1
|
Trojanowicz M. Impact of nanotechnology on progress of flow methods in chemical analysis: A review. Anal Chim Acta 2023; 1276:341643. [PMID: 37573121 DOI: 10.1016/j.aca.2023.341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
In evolution of instrumentation for analytical chemistry as crucial technological breakthroughs should be considered a common introduction of electronics with all its progress in integration, and then microprocessors which was followed by a widespread computerization. It is seems that a similar role can be attributed to the introduction of various elements of modern nanotechnology, observed with a fast progress since beginning of this century. It concerns all areas of the applications of analytical chemistry, including also progress in flow analysis, which are being developed since the middle of 20th century. Obviously, it should not be omitted the developed earlier and analytically applied planar structures like lipid membranes or self-assembled monolayers They had essential impact prior to discoveries of numerous extraordinary nanoparticles such as fullerenes, carbon nanotubes and graphene, or nanocrystalline semiconductors (quantum dots). Mostly, due to catalytic effects, significantly developed surface and the possibility of easy functionalization, their application in various stages of flow analytical procedures can significantly improve them. The application of new nanomaterials may be used for the development of new detection methods for flow analytical systems in macro-flow setups as well as in microfluidics and lateral flow immunoassay tests. It is also advantageous that quick flow conditions of measurements may be helpful in preventing unfavorable agglomeration of nanoparticles. A vast literature published already on this subject (e.g. almost 1000 papers about carbon nanotubes and flow-injection analytical systems) implies that for this reviews it was necessary to make an arbitrary selection of reported examples of this trend, focused mainly on achievements reported in the recent decade.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Techniques, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Chemistry, University of Warsaw, Poland.
| |
Collapse
|
2
|
Daro N, Vaudel T, Afindouli L, Marre S, Aymonier C, Chastanet G. One-Step Synthesis of Spin Crossover Nanoparticles Using Flow Chemistry and Supercritical CO 2. Chemistry 2020; 26:16286-16290. [PMID: 32648612 DOI: 10.1002/chem.202002322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/09/2022]
Abstract
Switchable materials are increasingly considered for implementation in devices or multifunctional composites leading to a strong need in terms of reliable synthetic productions of well-defined objects. Here, an innovative and robust template-free continuous process was developed to synthesize nanoparticles of a switchable coordination polymer, including the use of supercritical CO2 , aiming at both quenching the particle growth and drying the powder. This all-in-one process offers a 12-fold size reduction in a few minutes while maintaining the switching properties of the selected spin crossover coordination polymer.
Collapse
Affiliation(s)
- Nathalie Daro
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Tony Vaudel
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Luc Afindouli
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Samuel Marre
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Cyril Aymonier
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | | |
Collapse
|
3
|
Anand S, Mardhekar S, Raigawali R, Mohanta N, Jain P, D. Shanthamurthy C, Gnanaprakasam B, Kikkeri R. Continuous-Flow Accelerated Sulfation of Heparan Sulfate Intermediates. Org Lett 2020; 22:3402-3406. [DOI: 10.1021/acs.orglett.0c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Nirmala Mohanta
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | | | - Boopathy Gnanaprakasam
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| |
Collapse
|
4
|
Kang KK, Lee B, Lee CS. Recent progress in the synthesis of inorganic particulate materials using microfluidics. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Jiao M, Zhang P, Meng J, Li Y, Liu C, Luo X, Gao M. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci 2018; 6:726-745. [PMID: 29308496 DOI: 10.1039/c7bm01020f] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to their intrinsic physical properties potentially useful for imaging and therapy as well as their highly engineerable surface, biocompatible inorganic nanoparticles offer novel platforms to develop advanced diagnostic and therapeutic agents for improved detection and more efficacious treatment of major diseases. The in vivo application of inorganic nanoparticles was demonstrated more than two decades ago, however it turns out to be very complicated as nanomaterials exhibit much more sophisticated pharmacokinetic properties than conventional drugs. In this review, we first discuss the in vivo behavior of inorganic nanoparticles after systematic administration, including the basic requirements for nanoparticles to be used in vivo, the impact of the particles' physicochemical properties on their pharmacokinetics, and the effects of the protein corona formed across the nano-bio interface. Next, we summarize the state-of-the-art of the preparation of biocompatible inorganic nanoparticles and bioconjugation strategies for obtaining target-specific nanoprobes. Then, the advancements in sensitive tumor imaging towards diagnosis and visualization of the abnormal signatures in the tumor microenvironment, together with recent studies on atherosclerosis imaging are highlighted. Finally, the future challenges and the potential for inorganic nanoparticles to be translated into clinical applications are discussed.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Jiao M, Jing L, Wei X, Liu C, Luo X, Gao M. The Yin and Yang of coordinating co-solvents in the size-tuning of Fe 3O 4 nanocrystals through flow synthesis. NANOSCALE 2017; 9:18609-18612. [PMID: 29171614 DOI: 10.1039/c7nr06291e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study reports a continuous flow synthesis of differently sized Fe3O4 nanocrystals stabilized by oleylamine and oleic acid. Oleylamine and oleic acid are particularly investigated to elucidate their roles in tailoring the size and magnetic properties of the resulting particles potentially useful for magnetic resonance imaging.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | | | |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
8
|
Trojanowicz M. Flow chemistry vs. flow analysis. Talanta 2016; 146:621-40. [DOI: 10.1016/j.talanta.2015.07.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022]
|
9
|
Naughton MS, Kumar V, Bonita Y, Deshpande K, Kenis PJA. High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals. NANOSCALE 2015; 7:15895-903. [PMID: 26361342 DOI: 10.1039/c5nr04510j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Continuous flow reactors show great promise for large-scale synthesis of quantum dots. Here, we discuss results for the synthesis of multi-layered Cd-based hybrid nanocrystals - CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS - in a continuous flow reactor. The simple reactor design and liquid-phase chemistry obviate the need for preheating or in-line mixing, and the chosen reactor dimensions and operating conditions allow for high flow rates (∼10 mL min(-1)). Additionally, the simple reactor design is well suited for scale-up. The CdSe/CdS/ZnS particles synthesized at elevated temperatures in the reactor exhibit quantum yields of over 60% at longer wavelengths (red region). The shell growth for these particles is conducted without the need for complex dropwise addition or SILAR shell growth procedures used in batch reactors. CdS-based particles were shown to have a higher performance when using octadecene-S instead of TOP-S, which improved the quality of shell growth. In addition, stoichiometric synthesis of the alternate CdSeS/ZnS alloy particles was conducted, removing the need for a large excess of S to offset the lower S reactivity. CdSeS/ZnS alloy nanoparticles exhibit quantum yields of about 50% in the intermediate wavelength range (500-600 nm).
Collapse
Affiliation(s)
- Matt S Naughton
- Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
10
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
11
|
Misuk V, Schmidt M, Braukmann S, Giannopoulos K, Karl D, Loewe H. Segmented Flow-Based Multistep Synthesis of Cadmium Selenide Quantum Dots with Narrow Particle Size Distribution. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201500115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Chen X, Ramström O, Yan M. Glyconanomaterials: Emerging applications in biomedical research. NANO RESEARCH 2014; 7:1381-1403. [PMID: 26500721 PMCID: PMC4617207 DOI: 10.1007/s12274-014-0507-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 05/28/2023]
Abstract
Carbohydrates constitute the most abundant organic matter in nature, serving as structural components and energy sources, and mediating a wide range of cellular activities. The emergence of nanomaterials with distinct optical, magnetic, and electronic properties has witnessed a rapid adoption of these materials for biomedical research and applications. Nanomaterials of various shapes and sizes having large specific surface areas can be used as multivalent scaffolds to present carbohydrate ligands. The resulting glyconanomaterials effectively amplify the glycan-mediated interactions, making it possible to use these materials for sensing, imaging, diagnosis, and therapy. In this review, we summarize the synthetic strategies for the preparation of various glyconanomaterials. Examples are given where these glyconanomaterials have been used in sensing and differentiation of proteins and cells, as well as in imaging glycan-medicated cellular responses.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Olof Ramström
- Department of Chemistry, KTH—Royal Institute of Technology, Stockholm S-10044, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Chemistry, KTH—Royal Institute of Technology, Stockholm S-10044, Sweden
| |
Collapse
|
13
|
Caron A, Hernandez-Perez AC, Collins SK. Synthesis of a Carprofen Analogue Using a Continuous Flow UV-Reactor. Org Process Res Dev 2014. [DOI: 10.1021/op5002148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antoine Caron
- Department of Chemistry and
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, Canada H3C 3J7
| | - Augusto C. Hernandez-Perez
- Department of Chemistry and
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, Canada H3C 3J7
| | - Shawn K. Collins
- Department of Chemistry and
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
14
|
Myers RM, Fitzpatrick DE, Turner RM, Ley SV. Flow Chemistry Meets Advanced Functional Materials. Chemistry 2014; 20:12348-66. [DOI: 10.1002/chem.201402801] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Kennedy DC, Grünstein D, Lai CH, Seeberger PH. Glycosylated Nanoscale Surfaces: Preparation and Applications in Medicine and Molecular Biology. Chemistry 2013; 19:3794-800. [DOI: 10.1002/chem.201204155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Indexed: 11/08/2022]
|
16
|
Jin J, Teng P, Liu HL, Wu J, Liu YM, Xu Q, Li JX. Microfluidics assisted synthesis and bioevaluation of sinomenine derivatives as antiinflammatory agents. Eur J Med Chem 2013; 62:280-8. [PMID: 23357309 DOI: 10.1016/j.ejmech.2012.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 12/11/2022]
Abstract
Sinomenine (1) is currently used for the treatment of rheumatoid arthritis (RA) in China and there is still room for the improvement of its efficacy. In present study, capillary based microfluidic system was effectively applied for the syntheses of two novel series of sinomenine derivatives. The Heck reactions in microreactor gave much higher conversions compared to the batch ones. The two-step synthesis of the isoxazoline in microreactor greatly shortened the reaction time without any isolation of intermediates. The inhibitory activity of synthesized compounds on the TNF-α-induced nuclear factor kappa B (NF-κB) activation was evaluated in vitro. Among the compounds, 3c and 3g showed the potent inhibitory activity. Furthermore, 3g exhibited the antiinflammatory effect in vivo.
Collapse
Affiliation(s)
- Jie Jin
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
|