1
|
Attou A, Zülske T, Wedemann G. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions. Biophys J 2022; 121:4788-4799. [PMID: 36325618 PMCID: PMC9811664 DOI: 10.1016/j.bpj.2022.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The spatial organization of the eukaryotic genome plays an important role in regulating transcriptional activity. In the nucleus, chromatin forms loops that assemble into fundamental units called topologically associating domains that facilitate or inhibit long-range contacts. These loops are formed and held together by the ring-shaped cohesin protein complex, and this can involve binding of CCCTC-binding factor (CTCF). High-resolution conformation capture experiments provide the frequency at which two DNA fragments physically associate in three-dimensional space. However, technical limitations of this approach, such as low throughput, low resolution, or noise in contact maps, make data interpretation and identification of chromatin intraloop contacts, e.g., between distal regulatory elements and their target genes, challenging. Herein, an existing coarse-grained model of chromatin at single-nucleosome resolution was extended by integrating potentials describing CTCF and cohesin. We performed replica-exchange Monte Carlo simulations with regularly spaced nucleosomes and experimentally determined nucleosome positions in the presence of cohesin-CTCF, as well as depleted systems as controls. In fully extruded loops caused by the presence of cohesin and CTCF, the number of contacts within the formed loops was increased. The number and types of these contacts were impacted by the nucleosome distribution and loop size. Microloops were observed within cohesin-mediated loops due to thermal fluctuations without additional influence of other factors, and the number, size, and shape of microloops were determined by nucleosome distribution and loop size. Nucleosome positions directly affect the spatial structure and contact probability within a loop, with presumed consequences for transcriptional activity.
Collapse
Affiliation(s)
- Aymen Attou
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Tilo Zülske
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Gero Wedemann
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.
| |
Collapse
|
2
|
Abstract
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
Collapse
Affiliation(s)
- Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Knoch TA. How Genomes Emerge, Function, and Evolve: Living Systems Emergence-Genotype-Phenotype-Multilism-Genome/Systems Ecology. Results Probl Cell Differ 2022; 70:103-156. [PMID: 36348106 DOI: 10.1007/978-3-031-06573-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
What holds together the world in its innermost, what life is, how it emerges, functions, and evolves, has not only been an epic matter of endless romantic sunset poetry and philosophy, but also manifests explicitly in its perhaps most central organization unit-genomes. Their 3D architecture and dynamics, including the interaction networks of regulatory elements, obviously co-evolved as inseparable systems allowing the physical storage, expression, and replication of genetic information. Since we were able to fill finally the much-debated centennial gaps in their 3D architecture and dynamics, now entire new perspectives open beyond epigenetics reaching as far as a general understanding of living systems: besides the previously known DNA double helix and nucleosome structure, the latter compact into a chromatin quasi-fibre folded into stable loops forming stable multi-loop aggregates/rosettes connected by linkers, creating hence the again already known chromosome arms and entire chromosomes forming the cell nucleus. Instantly and for the first time this leads now to a consistent and cross-proven systems statistical mechanics genomics framework elucidating genome intrinsic function and regulation including various components. It balances stability/flexibility ensuring genome integrity, enabling expression/regulation of genetic information, as well as genome replication/spread. Furthermore, genotype and phenotype are multiplisticly entangled being evolutionarily the outcome of both Darwinian natural selection and Lamarckian self-referenced manipulation-all embedded in even broader genome ecology (autopoietic) i(!)n- and environmental scopes. This allows formulating new meta-level functional semantics of genomics, i.e. notions as communication of genes, genomes, and information networks, architectural and dynamic spaces for creativity and innovation, or genomes as central geno-/phenotype entanglements. Beyond and most fundamentally, the paradoxical-seeming local equilibrium substance stability in its entity though far from a universal heat-death-like equilibrium is solved, and system irreversibility, time directionality, and thus the emergence of existence are clarified. Consequently, real deep understandings of genomes, life, and complex systems in general appear in evolutionary perspectives as well as from systems analyses, via system damage/disease (its repair/cure and manipulation) as far as the understanding of extraterrestrial life, the de novo creation and thus artificial life, and even the raison d'etre.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
4
|
Birkhoff JC, Brouwer RWW, Kolovos P, Korporaal AL, Bermejo-Santos A, Boltsis I, Nowosad K, van den Hout MCGN, Grosveld FG, van IJcken WFJ, Huylebroeck D, Conidi A. Targeted chromatin conformation analysis identifies novel distal neural enhancers of ZEB2 in pluripotent stem cell differentiation. Hum Mol Genet 2021; 29:2535-2550. [PMID: 32628253 PMCID: PMC7471508 DOI: 10.1093/hmg/ddaa141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat–Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2’s gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.
Collapse
Affiliation(s)
- Judith C Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Rutger W W Brouwer
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Anne L Korporaal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Ana Bermejo-Santos
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Ilias Boltsis
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven B-3000, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| |
Collapse
|
5
|
Vos ESM, Valdes-Quezada C, Huang Y, Allahyar A, Verstegen MJAM, Felder AK, van der Vegt F, Uijttewaal ECH, Krijger PHL, de Laat W. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. Mol Cell 2021; 81:3082-3095.e6. [PMID: 34197738 DOI: 10.1016/j.molcel.2021.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
To understand how chromatin domains coordinate gene expression, we dissected select genetic elements organizing topology and transcription around the Prdm14 super enhancer in mouse embryonic stem cells. Taking advantage of allelic polymorphisms, we developed methods to sensitively analyze changes in chromatin topology, gene expression, and protein recruitment. We show that enhancer insulation does not rely strictly on loop formation between its flanking boundaries, that the enhancer activates the Slco5a1 gene beyond its prominent domain boundary, and that it recruits cohesin for loop extrusion. Upon boundary inversion, we find that oppositely oriented CTCF terminates extrusion trajectories but does not stall cohesin, while deleted or mutated CTCF sites allow cohesin to extend its trajectory. Enhancer-mediated gene activation occurs independent of paused loop extrusion near the gene promoter. We expand upon the loop extrusion model to propose that cohesin loading and extrusion trajectories originating at an enhancer contribute to gene activation.
Collapse
Affiliation(s)
- Erica S M Vos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Christian Valdes-Quezada
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Yike Huang
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Amin Allahyar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Anna-Karina Felder
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Floor van der Vegt
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Esther C H Uijttewaal
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
6
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
7
|
Giraud G, Kolovos P, Boltsis I, van Staalduinen J, Guyot B, Weiss-Gayet M, IJcken WV, Morlé F, Grosveld F. Interplay between FLI-1 and the LDB1 complex in murine erythroleukemia cells and during megakaryopoiesis. iScience 2021; 24:102210. [PMID: 33733070 PMCID: PMC7940982 DOI: 10.1016/j.isci.2021.102210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022] Open
Abstract
Transcription factors are key players in a broad range of cellular processes such as cell-fate decision. Understanding how they act to control these processes is of critical importance for therapy purposes. FLI-1 controls several hematopoietic lineage differentiation including megakaryopoiesis and erythropoiesis. Its aberrant expression is often observed in cancer and is associated with poor prognosis. We showed that FLI-1 interacts with the LDB1 complex, which also plays critical roles in erythropoiesis and megakaryopoiesis. In this study, we aimed to unravel how FLI-1 and the LDB1 complex act together in murine erythroleukemia cells and in megakaryocyte. Combining omics techniques, we show that FLI-1 enables the recruitment of the LDB1 complex to regulatory sequences of megakaryocytic genes and to enhancers. We show as well for the first time that FLI-1 is able to modulate the 3D chromatin organization by promoting chromatin looping between enhancers and promoters most likely through the LDB1 complex. FLI-1 is important for the recruitment of the LDB1 complex FLI-1 is important for chromatin looping FLI-1 and the LDB1 complex co-regulate megakaryopoiesis
Collapse
Affiliation(s)
- Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Jente van Staalduinen
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Department of Immunity, Virus and Microenvironment, Lyon, France
| | - Michele Weiss-Gayet
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Wilfred van IJcken
- Biomics Center, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - François Morlé
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| |
Collapse
|
8
|
Tao H, Li H, Xu K, Hong H, Jiang S, Du G, Wang J, Sun Y, Huang X, Ding Y, Li F, Zheng X, Chen H, Bo X. Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Brief Bioinform 2021; 22:6102668. [PMID: 33454752 PMCID: PMC8424394 DOI: 10.1093/bib/bbaa405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
The exploration of three-dimensional chromatin interaction and organization provides insight into mechanisms underlying gene regulation, cell differentiation and disease development. Advances in chromosome conformation capture technologies, such as high-throughput chromosome conformation capture (Hi-C) and chromatin interaction analysis by paired-end tag (ChIA-PET), have enabled the exploration of chromatin interaction and organization. However, high-resolution Hi-C and ChIA-PET data are only available for a limited number of cell lines, and their acquisition is costly, time consuming, laborious and affected by theoretical limitations. Increasing evidence shows that DNA sequence and epigenomic features are informative predictors of regulatory interaction and chromatin architecture. Based on these features, numerous computational methods have been developed for the prediction of chromatin interaction and organization, whereas they are not extensively applied in biomedical study. A systematical study to summarize and evaluate such methods is still needed to facilitate their application. Here, we summarize 48 computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles, categorize them and compare their performance. Besides, we provide a comprehensive guideline for the selection of suitable methods to predict chromatin interaction and organization based on available data and biological question of interest.
Collapse
Affiliation(s)
- Huan Tao
- Beijing Institute of Radiation Medicine
| | - Hao Li
- Beijing Institute of Radiation Medicine
| | - Kang Xu
- Beijing Institute of Radiation Medicine
| | - Hao Hong
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Shuai Jiang
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Guifang Du
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | | | - Yu Sun
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Xin Huang
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Yang Ding
- Beijing Institute of Radiation Medicine
| | - Fei Li
- Chinese Academy of Sciences, Department of Computer Network Information Center
| | | | | | | |
Collapse
|
9
|
Golov AK, Abashkin DA, Kondratyev NV, Razin SV, Gavrilov AA, Golimbet VE. A modified protocol of Capture-C allows affordable and flexible high-resolution promoter interactome analysis. Sci Rep 2020; 10:15491. [PMID: 32968144 PMCID: PMC7511934 DOI: 10.1038/s41598-020-72496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/27/2020] [Indexed: 12/04/2022] Open
Abstract
Large-scale epigenomic projects have mapped hundreds of thousands of potential regulatory sites in the human genome, but only a small proportion of these elements are proximal to transcription start sites. It is believed that the majority of these sequences are remote promoter-activating genomic sites scattered within several hundreds of kilobases from their cognate promoters and referred to as enhancers. It is still unclear what principles, aside from relative closeness in the linear genome, determine which promoter(s) is controlled by a given enhancer; however, this understanding is of great fundamental and clinical relevance. In recent years, C-methods (chromosome conformation capture-based methods) have become a powerful tool for the identification of enhancer-promoter spatial contacts that, in most cases, reflect their functional link. Here, we describe a new hybridisation-based promoter Capture-C protocol that makes use of biotinylated dsDNA probes generated by PCR from a custom pool of long oligonucleotides. The described protocol allows high-resolution promoter interactome description, providing a flexible and cost-effective alternative to the existing promoter Capture-C modifications. Based on the obtained data, we propose several tips on probe design that could potentially improve the results of future experiments.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Mental Health Research Center, Moscow, Russian Federation.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | | |
Collapse
|
10
|
Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J 2020; 18:558-570. [PMID: 32226593 PMCID: PMC7090358 DOI: 10.1016/j.csbj.2020.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanisms underlying gene regulation are key to understand how multicellular organisms with various cell types develop from the same genetic blueprint. Dynamic interactions between enhancers and genes are revealed to play central roles in controlling gene transcription, but the determinants to link functional enhancer-promoter pairs remain elusive. A major challenge is the lack of reliable approach to detect and verify functional enhancer-promoter interactions (EPIs). In this review, we summarized the current methods for detecting EPIs and described how developing techniques facilitate the identification of EPI through assessing the merits and drawbacks of these methods. We also reviewed recent state-of-art EPI prediction methods in terms of their rationale, data usage and characterization. Furthermore, we briefly discussed the evolved strategies for validating functional EPIs.
Collapse
Affiliation(s)
- Hang Xu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shijie Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Mulin Jun Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|