1
|
Biasetti L, Rey S, Fowler M, Ratnayaka A, Fennell K, Smith C, Marshall K, Hall C, Vargas-Caballero M, Serpell L, Staras K. Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cereb Cortex 2023; 33:1263-1276. [PMID: 35368053 PMCID: PMC9930632 DOI: 10.1093/cercor/bhac134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is linked to increased levels of amyloid beta (Aβ) in the brain, but the mechanisms underlying neuronal dysfunction and neurodegeneration remain enigmatic. Here, we investigate whether organizational characteristics of functional presynaptic vesicle pools, key determinants of information transmission in the central nervous system, are targets for elevated Aβ. Using an optical readout method in cultured hippocampal neurons, we show that acute Aβ42 treatment significantly enlarges the fraction of functional vesicles at individual terminals. We observe the same effect in a chronically elevated Aβ transgenic model (APPSw,Ind) using an ultrastructure-function approach that provides detailed information on nanoscale vesicle pool positioning. Strikingly, elevated Aβ is correlated with excessive accumulation of recycled vesicles near putative endocytic sites, which is consistent with deficits in vesicle retrieval pathways. Using the glutamate reporter, iGluSnFR, we show that there are parallel functional consequences, where ongoing information signaling capacity is constrained. Treatment with levetiracetam, an antiepileptic that dampens synaptic hyperactivity, partially rescues these transmission defects. Our findings implicate organizational and dynamic features of functional vesicle pools as targets in Aβ-driven synaptic impairment, suggesting that interventions to relieve the overloading of vesicle retrieval pathways might have promising therapeutic value.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- National Physical Laboratory, Middlesex, TW11 0LW, United Kingdom
| | - Milena Fowler
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Arjuna Ratnayaka
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
- Faculty of Medicine, University of Southampton, SO17 1BJ, United Kingdom
| | - Kate Fennell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Karen Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Catherine Hall
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Mariana Vargas-Caballero
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
2
|
Harper CB, Smillie KJ. Current molecular approaches to investigate pre-synaptic dysfunction. J Neurochem 2021; 157:107-129. [PMID: 33544872 DOI: 10.1111/jnc.15316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Over the course of the last few decades it has become clear that many neurodevelopmental and neurodegenerative disorders have a synaptic defect, which contributes to pathogenicity. A rise in new techniques, and in particular '-omics'-based methods providing large datasets, has led to an increase in potential proteins and pathways implicated in synaptic function and related disorders. Additionally, advancements in imaging techniques have led to the recent discovery of alternative modes of synaptic vesicle recycling. This has resulted in a lack of clarity over the precise role of different pathways in maintaining synaptic function and whether these new pathways are dysfunctional in neurodevelopmental and neurodegenerative disorders. A greater understanding of the molecular detail of pre-synaptic function in health and disease is key to targeting new proteins and pathways for novel treatments and the variety of new techniques currently available provides an ideal opportunity to investigate these functions. This review focuses on techniques to interrogate pre-synaptic function, concentrating mainly on synaptic vesicle recycling. It further examines techniques to determine the underlying molecular mechanism of pre-synaptic dysfunction and discusses methods to identify molecular targets, along with protein-protein interactions and cellular localization. In combination, these techniques will provide an expanding and more complete picture of pre-synaptic function. With the application of recent technological advances, we are able to resolve events with higher spatial and temporal resolution, leading research towards a greater understanding of dysfunction at the presynapse and the role it plays in pathogenicity.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
3
|
Rey S, Marra V, Smith C, Staras K. Nanoscale Remodeling of Functional Synaptic Vesicle Pools in Hebbian Plasticity. Cell Rep 2021; 30:2006-2017.e3. [PMID: 32049027 PMCID: PMC7016504 DOI: 10.1016/j.celrep.2020.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Vesicle pool properties are known determinants of synaptic efficacy, but their potential role as modifiable substrates in forms of Hebbian plasticity is still unclear. Here, we investigate this using a nanoscale readout of functionally recycled vesicles in natively wired hippocampal CA3→CA1 circuits undergoing long-term potentiation (LTP). We show that the total recycled vesicle pool is larger after plasticity induction, with the smallest terminals exhibiting the greatest relative expansion. Changes in the spatial organization of vesicles accompany potentiation including a specific increase in the number of recycled vesicles at the active zone, consistent with an ultrastructural remodeling component of synaptic strengthening. The cAMP-PKA pathway activator, forskolin, selectively mimics some features of LTP-driven changes, suggesting that distinct and independent modules of regulation accompany plasticity expression. Our findings provide evidence for a presynaptic locus of LTP encoded in the number and arrangement of functionally recycled vesicles, with relevance for models of long-term plasticity storage.
Collapse
Affiliation(s)
- Stephanie Rey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester L1 7RH, United Kingdom
| | - Catherine Smith
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Kevin Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
4
|
Vannini E, Restani L, Dilillo M, McDonnell LA, Caleo M, Marra V. Synaptic Vesicles Dynamics in Neocortical Epilepsy. Front Cell Neurosci 2020; 14:606142. [PMID: 33362472 PMCID: PMC7758433 DOI: 10.3389/fncel.2020.606142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
Neuronal hyperexcitability often results from an unbalance between excitatory and inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure propensity are only partly understood. Taking advantage of a mouse model of neocortical epilepsy, we used a combination of photoconversion and electron microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses reveal that epileptic networks show an early onset lengthening of active zones at inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles at excitatory synapses. Proteomics of synaptic content indicate that specific proteins were increased in epileptic mice. Altogether, our data reveal a complex landscape of nanoscale changes affecting the epileptic synaptic release machinery. In particular, our findings show that an altered positioning of release-competent vesicles represent a novel signature of epileptic networks.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom.,Fondazione Umberto Veronesi, Milan, Italy
| | - Laura Restani
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Dobson KL, Howe CL, Nishimura Y, Marra V. Dedicated Setup for the Photoconversion of Fluorescent Dyes for Functional Electron Microscopy. Front Cell Neurosci 2019; 13:312. [PMID: 31417358 PMCID: PMC6681119 DOI: 10.3389/fncel.2019.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 11/22/2022] Open
Abstract
Here, we describe a cost-effective setup for targeted photoconversion of fluorescent signals into electron dense ones. This approach has offered invaluable insights in the morphology and function of fine neuronal structures. The technique relies on the localized oxidation of diaminobenzidine (DAB) mediated by excited fluorophores. This paper includes a detailed description of how to build a simple photoconversion setup that can increase reliability and throughput of this well-established technique. The system described here, is particularly well-suited for thick neuronal tissue, where light penetration and oxygen diffusion may be limiting DAB oxidation. To demonstrate the system, we use Correlative Light and Electron Microscopy (CLEM) to visualize functionally-labeled individual synaptic vesicles released onto an identified layer 5 neuron in an acute cortical slice. The setup significantly simplifies the photoconversion workflow, increasing the depth of photoillumination, improving the targeting of the region of interest and reducing the time required to process each individual sample. We have tested this setup extensively for the photoconversion of FM 1-43FX and Lucifer Yellow both excited at 473 nm. In principle, the system can be adapted to any dye or nanoparticle able to oxidize DAB when excited by a specific wavelength of light.
Collapse
Affiliation(s)
- Katharine L. Dobson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carmel L. Howe
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Yuri Nishimura
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
6
|
Dobson KL, Smith ZH, Bellamy TC. Distribution of vesicle pools in cerebellar parallel fibre terminals after depression of ectopic transmission. PLoS One 2018; 13:e0200937. [PMID: 30024947 PMCID: PMC6053221 DOI: 10.1371/journal.pone.0200937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/05/2018] [Indexed: 11/18/2022] Open
Abstract
At parallel fibre terminals in the cerebellar cortex, glutamate released outside of the active zone can activate AMPA receptors on juxtaposed Bergmann glial cell processes. This process is termed “ectopic” release, and allows for directed transmission to astroglial cells that is functionally independent of synaptic transmission to postsynaptic Purkinje neurons. The location of ectopic sites in presynaptic terminals is uncertain. Functional evidence suggests that stimulation of parallel fibres at 1 Hz exhausts ectopic transmission due to a failure to rapidly recycle vesicles to the ectopic pool, and so would predict a loss of vesicles in the near vicinity of extrasynaptic glial processes. In this study we used this stimulation protocol to investigate whether the distribution of vesicles within the presynaptic terminal is altered after suppression of ectopic release. Stimulation at 1 Hz had only a minor impact on the distribution of vesicles in presynaptic terminals when analysed with electron microscopy. Vesicle number and terminal size were unaffected by 1 Hz stimulation, but the relative abundance of vesicles in close proximity to the active zone was marginally reduced. In contrast, the fraction of vesicles facing glial membranes was unchanged after suppression of ectopic transmission. 1 Hz stimulation also resulted in a small but statistically-significant increase in the distance between glial membrane and presynaptic terminal, suggesting withdrawal of glial membranes from synapses is detectable in ultrastructural anatomy within minutes. These results raise doubts about the location of ectopic release sites, but indicate that neuron-glial association varies on a dynamic time scale.
Collapse
Affiliation(s)
- Katharine L. Dobson
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
- * E-mail:
| | - Zoe H. Smith
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Tomas C. Bellamy
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| |
Collapse
|
7
|
Abstract
Neurons and their function of conveying information across a chemical synapse are highly regulated systems. Impacts on their functional viability can occur independently from changes in morphology. Here we describe a method to assess the size of synaptic vesicle pools using live cell fluorescence imaging and a genetically encoded probe (pHluorin). Assessing functional parameters such as the size of synaptic vesicle pools can be a valuable addition to common assays of neuronal cell viability as they demonstrate that key cellular functions are intact.
Collapse
|
8
|
Li WH. Probes for monitoring regulated exocytosis. Cell Calcium 2017; 64:65-71. [PMID: 28089267 DOI: 10.1016/j.ceca.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 12/12/2022]
Abstract
Regulated secretion is a fundamental cellular process that serves diverse functions in neurobiology, endocrinology, immunology, and numerous other aspects of animal physiology. In response to environmental or biological cues, cells release contents of secretory granules into an extracellular medium to communicate with or impact neighboring or distant cells through paracrine or endocrine signaling. To investigate mechanisms governing stimulus-secretion coupling, to better understand how cells maintain or regulate their secretory activity, and to characterize secretion defects in human diseases, probes for tracking various exocytotic events at the cellular or sub-cellular level have been developed over the years. This review summarizes different strategies and recent progress in developing optical probes for monitoring regulated secretion in mammalian cells.
Collapse
Affiliation(s)
- Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, United States.
| |
Collapse
|
9
|
Jensen KHR, Berg RW. CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Sci Rep 2016; 6:32674. [PMID: 27597115 PMCID: PMC5011694 DOI: 10.1038/srep32674] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
Fluorescent lipophilic dyes, such as DiI, stain cellular membranes and are used extensively for retrograde/anterograde labeling of neurons as well as for marking the position of extracellular electrodes after electrophysiology. Convenient histological clearing techniques, such as CLARITY, enable immunostaining and imaging of large volumes for 3D-reconstruction. However, such clearing works by removing lipids and, as an unintended consequence, also removes lipophilic dyes. To remedy this wash-out, the molecular structure of the dye can be altered to adhere to both membranes and proteins so the dye remains in the tissue after lipid–clearing. Nevertheless, the capacity of such modified dyes to remain in tissue has not yet been tested. Here, we test dyes with molecular modifications that make them aldehyde-fixable to proteins. We use three Dil–analogue dyes, CM-DiI, SP-DiI and FM 1–43FX that are modified to be CLARITY-compatible candidates. We use the challenging adult, myelin-rich spinal cord tissue, which requires prolonged lipid–clearing, of rats and mice. All three dyes remained in the tissue after lipid–clearing, but CM-DiI had the sharpest and FM 1–43FX the strongest fluorescent signal.
Collapse
Affiliation(s)
- Kristian H R Jensen
- University of Copenhagen, Department of Neuroscience and Pharmacology, Copenhagen, DK-2200, Denmark
| | - Rune W Berg
- University of Copenhagen, Department of Neuroscience and Pharmacology, Copenhagen, DK-2200, Denmark
| |
Collapse
|
10
|
Rey SA, Smith CA, Fowler MW, Crawford F, Burden JJ, Staras K. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses. Nat Commun 2015; 6:8043. [PMID: 26292808 PMCID: PMC4560786 DOI: 10.1038/ncomms9043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/11/2015] [Indexed: 12/24/2022] Open
Abstract
Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution.
Collapse
Affiliation(s)
- Stephanie A Rey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | - Milena W Fowler
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Freya Crawford
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Jemima J Burden
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kevin Staras
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|