1
|
Yuan Y, Leiby KL, Greaney AM, Raredon MSB, Qian H, Schupp JC, Engler AJ, Baevova P, Adams TS, Kural MH, Wang J, Obata T, Yoder MC, Kaminski N, Niklason LE. A Pulmonary Vascular Model From Endothelialized Whole Organ Scaffolds. Front Bioeng Biotechnol 2021; 9:760309. [PMID: 34869270 PMCID: PMC8640093 DOI: 10.3389/fbioe.2021.760309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
The development of an in vitro system for the study of lung vascular disease is critical to understanding human pathologies. Conventional culture systems fail to fully recapitulate native microenvironmental conditions and are typically limited in their ability to represent human pathophysiology for the study of disease and drug mechanisms. Whole organ decellularization provides a means to developing a construct that recapitulates structural, mechanical, and biological features of a complete vascular structure. Here, we developed a culture protocol to improve endothelial cell coverage in whole lung scaffolds and used single-cell RNA-sequencing analysis to explore the impact of decellularized whole lung scaffolds on endothelial phenotypes and functions in a biomimetic bioreactor system. Intriguingly, we found that the phenotype and functional signals of primary pulmonary microvascular revert back—at least partially—toward native lung endothelium. Additionally, human induced pluripotent stem cell-derived endothelium cultured in decellularized lung systems start to gain various native human endothelial phenotypes. Vascular barrier function was partially restored, while small capillaries remained patent in endothelial cell-repopulated lungs. To evaluate the ability of the engineered endothelium to modulate permeability in response to exogenous stimuli, lipopolysaccharide (LPS) was introduced into repopulated lungs to simulate acute lung injury. After LPS treatment, proinflammatory signals were significantly increased and the vascular barrier was impaired. Taken together, these results demonstrate a novel platform that recapitulates some pulmonary microvascular functions and phenotypes at a whole organ level. This development may help pave the way for using the whole organ engineering approach to model vascular diseases.
Collapse
Affiliation(s)
- Yifan Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Katherine L Leiby
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Medical Scientist Training Program, Yale University, New Haven, CT, United States
| | - Allison M Greaney
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Micha Sam Brickman Raredon
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Medical Scientist Training Program, Yale University, New Haven, CT, United States
| | - Hong Qian
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Alexander J Engler
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Pavlina Baevova
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Taylor S Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Juan Wang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Tomohiro Obata
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Laura E Niklason
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States.,Department of Anesthesiology, Yale University, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|