10.1039/c3cc43261k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the use of a chemistry-based artificial restriction DNA cutter (combination of Ce(IV)-EDTA and a pair of pcPNA), both an antibiotic-resistance gene and a fluorescent reporter protein gene were incorporated into the targeted site through homologous recombination in human cells.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8904, Japan
| | | | | |
Collapse
|
42
|
Huang PJJ, Lin J, Cao J, Vazin M, Liu J. Ultrasensitive DNAzyme Beacon for Lanthanides and Metal Speciation. Anal Chem 2014; 86:1816-21. [PMID: 24383540 DOI: 10.1021/ac403762s] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Po-Jung Jimmy Huang
- Department
of Chemistry,
Waterloo Institute for Nanotechnology , University of Waterloo 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jenny Lin
- Department
of Chemistry,
Waterloo Institute for Nanotechnology , University of Waterloo 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jing Cao
- Department
of Chemistry,
Waterloo Institute for Nanotechnology , University of Waterloo 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Vazin
- Department
of Chemistry,
Waterloo Institute for Nanotechnology , University of Waterloo 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry,
Waterloo Institute for Nanotechnology , University of Waterloo 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
43
|
Ito K, Komiyama M. Site-selective scission of human genome using PNA-based artificial restriction DNA cutter. Methods Mol Biol 2014; 1050:111-120. [PMID: 24297354 DOI: 10.1007/978-1-62703-553-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Site-selective scission of genomes is quite important for future biotechnology. However, naturally occurring restriction enzymes cut these huge DNAs at too many sites and cannot be used for this purpose. Recently, we have developed a completely chemistry-based artificial restriction DNA cutter (ARCUT) by combining a pair of pseudo-complementary PNA (pcPNA) strands (sequence recognition moiety) and Ce(IV)/EDTA complex (molecular scissors). The scission site of ARCUT and its scission specificity can be freely modulated in terms of the sequences and lengths of the pcPNA strands so that even huge genomes can be selectively cut at only one predetermined site. In this chapter, the method of site-selective scission of human genomic DNA using ARCUT is described in detail.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
44
|
Damian M, Porteus MH. A crisper look at genome editing: RNA-guided genome modification. Mol Ther 2013; 21:720-2. [PMID: 23542565 DOI: 10.1038/mt.2013.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Mara Damian
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
45
|
Kameshima W, Ishizuka T, Minoshima M, Yamamoto M, Sugiyama H, Xu Y, Komiyama M. Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew Chem Int Ed Engl 2013; 52:13681-4. [PMID: 24155125 DOI: 10.1002/anie.201305489] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/03/2013] [Indexed: 11/06/2022]
Abstract
Cut loose: A pseudocomplementary peptide nucleic acid was tethered to a pyrrole/imidazole hairpin polyamide, and was used to selectively target a specific DNA sequence. Binding even occurs under high salt conditions. Furthermore, the conjugate facilitated sequence-specific scission of long dsDNA. This simple approach promises to resolve the technical difficulties in targeting DNA sequences with PNA.
Collapse
Affiliation(s)
- Wataru Kameshima
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)
| | | | | | | | | | | | | |
Collapse
|
46
|
Kameshima W, Ishizuka T, Minoshima M, Yamamoto M, Sugiyama H, Xu Y, Komiyama M. Conjugation of Peptide Nucleic Acid with a Pyrrole/Imidazole Polyamide to Specifically Recognize and Cleave DNA. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Aiba Y, Yasuda K, Komiyama M. Site-selective Scission of Double-stranded DNA by Combining a Triplex-forming bis-PNA and Ce(IV)/EDTA. CHEM LETT 2013. [DOI: 10.1246/cl.130650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuichiro Aiba
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
- Research Center for Advanced Science and Technology, The University of Tokyo
| | - Kohei Yasuda
- Research Center for Advanced Science and Technology, The University of Tokyo
| | - Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
- Research Center for Advanced Science and Technology, The University of Tokyo
| |
Collapse
|
48
|
Yamazaki T, Aiba Y, Yasuda K, Sakai Y, Yamanaka Y, Kuzuya A, Ohya Y, Komiyama M. Clear-cut observation of PNA invasion using nanomechanical DNA origami devices. Chem Commun (Camb) 2013; 48:11361-3. [PMID: 23073563 DOI: 10.1039/c2cc36358e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Invasive binding event of PNA into DNA duplex was clearly observed both by atomic force microscope (AFM) imaging and electrophoretic mobility shift assay (EMSA) with the aid of nanomechanical DNA origami devices as 'single-molecule' visual probes, showing their potential as universal platform for the analysis of PNA invasion.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Komiyama M. Cut-and-Paste of DNA Using an Artificial Restriction DNA Cutter. Int J Mol Sci 2013; 14:3343-57. [PMID: 23385238 PMCID: PMC3588047 DOI: 10.3390/ijms14023343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 12/29/2022] Open
Abstract
DNA manipulations using a completely chemistry-based DNA cutter (ARCUT) have been reviewed. This cutter, recently developed by the authors, is composed of Ce(IV)/EDTA complex and two strands of pseudo-complementary peptide nucleic acid. The site-selective scission proceeds via hydrolysis of targeted phosphodiester linkages, so that the resultant scission fragments can be easily ligated with other fragments by using DNA ligase. Importantly, scission-site and site-specificity of the cutter are freely tuned in terms of the Watson-Crick rule. Thus, when one should like to manipulate DNA according to the need, he or she does not have to think about (1) whether appropriate "restriction enzyme sites" exist near the manipulation site and (2) whether the site-specificity of the restriction enzymes, if any, are sufficient to cut only the aimed position without chopping the DNA at non-targeted sites. Even the human genome can be manipulated, since ARCUT can cut the genome at only one predetermined site. Furthermore, the cutter is useful to promote homologous recombination in human cells, converting a site to desired sequence. The ARCUT-based DNA manipulation should be promising for versatile applications.
Collapse
Affiliation(s)
- Makoto Komiyama
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
50
|
Cheng G, Liu YL, Wang ZG, Li SM, Zhang JL, Ni JZ. Yolk–shell magnetic microspheres with mesoporous yttrium phosphate shells for selective capture and identification of phosphopeptides. J Mater Chem B 2013; 1:3661-3669. [DOI: 10.1039/c3tb20599a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|