1
|
Ahmed-Seghir S, Jalan M, Grimsley HE, Sharma A, Twayana S, Kosiyatrakul ST, Thompson C, Schildkraut CL, Powell SN. A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells. eLife 2023; 12:RP87357. [PMID: 37647215 PMCID: PMC10468204 DOI: 10.7554/elife.87357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
When replication forks encounter DNA lesions that cause polymerase stalling, a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood. We utilized the Escherichia coli-based Tus-Ter system in human MCF7 cells and showed that the Tus protein binding to TerB sequences creates an efficient site-specific RFB. The single fork RFB was sufficient to activate a local, but not global, ATR-dependent checkpoint response that leads to phosphorylation and accumulation of DNA damage sensor protein γH2AX, confined locally to within a kilobase of the site of stalling. These data support a model of local management of fork stalling, which allows global replication at sites other than the RFB to continue to progress without delay.
Collapse
Affiliation(s)
- Sana Ahmed-Seghir
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Manisha Jalan
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Helen E Grimsley
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Aman Sharma
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Shyam Twayana
- Department of Cell Biology, Albert Einstein College of MedicineNew YorkUnited States
| | | | - Christopher Thompson
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of MedicineNew YorkUnited States
| | - Simon N Powell
- Department of Radiation Oncology and the Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Molecular Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
2
|
Ahmed-Seghir S, Jalan M, Grimsley HE, Sharma A, Twayana S, Kosiyatrakul ST, Thompson C, Schildkraut CL, Powell SN. A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534293. [PMID: 36993263 PMCID: PMC10055377 DOI: 10.1101/2023.03.26.534293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
When replication forks encounter DNA lesions that cause polymerase stalling a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood. We utilized the E.coli -based Tus- Ter system in human MCF7 cells and showed that the Tus protein binding to TerB sequences creates an efficient site-specific RFB. The single fork RFB was sufficient to activate a local, but not global, ATR-dependent checkpoint response that leads to phosphorylation and accumulation of DNA damage sensor protein γH2AX, confined locally to within a kilobase of the site of stalling. These data support a model of local management of fork stalling, which allows global replication at sites other than the RFB to continue to progress without delay.
Collapse
|
3
|
Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, Chew YC, Guo W, Yang X, Maybury-Lewis S, Tian X, Ross JM, Coppotelli G, Meer MV, Rogers-Hammond R, Vera DL, Lu YR, Pippin JW, Creswell ML, Dou Z, Xu C, Mitchell SJ, Das A, O'Connell BL, Thakur S, Kane AE, Su Q, Mohri Y, Nishimura EK, Schaevitz L, Garg N, Balta AM, Rego MA, Gregory-Ksander M, Jakobs TC, Zhong L, Wakimoto H, El Andari J, Grimm D, Mostoslavsky R, Wagers AJ, Tsubota K, Bonasera SJ, Palmeira CM, Seidman JG, Seidman CE, Wolf NS, Kreiling JA, Sedivy JM, Murphy GF, Green RE, Garcia BA, Berger SL, Oberdoerffer P, Shankland SJ, Gladyshev VN, Ksander BR, Pfenning AR, Rajman LA, Sinclair DA. Loss of epigenetic information as a cause of mammalian aging. Cell 2023; 186:305-326.e27. [PMID: 36638792 PMCID: PMC10166133 DOI: 10.1016/j.cell.2022.12.027] [Citation(s) in RCA: 306] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 08/09/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.
Collapse
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| | - Motoshi Hayano
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Patrick T Griffin
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - João A Amorim
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Michael S Bonkowski
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - John K Apostolides
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elias L Salfati
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | | | - Mital Bhakta
- Cantata/Dovetail Genomics, Scotts Valley, CA, USA
| | | | - Wei Guo
- Zymo Research Corporation, Irvine, CA, USA
| | | | - Sun Maybury-Lewis
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jaime M Ross
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Giuseppe Coppotelli
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Margarita V Meer
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Ryan Rogers-Hammond
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Daniel L Vera
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Michael L Creswell
- Division of Nephrology, University of Washington, Seattle, WA, USA; Georgetown University School of Medicine, Washington, DC, USA
| | - Zhixun Dou
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Caiyue Xu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abhirup Das
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Pharmacology, UNSW, Sydney, NSW, Australia
| | | | - Sachin Thakur
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Alice E Kane
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Neha Garg
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Ana-Maria Balta
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Meghan A Rego
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | - Tatjana C Jakobs
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | | | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | - Amy J Wagers
- Paul F. Glenn Center for Biology of Aging Research, Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Joslin Diabetes Center, Boston, MA, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stephen J Bonasera
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE, USA
| | - Carlos M Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | - Norman S Wolf
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - George F Murphy
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard E Green
- Department of Biomolecular Engineering, UCSC, Santa Cruz, CA, USA
| | - Benjamin A Garcia
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Bruce R Ksander
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Luis A Rajman
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| |
Collapse
|
4
|
Benamozig O, Baudrier L, Billon P. A detection method for the capture of genomic signatures: From disease diagnosis to genome editing. Methods Enzymol 2021; 661:251-282. [PMID: 34776215 DOI: 10.1016/bs.mie.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Variations in the genetic information originate from errors during DNA replication, error-prone repair of DNA damages, or genome editing. The most common approach to detect changes in DNA sequences employs sequencing technologies. However, they remain expensive and time-consuming, limiting their utility for routine laboratory experiments. We recently developed DinucleoTidE Signature CapTure (DTECT). DTECT is a marker-free and versatile detection method that captures targeted dinucleotide signatures resulting from the digestion of genomic amplicons by the type IIS restriction enzyme AcuI. Here, we describe the DTECT protocol to identify mutations introduced by CRISPR-based precision genome editing technologies or resulting from genetic variation. DTECT enables accurate detection of mutations using basic laboratory equipment and off-the-shelf reagents with qualitative or quantitative capture of signatures.
Collapse
Affiliation(s)
- Orléna Benamozig
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, Calgary, AB, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Lou Baudrier
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, Calgary, AB, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Pierre Billon
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, Calgary, AB, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada.
| |
Collapse
|
5
|
Ouyang J, Yadav T, Zhang JM, Yang H, Rheinbay E, Guo H, Haber DA, Lan L, Zou L. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 2021; 594:283-288. [PMID: 33981036 PMCID: PMC8855348 DOI: 10.1038/s41586-021-03538-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) in the S and G2 phases of the cell cycle1-3. Several HR proteins are preferentially recruited to DSBs at transcriptionally active loci4-10, but how transcription promotes HR is poorly understood. Here we develop an assay to assess the effect of local transcription on HR. Using this assay, we find that transcription stimulates HR to a substantial extent. Tethering RNA transcripts to the vicinity of DSBs recapitulates the effects of local transcription, which suggests that transcription enhances HR through RNA transcripts. Tethered RNA transcripts stimulate HR in a sequence- and orientation-dependent manner, indicating that they function by forming DNA-RNA hybrids. In contrast to most HR proteins, RAD51-associated protein 1 (RAD51AP1) only promotes HR when local transcription is active. RAD51AP1 drives the formation of R-loops in vitro and is required for tethered RNAs to stimulate HR in cells. Notably, RAD51AP1 is necessary for the DSB-induced formation of DNA-RNA hybrids in donor DNA, linking R-loops to D-loops. In vitro, RAD51AP1-generated R-loops enhance the RAD51-mediated formation of D-loops locally and give rise to intermediates that we term 'DR-loops', which contain both DNA-DNA and DNA-RNA hybrids and favour RAD51 function. Thus, at DSBs in transcribed regions, RAD51AP1 promotes the invasion of RNA transcripts into donor DNA, and stimulates HR through the formation of DR-loops.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Esther Rheinbay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Hongshan Guo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Ventura JA, Donoghue JF, Nowell CJ, Cann LM, Day LRJ, Smyth LML, Forrester HB, Rogers PAW, Crosbie JC. The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose. Int J Radiat Biol 2021; 97:642-656. [PMID: 33617395 DOI: 10.1080/09553002.2021.1893854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE γH2AX biodosimetry has been proposed as an alternative dosimetry method for microbeam radiation therapy (MRT) because conventional dosimeters, such as ionization chambers, lack the spatial resolution required to accurately measure the MRT valley dose. Here we investigated whether γH2AX biodosimetry should be used to measure the biological valley dose of MRT-irradiated mammalian cells. MATERIALS AND METHODS We irradiated human skin fibroblasts and mouse skin flaps with synchrotron MRT and broad beam (BB) radiation. BB doses of 1-5 Gy were used to generate a calibration curve in order to estimate the biological MRT valley dose using the γH2AX assay. RESULTS Our key finding was that MRT induced a non-linear dose response compared to BB, where doses 2-3 times greater showed the same level of DNA DSB damage in the valley in cell and tissue studies. This indicates that γH2AX may not be an appropriate biodosimeter to estimate the biological valley doses of MRT-irradiated samples. We also established foci yields of 5.9 ± 0 . 04 and 27.4 ± 2 . 5 foci/cell/Gy in mouse skin tissue and human fibroblasts respectively, induced by BB. Using Monte Carlo simulations, a linear dose response was seen in cell and tissue studies and produced predicted peak-to-valley dose ratios (PVDRs) of ∼30 and ∼107 for human fibroblasts and mouse skin tissue respectively. CONCLUSIONS Our report highlights novel MRT radiobiology, attempts to explain why γH2AX may not be an appropriate biodosimeter and suggests further studies aimed at revealing the biological and cellular communication mechanisms that drive the normal tissue sparing effect, which is characteristic of MRT.
Collapse
Affiliation(s)
- Jessica A Ventura
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Leonie M Cann
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Liam R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - Lloyd M L Smyth
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Helen B Forrester
- School of Science, RMIT University, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
7
|
Özgün Köse S, Öziç C, Yılmaz F, Ersöz A, Say R. DNA ligase photocrosslinked cryogenic column based biotinylation kit for viral hybridization and detection. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhu Y, Biernacka A, Pardo B, Dojer N, Forey R, Skrzypczak M, Fongang B, Nde J, Yousefi R, Pasero P, Ginalski K, Rowicka M. qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nat Commun 2019; 10:2313. [PMID: 31127121 PMCID: PMC6534554 DOI: 10.1038/s41467-019-10332-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/30/2019] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most lethal types of DNA damage and frequently cause genome instability. Sequencing-based methods for mapping DSBs have been developed but they allow measurement only of relative frequencies of DSBs between loci, which limits our understanding of the physiological relevance of detected DSBs. Here we propose quantitative DSB sequencing (qDSB-Seq), a method providing both DSB frequencies per cell and their precise genomic coordinates. We induce spike-in DSBs by a site-specific endonuclease and use them to quantify detected DSBs (labeled, e.g., using i-BLESS). Utilizing qDSB-Seq, we determine numbers of DSBs induced by a radiomimetic drug and replication stress, and reveal two orders of magnitude differences in DSB frequencies. We also measure absolute frequencies of Top1-dependent DSBs at natural replication fork barriers. qDSB-Seq is compatible with various DSB labeling methods in different organisms and allows accurate comparisons of absolute DSB frequencies across samples.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Anna Biernacka
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Benjamin Pardo
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, 141 rue de la Cardonille, Montpellier, 34396, France
| | - Norbert Dojer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA
- Institute of Informatics, University of Warsaw, Stefana Banacha 2, 02-097, Warsaw, Poland
| | - Romain Forey
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, 141 rue de la Cardonille, Montpellier, 34396, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Bernard Fongang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Jules Nde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Razie Yousefi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, 141 rue de la Cardonille, Montpellier, 34396, France
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA.
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, Texas, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
9
|
Abstract
CRISPR technology has opened a new era of genome interrogation and genome engineering. Discovered in bacteria, where it protects against bacteriophage by cleaving foreign nucleic acid sequences, the CRISPR system has been repurposed as an adaptable tool for genome editing and multiple other applications. CRISPR's ease of use, precision, and versatility have led to its widespread adoption, accelerating biomedical research and discovery in human cells and model organisms. Here we review CRISPR-based tools and discuss how they are being applied to decode the genetic circuits that control immune function in health and disease. Genetic variation in immune cells can affect autoimmune disease risk, infectious disease pathogenesis, and cancer immunotherapies. CRISPR provides unprecedented opportunities for functional mechanistic studies of coding and noncoding genome sequence function in immunity. Finally, we discuss the potential of CRISPR technology to engineer synthetic cellular immunotherapies for a wide range of human diseases.
Collapse
Affiliation(s)
- Dimitre R Simeonov
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA; .,Diabetes Center, University of California, San Francisco, California 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA; .,Diabetes Center, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, California 94720, USA.,Department of Medicine, University of California, San Francisco, California 94143, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| |
Collapse
|
10
|
Hellmuth S, Gutiérrez-Caballero C, Llano E, Pendás AM, Stemmann O. Local activation of mammalian separase in interphase promotes double-strand break repair and prevents oncogenic transformation. EMBO J 2018; 37:embj.201899184. [PMID: 30305303 DOI: 10.15252/embj.201899184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Separase halves eukaryotic chromosomes in M-phase by cleaving cohesin complexes holding sister chromatids together. Whether this essential protease functions also in interphase and/or impacts carcinogenesis remains largely unknown. Here, we show that mammalian separase is recruited to DNA double-strand breaks (DSBs) where it is activated to locally cleave cohesin and facilitate homology-directed repair (HDR). Inactivating phosphorylation of its NES, arginine methylation of its RG-repeats, and sumoylation redirect separase from the cytosol to DSBs. In vitro assays suggest that DNA damage response-relevant ATM, PRMT1, and Mms21 represent the corresponding kinase, methyltransferase, and SUMO ligase, respectively. SEPARASE heterozygosity not only debilitates HDR but also predisposes primary embryonic fibroblasts to neoplasia and mice to chemically induced skin cancer. Thus, tethering of separase to DSBs and confined cohesin cleavage promote DSB repair in G2 cells. Importantly, this conserved interphase function of separase protects mammalian cells from oncogenic transformation.
Collapse
Affiliation(s)
| | | | - Elena Llano
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.,Departamento de Fisiología, Universidad de Salamanca, Salamanca, Spain
| | - Alberto M Pendás
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
11
|
Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat Commun 2018; 9:533. [PMID: 29416069 PMCID: PMC5803260 DOI: 10.1038/s41467-018-02894-w] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Ataxia with oculomotor apraxia 2 (AOA-2) and amyotrophic lateral sclerosis (ALS4) are neurological disorders caused by mutations in the gene encoding for senataxin (SETX), a putative RNA:DNA helicase involved in transcription and in the maintenance of genome integrity. Here, using ChIP followed by high throughput sequencing (ChIP-seq), we report that senataxin is recruited at DNA double-strand breaks (DSBs) when they occur in transcriptionally active loci. Genome-wide mapping unveiled that RNA:DNA hybrids accumulate on DSB-flanking chromatin but display a narrow, DSB-induced, depletion near DNA ends coinciding with senataxin binding. Although neither required for resection nor for timely repair of DSBs, senataxin was found to promote Rad51 recruitment, to minimize illegitimate rejoining of distant DNA ends and to sustain cell viability following DSB production in active genes. Our data suggest that senataxin functions at DSBs in order to limit translocations and ensure cell viability, providing new insights on AOA2/ALS4 neuropathies.
Collapse
|
12
|
Lu WT, Hawley BR, Skalka GL, Baldock RA, Smith EM, Bader AS, Malewicz M, Watts FZ, Wilczynska A, Bushell M. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun 2018; 9:532. [PMID: 29416038 PMCID: PMC5803274 DOI: 10.1038/s41467-018-02893-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.
Collapse
Affiliation(s)
- Wei-Ting Lu
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ben R Hawley
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Robert A Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15232, PA, USA
| | - Ewan M Smith
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Aldo S Bader
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, UK
| | | | - Martin Bushell
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
13
|
Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature 2018; 554:112-117. [PMID: 29364875 DOI: 10.1038/nature25449] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.
Collapse
|
14
|
A damaged genome's transcriptional landscape through multilayered expression profiling around in situ-mapped DNA double-strand breaks. Nat Commun 2017; 8:15656. [PMID: 28561034 PMCID: PMC5499205 DOI: 10.1038/ncomms15656] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Of the many types of DNA damage, DNA double-strand breaks (DSBs) are probably the most deleterious. Mounting evidence points to an intricate relationship between DSBs and transcription. A cell system in which the impact on transcription can be investigated at precisely mapped genomic DSBs is essential to study this relationship. Here in a human cell line, we map genome-wide and at high resolution the DSBs induced by a restriction enzyme, and we characterize their impact on gene expression by four independent approaches by monitoring steady-state RNA levels, rates of RNA synthesis, transcription initiation and RNA polymerase II elongation. We consistently observe transcriptional repression in proximity to DSBs. Downregulation of transcription depends on ATM kinase activity and on the distance from the DSB. Our study couples for the first time, to the best of our knowledge, high-resolution mapping of DSBs with multilayered transcriptomics to dissect the events shaping gene expression after DSB induction at multiple endogenous sites. DNA double strand breaks (DSBs) are among the most deleterious types of damage and there is strong evidence indicating a relationship between breaks and transcription. Here the authors provide a high-resolution, genome-wide map of induced DSBs and observe ATM-dependent transcriptional repression.
Collapse
|
15
|
Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol 2017; 24:353-361. [PMID: 28263325 PMCID: PMC5385132 DOI: 10.1038/nsmb.3387] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/07/2017] [Indexed: 12/29/2022]
Abstract
The ability of DNA Double Strand Breaks (DSBs) to cluster in mammalian cells has been subjected to intense debate over the past few years. Here we used a high throughput chromosome conformation capture assay (Capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. We unambiguously found that DSBs do cluster but only when induced in transcriptionally active genes. Clustering of damaged genes mainly occurs during the G1 cell cycle phase and coincides with delayed repair. Moreover DSB clustering depends on the MRN complex, as well as the Formin 2 (FMN2) nuclear actin organizer and the LINC (LInker of Nuclear and Cytoplasmic skeleton) complex, suggesting that active mechanisms promote DSB clustering. This work reveals that when damaged, active genes exhibit a very peculiar behavior compared to the rest of the genome, being mostly left unrepaired and clustered in G1 while being repaired by homologous recombination in post-replicative cells.
Collapse
|
16
|
Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Sci Rep 2017; 7:43598. [PMID: 28256581 PMCID: PMC5335570 DOI: 10.1038/srep43598] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells.
Collapse
|
17
|
Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA. WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun 2016; 7:13785. [PMID: 27922005 PMCID: PMC5150655 DOI: 10.1038/ncomms13785] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Werner syndrome (WS) is an accelerated ageing disorder with genomic instability caused by WRN protein deficiency. Many features seen in WS can be explained by the diverse functions of WRN in DNA metabolism. However, the origin of the large genomic deletions and telomere fusions are not yet understood. Here, we report that WRN regulates the pathway choice between classical (c)- and alternative (alt)-nonhomologous end joining (NHEJ) during DNA double-strand break (DSB) repair. It promotes c-NHEJ via helicase and exonuclease activities and inhibits alt-NHEJ using non-enzymatic functions. When WRN is recruited to the DSBs it suppresses the recruitment of MRE11 and CtIP, and protects the DSBs from 5′ end resection. Moreover, knockdown of Wrn, alone or in combination with Trf2 in mouse embryonic fibroblasts results in increased telomere fusions, which were ablated by Ctip knockdown. We show that WRN regulates alt-NHEJ and shields DSBs from MRE11/CtIP-mediated resection to prevent large deletions and telomere fusions. Werner Syndrome is an accelerated aging disorder marked by genome instability, large deletions and telomere fusions, hallmarks of aberrant DNA repair. Here the authors report a role for the WRN helicase in regulating the choice between classical and alternative non-homologous end-joning.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Huiming Lu
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Jessica K de Freitas
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Jane Tian
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| |
Collapse
|
18
|
Caron P, Choudjaye J, Clouaire T, Bugler B, Daburon V, Aguirrebengoa M, Mangeat T, Iacovoni JS, Álvarez-Quilón A, Cortés-Ledesma F, Legube G. Non-redundant Functions of ATM and DNA-PKcs in Response to DNA Double-Strand Breaks. Cell Rep 2015; 13:1598-609. [PMID: 26586426 PMCID: PMC4670905 DOI: 10.1016/j.celrep.2015.10.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/04/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022] Open
Abstract
DNA double-strand breaks (DSBs) elicit the so-called DNA damage response (DDR), largely relying on ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PKcs), two members of the PI3K-like kinase family, whose respective functions during the sequential steps of the DDR remains controversial. Using the DIvA system (DSB inducible via AsiSI) combined with high-resolution mapping and advanced microscopy, we uncovered that both ATM and DNA-PKcs spread in cis on a confined region surrounding DSBs, independently of the pathway used for repair. However, once recruited, these kinases exhibit non-overlapping functions on end joining and γH2AX domain establishment. More specifically, we found that ATM is required to ensure the association of multiple DSBs within "repair foci." Our results suggest that ATM acts not only on chromatin marks but also on higher-order chromatin organization to ensure repair accuracy and survival.
Collapse
Affiliation(s)
- Pierre Caron
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France
| | - Jonathan Choudjaye
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France
| | - Thomas Clouaire
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France
| | - Béatrix Bugler
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France
| | - Virginie Daburon
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France
| | - Thomas Mangeat
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France
| | - Jason S Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse Cedex 4, France
| | - Alejandro Álvarez-Quilón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla, Sevilla 41092, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla, Sevilla 41092, Spain
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, 118 route de Narbonne, 31062 Toulouse, France; CNRS, LBCMCP, 31062 Toulouse, France.
| |
Collapse
|
19
|
Zhou Y, Paull TT. Direct measurement of single-stranded DNA intermediates in mammalian cells by quantitative polymerase chain reaction. Anal Biochem 2015; 479:48-50. [PMID: 25841672 DOI: 10.1016/j.ab.2015.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022]
Abstract
Single-stranded DNA (ssDNA) intermediates are formed in multiple cellular processes, including DNA replication and recombination. Here, we describe a quantitative polymerase chain reaction (qPCR)-based assay to quantitate ssDNA intermediates, specifically the 3' ssDNA product of resection at specific DNA double-strand breaks induced by the AsiSI restriction enzyme in human cells. We protect the large mammalian genome from shearing by embedding the cells in low-gelling-point agar during genomic DNA extraction and measure the levels of ssDNA intermediates by qPCR following restriction enzyme digestion. This assay is more quantitative and precise compared with existing immunofluorescence-based methods.
Collapse
Affiliation(s)
- Yi Zhou
- Howard Hughes Medical Institute, Department of Molecular Biosciences, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Abstract
The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Xuebing Wu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea J. Kriz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A. Sharp
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, Legube G. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol 2014; 21:366-74. [PMID: 24658350 PMCID: PMC4300393 DOI: 10.1038/nsmb.2796] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 12/17/2022]
Abstract
Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.
Collapse
Affiliation(s)
- François Aymard
- 1] Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse, Université Paul Sabatier, Toulouse, France. [2] CNRS, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Toulouse, France
| | - Beatrix Bugler
- 1] Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse, Université Paul Sabatier, Toulouse, France. [2] CNRS, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Toulouse, France
| | - Christine K Schmidt
- 1] Gurdon Institute, University of Cambridge, Cambridge, UK. [2] Department of Biochemistry, University of Cambridge, Cambridge, UK. [3] Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Emmanuelle Guillou
- 1] Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse, Université Paul Sabatier, Toulouse, France. [2] CNRS, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Toulouse, France
| | - Pierre Caron
- 1] Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse, Université Paul Sabatier, Toulouse, France. [2] CNRS, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Toulouse, France
| | - Sébastien Briois
- 1] Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse, Université Paul Sabatier, Toulouse, France. [2] CNRS, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Toulouse, France
| | - Jason S Iacovoni
- Bioinformatic Plateau I2MC, INSERM, University of Toulouse, Toulouse, France
| | - Virginie Daburon
- 1] Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse, Université Paul Sabatier, Toulouse, France. [2] CNRS, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Toulouse, France
| | - Kyle M Miller
- 1] Gurdon Institute, University of Cambridge, Cambridge, UK. [2]
| | - Stephen P Jackson
- 1] Gurdon Institute, University of Cambridge, Cambridge, UK. [2] Department of Biochemistry, University of Cambridge, Cambridge, UK. [3] Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Gaëlle Legube
- 1] Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université de Toulouse, Université Paul Sabatier, Toulouse, France. [2] CNRS, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Toulouse, France
| |
Collapse
|