1
|
Manav N, Sharma P, Mochan S, Malhotra L. Unraveling the unique amyloid-like aggregation behavior of the tumor suppressor p53 mutants in human cancers. Int J Biol Macromol 2025; 311:143883. [PMID: 40319958 DOI: 10.1016/j.ijbiomac.2025.143883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/19/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Missense mutations in the tumor suppressor p53 significantly disrupt its native structure and functions, playing a pivotal role in human cancer pathogenesis. Oncogenic mutant p53 (mutp53) not only loses its tumor-suppressive capabilities but also acquires oncogenic functions, driving cancer progression, metastasis, and chemoresistance. Despite extensive research on mutp53, the role of missense mutations in triggering amyloid-like aggregation of p53 remains an underexplored and fascinating area of study. To date, over 50 proteins are known to form amyloid-like aggregates due to abnormal folding, resulting in insoluble protein fibrils that contribute to various protein misfolding diseases, including cancer. However, the precise mechanisms by which aggregated proteins induce cancer remain inadequately understood. Notably, certain p53 mutations promote its aggregation, which has emerged as a critical factor in protein aggregation-induced oncogenesis. This review delves into the mechanisms underpinning mutp53 aggregation, emphasizing unique properties such as coaggregation, bio-isolation, prion-like cell-to-cell transmission, and chemoresistance promotion. Leveraging diverse in-silico, biophysical, and biochemical approaches, we comprehensively analyzed the aggregating potential of 26 mutp53 variants among 1297 missense mutations identified in human cancers. These findings shed light on the multifaceted roles of mutp53 aggregates in oncogenesis and tumor progression. Lastly, we present an integrative exploration of emerging therapeutic strategies designed to disaggregate mutp53 aggregates, offering promising directions for targeted cancer therapy. By addressing this enigmatic aspect of mutp53 biology, our review advances the understanding of protein aggregation in cancer and identifies avenues for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Nisha Manav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pratibha Sharma
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Delhi 110095, India
| | - Sankat Mochan
- Department of Anatomy, University College of Medical Sciences, University of Delhi, Delhi 110095, India
| | - Lakshay Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India.
| |
Collapse
|
2
|
Tan Y, Chen Y, Pan T, Tang Y, Liu X, Yu Y, Wei G. Computational Exploration of the Inhibitory Mechanism of mRNA against the Phase Separation of hnRNPA2 Low Complexity Domains. J Chem Inf Model 2025; 65:4643-4654. [PMID: 40305655 DOI: 10.1021/acs.jcim.5c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
hnRNPA2, an RNA-binding protein involved in RNA metabolism and regulation, can undergo liquid-liquid phase separation (LLPS) to form dynamic biomolecular condensates. Previous experiments have reported that RNA molecules can inhibit the LLPS of the hnRNPA2 low complexity domain (LCD). However, the atomistic mechanisms underlying this inhibitory effect and RNA-LCD interactions remain largely elusive. Herein, the influence of mRNA A2RE11 on the single-chain conformational ensemble and transient interactions between LCD chains are investigated through all-atom-enhanced sampling molecular dynamics (MD) simulations. Our simulations reveal that aromatic residues are essential to intrachain interactions of single-chain hnRNPA2 LCDs as well as interchain interactions of LCD dimers. Through binding to aromatic and positively charged residues of the hnRNPA2 LCD, A2RE11 undermines the degree of collapse of the single-chain LCD and disrupts the aromatic stacking, hydrogen bonding, and cation-π interchain interactions. Our coarse-grained phase coexistence MD simulations further underscore the preeminence of interchain aromatic and cation-π interactions in regulating the phase behavior of hnRNPA2 LCD and the RNA binding affinity for the RGG and Y/FG(G) motifs. These findings from multiscale simulations lead to a greater appreciation of the complex interaction network underlying the phase separation and RNA-protein interaction of the hnRNPA2 LCD.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Tong Pan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
3
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
4
|
Zhang X, Jia H, Yang W, Peng L, Hong L. Thermodynamics for reduced models of polymer aggregation based on maximum entropy principle. J Chem Phys 2025; 162:164901. [PMID: 40260817 DOI: 10.1063/5.0252088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Polymeric aggregates play a significant role in biology and chemical engineering. In order to make a clear description of their underlying formation procedure, simplified models are crucial because the original mass-action equations involve numerous variables, complicating analysis and understanding. While the dynamical aspects of simplified models have been widely studied, their thermodynamic properties are less understood. In this study, we explore the Maximum Entropy Principle (MEP)-reduced models, initially developed for dynamical analysis, from a brand-new thermodynamic perspective. Analytical expressions, along with numerical simulations, demonstrate that the discrete MEP-reduced model strictly retains laws of thermodynamics, which holds true even when the aggregate size transits from discrete values to continuous real numbers. Our findings not only clarify the thermodynamic consistency between the MEP-reduced models and the original models of polymeric aggregates for the first time but also suggest avenues for future research into the model-reduction thermodynamics.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Haiyang Jia
- College of Mathematics and Data Science, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
- School of Mathematics and Statistics, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Wuyue Yang
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, People's Republic of China
| | - Liangrong Peng
- College of Mathematics and Data Science, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Liu Hong
- School of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| |
Collapse
|
5
|
Zhytniakivska O, Chaturvedi T, Thomsen MH. Plant-Based Inhibitors of Protein Aggregation. Biomolecules 2025; 15:481. [PMID: 40305223 PMCID: PMC12025044 DOI: 10.3390/biom15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer's disease, Parkinson's disease, prion disease, and type 2 diabetes, to name only a few. Considerable research efforts at identifying the therapeutic strategies against these maladies are currently focused on preventing and inhibiting pathogenic protein aggregation by various agents. Plant-based extracts and compounds have emerged as promising sources of potential inhibitors due to their dual role as nutraceuticals as part of healthy diets and as specific pharmaceuticals when administered at higher concentrations. In recent decades, several plant extracts and plant-extracted compounds have shown potential to modulate protein aggregation. An ever-growing body of research on plant-based amyloid inhibitors requires a detail analysis of existing data to identify potential knowledge gaps. This review summarizes the recent progress in amyloid inhibition using 17 flavonoids, 11 polyphenolic non-flavonoid compounds, 23 non-phenolic inhibitors, and 59 plant extracts, with the main emphasis on directly modulating the fibrillation of four amyloid proteins, namely amyloid-β peptide, microtubule-associated protein tau, α-synuclein, and human islet amyloid polypeptide.
Collapse
Affiliation(s)
- Olha Zhytniakivska
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | |
Collapse
|
6
|
Khan MS, Rehman MT, Shaik GM, Mohammed Alamri A, F AlAjmi M, Arshad M, Alokail MS. Aggregation and cytotoxicity of food additive dye (Azorubine)-albumin adducts: a multi-spectroscopic, microscopic and computational analysis. J Biomol Struct Dyn 2025; 43:946-956. [PMID: 38047623 DOI: 10.1080/07391102.2023.2289046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Protein and peptide misfolding is a central factor in the formation of pathological aggregates and fibrils linked to disorders like Alzheimer's and Parkinson's diseases. Therefore, it's essential to understand how food additives, particularly Azorubine, affect protein structures and their ability to induce aggregation. In this study, human serum albumin (HSA) was used as a model protein to investigate the binding and conformational changes caused by azorubine, a common food and drink colorant. The research revealed that azorubine destabilized the conformation of HSA at both physiological (pH 7.4) and acidic (pH 3.5) conditions. The loss of tryptophan fluorescence in HSA suggested significant structural alterations, particularly around aromatic residues. Far UV-CD analysis demonstrated disruptions in HSA's secondary structure, with a notable reduction in α-helical structures at pH 7.4. At pH 3.5, Azorubine induced even more extensive perturbations, resulting in a random coil conformation at higher azorubine concentrations. The study also investigated aggregation phenomena through turbidity measurements, RLS analysis, and TEM imaging. At pH 3.5, larger insoluble aggregates formed, while at pH 7.4, only conformational changes occurred without aggregate formation. Cytotoxicity assessments on neuroblastoma (SH-SY5Y) cells highlighted the concentration-dependent toxicity of albumin aggregates. Molecular dynamics simulations reaffirmed the stable interaction between azorubine and HSA. This research provides valuable insights into the mechanisms by which azorubine influences protein conformations. To further advance our understanding and contribute to the broader knowledge in this area, several future directions can be considered such as exploring other proteins, studying dose-response relationship, gaining mechanistic insights, biological relevance, toxicity assessment, identifying alternative food colorants, and mitigation strategies to prevent adverse effects of azorubine on serum proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gouse M Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohamed F AlAjmi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Olari LR, Liu S, Arnold F, Kühlwein J, Gil Miró M, Updahaya AR, Stürzel C, Thal DR, Walther P, Sparrer KMJ, Danzer KM, Münch J, Kirchhoff F. α-Synuclein fibrils enhance HIV-1 infection of human T cells, macrophages and microglia. Nat Commun 2025; 16:813. [PMID: 39827271 PMCID: PMC11742913 DOI: 10.1038/s41467-025-56099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia. Additionally, an HIV-1 Env-derived amyloidogenic peptide accelerated amyloid formation by α-synuclein and Aβ peptides. Mechanistic studies show that α-synuclein and Aβ fibrils interact with HIV-1 particles and promote virion attachment and fusion with target cells. Despite an overall negative surface charge, these fibrils facilitate interactions between viral and cellular membranes. The enhancing effects of human brain extracts on HIV-1 infection correlated with their binding to Thioflavin T, a dye commonly used to stain amyloids. Our results suggest a detrimental interplay between HIV-1 and brain amyloids that may contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sichen Liu
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Franziska Arnold
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Julia Kühlwein
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Marta Gil Miró
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Ajeet Rijal Updahaya
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Cheng CF, Cheng E, Ku HC. Roles of endoplasmic reticulum stress and activating transcription factors in Alzheimer's disease and Parkinson's disease. Tzu Chi Med J 2025; 37:10-16. [PMID: 39850398 PMCID: PMC11753521 DOI: 10.4103/tcmj.tcmj_51_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 01/25/2025] Open
Abstract
Endoplasmic reticulum (ER) is a crucial organelle associated with cellular homeostasis. Accumulation of improperly folded proteins results in ER stress, accompanied by the reaction involving triggering unfolded protein response (UPR). The UPR is mediated through ER membrane-associated sensors, such as protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α, and activating transcription factor 6 (ATF6). Prolonged stress triggers cell apoptotic reaction, resulting in cell death. Neuronal cells are especially susceptible to protein misfolding. Notably, ER and UPR malfunctions are linked to many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), delineated by accumulation of misfolded proteins. Notably, ATF family members play key roles in AD and PD pathogenesis. However, the connection between ER stress, UPR, and neuropathology is not yet fully understood. Here, we discuss our present knowledge of the association between ER stress, the UPR, and neurodegeneration in AD and PD. We also discuss the roles of ATF family members in AD and PD pathogenesis. Moreover, we provide a mechanistic clarification of how disease-related molecules affect ER protein homeostasis and explore recent findings that connect the UPR to neuronal plasticity.
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Evelyn Cheng
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
9
|
Debnath J, Sekar Y, Bera A. Highly Sensitive Naphthalene-Based Twisted Intramolecular Charge Transfer Molecules for the Detection of In Vitro and In Cellulo Protein Aggregates. ACS Med Chem Lett 2024; 15:2129-2132. [PMID: 39691532 PMCID: PMC11647678 DOI: 10.1021/acsmedchemlett.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Newly synthesized naphthalene-based twisted intramolecular charge transfer (TICT) molecules show 8.5- and 2.6-fold increases in fluorescence intensity upon binding with protein aggregates in comparison with the fluorescence enhancement for thioflavin T (ThT). The dissociation constant (K d ) values of these compounds with bovine serum albumin (BSA) aggregates are in the 145-176 nM range, which is 103 times lower than that of ThT. Along with the strong binding propensity, these molecules are also capable of measuring protein aggregate (BSA) concentration in the 500 to 5 pM level. Interestingly, one of the synthesized molecules was also able to bind with the intracellular protein aggregates.
Collapse
Affiliation(s)
- Joy Debnath
- Department
of Chemistry, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Yuvasree Sekar
- Department
of Chemistry, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Anwesha Bera
- Department
of Chemistry, Indian Institute of Science
Education and Research−Pune, Pune 411008, Maharastra, India
| |
Collapse
|
10
|
Huang Y, Wang YA, van Sluijs L, Vogels DHJ, Chen Y, Tegelbeckers VIP, Schoonderwoerd S, Riksen JAG, Kammenga JE, Harvey SC, Sterken MG. eQTL mapping in transgenic alpha-synuclein carrying Caenorhabditis elegans recombinant inbred lines. Hum Mol Genet 2024; 33:2123-2132. [PMID: 39439404 PMCID: PMC11630767 DOI: 10.1093/hmg/ddae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Protein aggregation of α-synuclein (αS) is a genetic and neuropathological hallmark of Parkinson's disease (PD). Studies in the model nematode Caenorhabditis elegans suggested that variation of αS aggregation depends on the genetic background. However, which genes and genetic modifiers underlie individual differences in αS pathology remains unknown. To study the genotypic-phenotypic relationship of αS aggregation, we constructed a Recombinant Inbred Line (RIL) panel derived from a cross between genetically divergent strains C. elegans NL5901 and SCH4856, both harboring the human αS gene. As a first step to discover genetic modifiers 70 αS-RILs were measured for whole-genome gene expression and expression quantitative locus analysis (eQTL) were mapped. We detected multiple eQTL hot-spots, many of which were located on Chromosome V. To confirm a causal locus, we developed Introgression Lines (ILs) that contain SCH4856 introgressions on Chromosome V in an NL5901 background. We detected 74 genes with an interactive effect between αS and the genetic background, including the human p38 MAPK homologue pmk-1 that has previously been associated with PD. Together, we present a unique αS-RIL panel for defining effects of natural genetic variation on αS pathology, which contributes to finding genetic modifiers of PD.
Collapse
Affiliation(s)
- Yuqing Huang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Yiru A Wang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
- Faculty of Engineering and Science, University of Greenwich, Medway ME4 4TB, United Kingdom
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Demi H J Vogels
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Yuzhi Chen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Vivian I P Tegelbeckers
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Steven Schoonderwoerd
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Simon C Harvey
- Faculty of Engineering and Science, University of Greenwich, Medway ME4 4TB, United Kingdom
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
11
|
Chiarelli R, Caradonna F, Naselli F. Autophagy and nutrigenomics: a winning team against chronic disease and tumors. Front Nutr 2024; 11:1409142. [PMID: 39703336 PMCID: PMC11655209 DOI: 10.3389/fnut.2024.1409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Autophagy, a vital cell process, has garnered attention for its role in various diseases and potential therapeutic interventions. Dysregulation of autophagy contributes to conditions such as metabolic diseases, neurodegenerative disorders, and cancer. In diseases such as diabetes, autophagy plays a crucial role in islet β-cell maintenance and glucose homeostasis, offering potential targets for therapeutic intervention. Nutrigenomics, which explores how dietary components interact with the genome, has emerged as a promising avenue for disease management. It sheds light on how diet influences gene expression and cellular processes, offering personalized approaches to disease prevention and management. Studies have showed the impact of specific dietary components, such as polyphenols and omega-3 fatty acids, on autophagy processes, suggesting their potential therapeutic benefits in neurodegenerative conditions and metabolic disorders. In cancer, autophagy's dual role in either suppressing tumorigenesis or promoting cancer cell survival underscores the importance of understanding its modulation through dietary interventions. Combined with conventional chemotherapy drugs, dietary compounds show synergistic effects in cancer treatment. Furthermore, phytochemicals such as indicaxanthin have been found to epigenetically regulate genes involved in autophagy, offering novel insights into personalized cancer therapies. This comprehensive review has the aim to study the autophagy in a combined view with nutrigenomics effects of some dietary molecules in maintaining cellular homeostasis and responding to pathological stimuli. Overall, the intersection of autophagy and nutrigenomics effect of bioactive compounds holds promise for developing targeted interventions for various diseases, emphasizing the significance of dietary interventions in disease prevention and management.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Sistemich L, Ebbinghaus S. Heat application in live cell imaging. FEBS Open Bio 2024; 14:1940-1954. [PMID: 39489617 PMCID: PMC11609584 DOI: 10.1002/2211-5463.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Thermal heating of biological samples allows to reversibly manipulate cellular processes with high temporal and spatial resolution. Manifold heating techniques in combination with live-cell imaging were developed, commonly tailored to customized applications. They include Peltier elements and microfluidics for homogenous sample heating as well as infrared lasers and radiation absorption by nanostructures for spot heating. A prerequisite of all techniques is that the induced temperature changes are measured precisely which can be the main challenge considering subcellular structures or multicellular organisms as target regions. This article discusses heating and temperature sensing techniques for live-cell imaging, leading to future applications in cell biology.
Collapse
Affiliation(s)
- Linda Sistemich
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| | - Simon Ebbinghaus
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| |
Collapse
|
13
|
Kaji S, Berghoff SA, Spieth L, Schlaphoff L, Sasmita AO, Vitale S, Büschgens L, Kedia S, Zirngibl M, Nazarenko T, Damkou A, Hosang L, Depp C, Kamp F, Scholz P, Ewers D, Giera M, Ischebeck T, Wurst W, Wefers B, Schifferer M, Willem M, Nave KA, Haass C, Arzberger T, Jäkel S, Wirths O, Saher G, Simons M. Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis. Immunity 2024; 57:2651-2668.e12. [PMID: 39419029 DOI: 10.1016/j.immuni.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for β sheet-binding dyes triggered Aβ amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aβ amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aβ plaque formation.
Collapse
Affiliation(s)
- Seiji Kaji
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan A Berghoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lennart Schlaphoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andrew O Sasmita
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Simona Vitale
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Shreeya Kedia
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Zirngibl
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Taisiia Nazarenko
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, Göttingen, Germany
| | - Constanze Depp
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Frits Kamp
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - David Ewers
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany; Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Klaus-Armin Nave
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Gesine Saher
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Mohseni M, Behzad G, Farhadi A, Behroozi J, Mohseni H, Valipour B. MicroRNAs regulating autophagy: opportunities in treating neurodegenerative diseases. Front Neurosci 2024; 18:1397106. [PMID: 39582602 PMCID: PMC11582054 DOI: 10.3389/fnins.2024.1397106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Neurodegenerative diseases (NDs) are increasingly prevalent in our aging population, imposing significant social and economic burdens. Currently, most ND patients receive only symptomatic treatment due to limited understanding of their underlying causes. Consequently, there is a pressing need for comprehensive research into the pathological mechanisms of NDs by both researchers and clinicians. Autophagy, a cellular mechanism responsible for maintaining cellular equilibrium by removing dysfunctional organelles and misfolded proteins, plays a vital role in cell health and is implicated in various diseases. MicroRNAs (miRNAs) exert influence on autophagy and hold promise for treating these diseases. These small oligonucleotides bind to the 3'-untranslated region (UTR) of target mRNAs, leading to mRNA silencing, degradation, or translation blockade. This review explores recent findings on the regulation of autophagy and autophagy-related genes by different miRNAs in various pathological conditions, including neurodegeneration and inflammation-related diseases. The recognition of miRNAs as key regulators of autophagy in human diseases has spurred investigations into pharmacological compounds and traditional medicines targeting these miRNAs in disease models. This has catalyzed a new wave of therapeutic interventions aimed at modulating autophagy.
Collapse
Affiliation(s)
- Mahdi Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Behzad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamraz Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Bui DT, Kitova EN, Kitov PI, Han L, Mahal LK, Klassen JS. Deciphering Pathways and Thermodynamics of Protein Assembly Using Native Mass Spectrometry. J Am Chem Soc 2024; 146:28809-28821. [PMID: 39387708 DOI: 10.1021/jacs.4c08455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Protein oligomerization regulates many critical physiological processes, and its dysregulation can contribute to dysfunction and diseases. Elucidating the assembly pathways and quantifying their underlying thermodynamic and kinetic parameters are crucial for a comprehensive understanding of biological processes and for advancing therapeutics targeting abnormal protein oligomerization. Established binding assays, with limited mass precision, often rely on simplified models for data interpretation. In contrast, high-resolution native mass spectrometry (nMS) can directly determine the stoichiometry of biomolecular complexes in vitro. However, quantification is hindered by the fact that the relative abundances of gas-phase ions generally do not reflect solution concentrations due to nonuniform response factors. Recently, slow mixing mode (SLOMO)-nMS, which can quantify the relative response factors of interacting species, has been demonstrated to reliably measure the affinity (Kd) of binary biomolecular complexes. Here, we introduce an extended form of SLOMO-nMS that enables simultaneous quantification of the thermodynamics in multistep association reactions. Application of this method to homo-oligomerization of concanavalin A and insulin confirmed the reliability of the assay and uncovered details about the assembly processes that had previously resisted elucidation. Results acquired using SLOMO-nMS implemented with charge detection shed new light on the binding of recombinant human angiotensin-converting enzyme 2 and the SARS-CoV-2 spike protein. Importantly, new assembly pathways were uncovered, and the affinities of these interactions, which regulate host cell infection, were quantified. Together, these findings highlight the tremendous potential of SLOMO-nMS to accelerate the characterization of protein assembly pathways and thermodynamics and, in so doing, enhance fundamental biological understanding and facilitate therapeutic development. https://orcid.org/0000-0002-3389-7112.
Collapse
Affiliation(s)
- Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Pavel I Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
16
|
Patel SP, Nikam T, Sreepathi B, Karankar VS, Jaiswal A, Vardhan SV, Rana A, Toga V, Srivastava N, Saraf SA, Awasthi S. Unraveling the Molecular Jam: How Crowding Shapes Protein Aggregation in Neurodegenerative Disorders. ACS Chem Biol 2024; 19:2118-2130. [PMID: 39373539 DOI: 10.1021/acschembio.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Protein misfolding and aggregation are the hallmarks of neurodegenerative diseases including Huntington's disease, Parkinson's disease, Alzheimer's disease, and prion diseases. A crowded cellular environment plays a crucial role in modulating protein aggregation processes in vivo and the pathological aggregation of proteins linked to different neurodegenerative disorders. Here, we review recent studies examining the effects of various crowding agents, such as polysaccharides, polyethylene glycol, and proteins like BSA and lysozyme on the behaviors of aggregation of several amyloidogenic peptides and proteins, including amylin, huntingtin, tau, α-synuclein, prion, and amyloid-β. We also summarize how the aggregation kinetics, thermodynamic stability, and morphology of amyloid fibrils are altered significantly in the presence of crowding agents. In addition, we also discuss the molecular basis underlying the modulation of amyloidogenic aggregation, focusing on changes in the protein conformation, and the nucleation mechanism. The molecular understanding of the effects of macromolecular crowding on amyloid aggregation is essential for revealing disease pathologies and identifying possible therapeutic targets. Thus, this review offers a perspective on the complex interplay between protein aggregation and the crowded cellular environment in vivo and explains the relevance of crowding in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shashi Prakash Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Tejas Nikam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Bhargavi Sreepathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Vijayshree S Karankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Ankita Jaiswal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Salumuri Vamsi Vardhan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Anika Rana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Vanshu Toga
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Saurabh Awasthi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
17
|
Priyanka, Raymandal B, Mondal S. Native State Stabilization of Amyloidogenic Proteins by Kinetic Stabilizers: Inhibition of Protein Aggregation and Clinical Relevance. ChemMedChem 2024; 19:e202400244. [PMID: 38863235 DOI: 10.1002/cmdc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Proteinopathies or amyloidoses are a group of life-threatening disorders that result from misfolding of proteins and aggregation into toxic insoluble amyloid aggregates. Amyloid aggregates have low clearance from the body due to the insoluble nature, leading to their deposition in various organs and consequent organ dysfunction. While amyloid deposition in the central nervous system leads to neurodegenerative diseases that mostly cause dementia and difficulty in movement, several other organs, including heart, liver and kidney are also affected by systemic amyloidoses. Regardless of the site of amyloid deposition, misfolding and structural alteration of the precursor proteins play the central role in amyloid formation. Kinetic stabilizers are an emerging class of drugs, which act like pharmacological chaperones to stabilize the native state structure of amyloidogenic proteins and to increase the activation energy barrier that is required for adopting a misfolded structure or conformation, ultimately leading to the inhibition of protein aggregation. In this review, we discuss the kinetic stabilizers that stabilize the native quaternary structure of transthyretin, immunoglobulin light chain and superoxide dismutase 1 that cause transthyretin amyloidoses, light chain amyloidosis and familial amyotrophic lateral sclerosis, respectively.
Collapse
Affiliation(s)
- Priyanka
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Bitta Raymandal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Santanu Mondal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| |
Collapse
|
18
|
Martins G, Galamba N. Wild-Type α-Synuclein Structure and Aggregation: A Comprehensive Coarse-Grained and All-Atom Molecular Dynamics Study. J Chem Inf Model 2024; 64:6115-6131. [PMID: 39046235 PMCID: PMC11323248 DOI: 10.1021/acs.jcim.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
α-Synuclein (α-syn) is a 140 amino acid intrinsically disordered protein (IDP) and the primary component of cytotoxic oligomers implicated in the etiology of Parkinson's disease (PD). While IDPs lack a stable three-dimensional structure, they sample a heterogeneous ensemble of conformations that can, in principle, be assessed through molecular dynamics simulations. However, describing the structure and aggregation of large IDPs is challenging due to force field (FF) accuracy and sampling limitations. To cope with the latter, coarse-grained (CG) FFs emerge as a potential alternative at the expense of atomic detail loss. Whereas CG models can accurately describe the structure of the monomer, less is known about aggregation. The latter is key for assessing aggregation pathways and designing aggregation inhibitor drugs. Herein, we investigate the structure and dynamics of α-syn using different resolution CG (Martini3 and Sirah2) and all-atom (Amber99sb and Charmm36m) FFs to gain insight into the differences and resemblances between these models. The dependence of the magnitude of protein-water interactions and the putative need for enhanced sampling (replica exchange) methods in CG simulations are analyzed to distinguish between force field accuracy and sampling limitations. The stability of the CG models of an α-syn fibril was also investigated. Additionally, α-syn aggregation was studied through umbrella sampling for the CG models and CG/all-atom models for an 11-mer peptide (NACore) from an amyloidogenic domain of α-syn. Our results show that despite the α-syn structures of Martini3 and Sirah2 with enhanced protein-water interactions being similar, major differences exist concerning aggregation. The Martini3 fibril is not stable, and the binding free energy of α-syn and NACore is positive, opposite to Sirah2. Sirah2 peptides in a zwitterionic form, in turn, display termini interactions that are too strong, resulting in end-to-end orientation. Sirah2, with enhanced protein-water interactions and neutral termini, provides, however, a peptide aggregation free energy profile similar to that found with all-atom models. Overall, we find that Sirah2 with enhanced protein-water interactions is suitable for studying protein-protein and protein-drug aggregation.
Collapse
Affiliation(s)
- Gabriel
F. Martins
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nuno Galamba
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
19
|
Mandal S, Suseela YV, Samanta S, Vileno B, Faller P, Govindaraju T. Fluorescent Peptides Sequester Redox Copper to Mitigate Oxidative Stress, Amyloid Toxicity, and Neuroinflammation. ACS Med Chem Lett 2024; 15:1376-1385. [PMID: 39140073 PMCID: PMC11318102 DOI: 10.1021/acsmedchemlett.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder that significantly contributes to dementia. The lack of effective therapeutic interventions presents a significant challenge to global health. We have developed a set of short peptides (PNGln) conjugated with a dual-functional fluorophoric amino acid (NGln). The lead peptide, P2NGln, displays a high affinity for Cu2+, maintaining the metal ion in a redox-inactive state. This mitigates the cytotoxicity generated by reactive oxygen species (ROS), which are produced by Cu2+ under the reductive conditions of Asc and Aβ16 or Aβ42. Furthermore, P2NGln inhibits both Cu-dependent and -independent fibrillation of Aβ42, along with the subsequent toxicity induced by Aβ42. In addition, P2NGln exhibits inhibitory effects on the production of lipopolysaccharide (LPS)-induced ROS and reactive nitrogen species (RNS) in microglial cells. In vitro and cellular studies indicate that P2NGln could significantly reduce Aβ-Cu2+-induced ROS production, amyloid toxicity, and neuroinflammation, offering an innovative strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Sabyasachi Mandal
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| | - Yelisetty Venkata Suseela
- Institut
de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Sourav Samanta
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| | - Bertrand Vileno
- Institut
de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut
de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| |
Collapse
|
20
|
Desantis F, Miotto M, Milanetti E, Ruocco G, Di Rienzo L. Computational evidences of a misfolding event in an aggregation-prone light chain preceding the formation of the non-native pathogenic dimer. Proteins 2024; 92:797-807. [PMID: 38314653 DOI: 10.1002/prot.26672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Antibody light chain amyloidosis is a disorder in which protein aggregates, mainly composed of immunoglobulin light chains, deposit in diverse tissues impairing the correct functioning of organs. Interestingly, due to the high susceptibility of antibodies to mutations, AL amyloidosis appears to be strongly patient-specific. Indeed, every patient will display their own mutations that will make the proteins involved prone to aggregation thus hindering the study of this disease on a wide scale. In this framework, determining the molecular mechanisms that drive the aggregation could pave the way to the development of patient-specific therapeutics. Here, we focus on a particular patient-derived light chain, which has been experimentally characterized. We investigated the early phases of the aggregation pathway through extensive full-atom molecular dynamics simulations, highlighting a structural rearrangement and the exposure of two hydrophobic regions in the aggregation-prone species. Next, we moved to consider the pathological dimerization process through docking and molecular dynamics simulations, proposing a dimeric structure as a candidate pathological first assembly. Overall, our results shed light on the first phases of the aggregation pathway for a light chain at an atomic level detail, offering new structural insights into the corresponding aggregation process.
Collapse
Affiliation(s)
- Fausta Desantis
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia, Genova, Italy
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| | - Mattia Miotto
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| | - Edoardo Milanetti
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Di Rienzo
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| |
Collapse
|
21
|
Kurepa J, Bruce KA, Gerhardt GA, Smalle JA. A Plant Model of α-Synucleinopathy: Expression of α-Synuclein A53T Variant in Hairy Root Cultures Leads to Proteostatic Stress and Dysregulation of Iron Metabolism. APPLIED BIOSCIENCES 2024; 3:233-249. [PMID: 38835931 PMCID: PMC11149894 DOI: 10.3390/applbiosci3020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Kristen A. Bruce
- Naprogenix, Inc., UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506, USA
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Jan A. Smalle
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
22
|
Chaki S, Santra S, Dasgupta S. Fibrillation of Human Serum Albumin Differentially Affected by Asp-, Arg-, and Tyr-Capped Gold Nanoparticles. J Phys Chem B 2024; 128:3538-3553. [PMID: 38507578 DOI: 10.1021/acs.jpcb.3c06932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Fibrillation of proteins is associated with a number of debilitating diseases, including various neurodegenerative disorders. Prevention of the protein fibrillation process is therefore of immense importance. We investigated the effect of amino acid-capped AuNPs on the prevention of the fibrillation process of human serum albumin (HSA), a model protein. Amino acid-capped AuNPs of varying sizes and agglomeration extents were synthesized under physiological conditions. The AuNPs were characterized by their characteristic surface plasmon resonance (SPR), and their interactions with HSA were investigated through emission spectroscopy in addition to circular dichroism (CD) spectral analyses. Fluorescence lifetime imaging (FLIM) as well as transmission electron microscopy (TEM) were used to observe the fibrillar network. Thermodynamic and kinetic analyses from CD and fluorescence emission spectra provided insights into the fibrillation pathway adopted by HSA in the presence of capped AuNPs. Kinetics of the fibrillation pathway followed by ThT fluorescence emission confirmed the sigmoidal nature of the process. The highest cooperativity was observed in the case of Asp-AuNPs with HSA. This was in accordance with the ΔG value obtained from the CD spectral analyses, where Arg-AuNPs with HSA showed the highest positive ΔG value and Asp-AuNPs with HSA showed the most negative ΔG value. The study provides information about the potential use of conjugate AuNPs to monitor the fibrillation process in proteins.
Collapse
Affiliation(s)
- Sreshtha Chaki
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujan Santra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
23
|
Akıncıoğlu A. Design, synthesis, in silico, and in vitro evaluation of novel benzyloxybenzene substituted (S)-α-amino amide derivatives as cholinesterases and monoaminoxidases inhibitor. Drug Dev Res 2024; 85:e22161. [PMID: 38445811 DOI: 10.1002/ddr.22161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
In this study, a series of novel benzyloxybenzene substituted (S)-α-amino acid methyl esters and their amide derivatives were synthesized and evaluated for their inhibitory actions against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B). The synthetic strategy was based on starting from benzyl bromide (5) and 4-hydroxybenzaldehyde (6). The reaction of 5 and 6 in the presence of K2 CO3 gave benzyloxybenzaldehyde 7. Benzyloxybenzene substituted (S)-α-amino acid methyl esters 11, 12, 13, (±)-19, and (±)-20 were obtained from the reaction of L-amino acid methyl esters with benzyloxybenzaldehyde (7) followed by in situ reduction with NaBH4 . The reaction of (S)-11, (S)-12, 13, (±)-19, and (±)-20 with excess ammonia gave amides (S)-14, (S)-15, 16, (±)-21, and (±)-22. The in vitro inhibitory activities of compounds against MAO-A, MAO-B, AChE, and BChE were investigated. Within the α-amino acid methyl ester series, 13 (21.32 ± 0.338 µM) showed selectivity by inhibiting the MAO-B better than MAO-A. 13 emerged as the most active member of this series, exhibiting a 12-fold selectivity for MAO-B. 14 (4.501 ± 0.295 µM) demonstrated a pronounced selectivity for MAO-A over MAO-B, with a selectivity ratio of 110-fold. In addition, it was determined that compound 15 (95.65 ± 3.09 µM) had high selectivity for BChE inhibition. 21 was demonstrated the most potent inhibition (18.36 ± 1.36 µM) against AChE.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
- Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
24
|
Al-Shabib NA, Khan JM, Malik A, Alamri A, Rehman MT, AlAjmi MF, Husain FM. Probing the interaction mechanisms between sunset yellow dye and trypsin protein leading to amorphous aggregation under low pH conditions. Int J Biol Macromol 2024; 265:130442. [PMID: 38417745 DOI: 10.1016/j.ijbiomac.2024.130442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Protein aggregation poses a significant concern in the field of food sciences, and various factors, such as synthetic food dyes, can contribute to protein aggregation. One such dye, Sunset Yellow (SY), is commonly employed in the food industry. Trypsin was used as a model protein to assess the impact of SY. We employed several biophysical techniques to examine the binding and aggregation mechanisms between SY and trypsin at different pHs. Results from intrinsic fluorescence measurements indicate a stronger interaction between SY and trypsin at pH 2.0 compared to pH 6.0. Turbidity data reveal trypsin aggregation in the presence of 0.05-3.0 mM SY at pH 2.0, while no aggregation was observed at pH 6.0. Kinetic data demonstrate a rapid, lag-phase-free SY-induced aggregation of trypsin. Circular dichroism analysis reveals that trypsin adopts a secondary structure in the presence of SY at pH 6.0, whereas at pH 2.0, the secondary structure was nearly lost with increasing SY concentrations. Furthermore, turbidity and kinetics data suggest that trypsin aggregation depends on trypsin concentrations and pH. Our study highlights potential health risks associated with the consumption of SY, providing insights into its impact on human health and emphasizing the necessity for further research in this field.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- King Saud University, Department of Pharmacognosy, College of Pharmacy, Riyadh 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- King Saud University, Department of Pharmacognosy, College of Pharmacy, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
26
|
Pranav, Bajpai A, Dwivedi PK, Sivakumar S. Chiral nanomaterial-based approaches for diagnosis and treatment of protein-aggregated neurodiseases: current status and future opportunities. J Mater Chem B 2024; 12:1991-2005. [PMID: 38333942 DOI: 10.1039/d3tb02381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein misfolding and its aggregation, known as amyloid aggregates (Aβ), are some of the major causes of more than 20 diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. The process of Aβ formation involves an energy-driven oligomerization of Aβ monomers, leading to polymerization and eventual aggregation into fibrils. Aβ fibrils exhibit multilevel chirality arising from its amino acid residues and the arrangement of folded polypeptide chains; thus, a chirality-driven approach can be utilized for the detection and inhibition of Aβ fibrils. In this regard, chiral nanomaterials have recently opened new possibilities for various biomedical applications owing to their stereoselective interaction with biological systems. Leveraging this chirality-driven approach with chiral nanomaterials against protein-aggregated diseases could yield promising results, particularly in the early detection of Aβ forms and the inhibition of Aβ aggregate formation via specific and strong "chiral-chiral interaction." Despite the advantages, the development of advanced theranostic systems using chiral nanomaterials against protein-aggregated diseases has received limited attention so far because of considerably limited formulations for chiral nanomaterials and lack of information of their chiroptical behavior. This review aims to present the current status of chiral nanomaterials explored for detecting and inhibiting Aβ forms. This review covers the origin of chirality in amyloid fibrils and nanomaterials and different chiral detection methods; furthermore, different chiral nanosystems such as chiral plasmonic nanomaterials, chiral carbon-based nanomaterials, and chiral nanosurfaces, which have been used so far for different therapeutic applications against protein-aggregated diseases, are discussed in detail. The findings from this review may pave the way for the development of novel approaches using chiral nanomaterials to combat diseases resulting from protein misfolding and can further be extended to other disease forms.
Collapse
Affiliation(s)
- Pranav
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Abhishek Bajpai
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Prabhat K Dwivedi
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Sri Sivakumar
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
- Materials Science Program, Indian Institute of Technology, Kanpur 208016, India
- Centre for Environmental Science and Engineering, India
| |
Collapse
|
27
|
Bai J, Li X, Zhao J, Zong H, Yuan Y, Wang L, Zhang X, Ke Y, Han L, Xu J, Ma B, Zhang B, Zhu J. Re-Engineering Therapeutic Anti-Aβ Monoclonal Antibody to Target Amyloid Light Chain. Int J Mol Sci 2024; 25:1593. [PMID: 38338870 PMCID: PMC10855199 DOI: 10.3390/ijms25031593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and β-amyloid peptide (Aβ) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aβ antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aβ42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aβ42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.
Collapse
Affiliation(s)
- Jingyi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Yuan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Han
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Jianrong Xu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
- Jecho Laboratories, Inc., Frederick, MD 21704, USA
| |
Collapse
|
28
|
Foralosso R, Kopiasz RJ, Alexander C, Mantovani G, Stolnik S. Synthetic macromolecular peptide-mimetics with amino acid substructure residues as protein stabilising excipients. J Mater Chem B 2024; 12:1022-1030. [PMID: 38205916 DOI: 10.1039/d3tb02102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The clinical use of protein and peptide biotherapeutics requires fabrication of stable products. This particularly concerns stability towards aggregation of proteins or peptides. Here, we tested a hypothesis that interactions between a synthetic peptide, which is an aggregation-prone region analogue, and its homologous sequence on a protein of interest, could be exploited to design excipients which stabilise the protein against aggregation. A peptide containing the analogue of lysozyme aggregation-prone region (GILQINSRW) was conjugated to a RAFT agent and used to initiate the polymerisation of N-hydroxyethyl acrylamide, generating a GILQINSRW-HEA90 polymer, which profoundly reduced lysozyme aggregation. Substitution of tryptophan in GILQINSRW with glycine, to form GILQINSRG, revealed that tryptophan is a critical amino acid in the protein stabilisation by GILQINSRW-HEA90. Accordingly, polymeric peptide-mimetics of tryptophan, phenylalanine and isoleucine, which are often present in aggregation-prone regions, were synthesized. These were based on synthetic oligomers of acrylamide derivatives of indole-3 acetic acid (IND), phenylacetic acid (PHEN), or 2-methyl butyric acid (MBA), respectively, conjugated with hydrophilic poly(N-hydroxyethyl acrylamide) blocks to form amphiphilic copolymers denoted as INDm-, PHENm- and MTBm-b-HEAn. These materials were tested as protein stabilisers and it was shown that solution properties and the abilities of these materials to stabilise insulin and the peptide IDR 1018 towards aggregation are dependent on the chemical nature of their side groups. These data suggest a structure-activity relationship, whereby the indole-based INDm-b-HEAn peptide-mimetic displays properties of a potential stabilising excipient for protein formulations.
Collapse
Affiliation(s)
| | - Rafał Jerzy Kopiasz
- University of Nottingham, School of Pharmacy, NG7 2RD, UK.
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3 St., 00-664, Warsaw, Poland
| | | | | | - Snow Stolnik
- University of Nottingham, School of Pharmacy, NG7 2RD, UK.
| |
Collapse
|
29
|
Parlato R, Volarić J, Lasorsa A, Bagherpoor Helabad M, Kobauri P, Jain G, Miettinen MS, Feringa BL, Szymanski W, van der Wel PCA. Photocontrol of the β-Hairpin Polypeptide Structure through an Optimized Azobenzene-Based Amino Acid Analogue. J Am Chem Soc 2024; 146:2062-2071. [PMID: 38226790 PMCID: PMC10811659 DOI: 10.1021/jacs.3c11155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
A family of neurodegenerative diseases, including Huntington's disease (HD) and spinocerebellar ataxias, are associated with an abnormal polyglutamine (polyQ) expansion in mutant proteins that become prone to form amyloid-like aggregates. Prior studies have suggested a key role for β-hairpin formation as a driver of nucleation and aggregation, but direct experimental studies have been challenging. Toward such research, we set out to enable spatiotemporal control over β-hairpin formation by the introduction of a photosensitive β-turn mimic in the polypeptide backbone, consisting of a newly designed azobenzene derivative. The reported derivative overcomes the limitations of prior approaches associated with poor photochemical properties and imperfect structural compatibility with the desired β-turn structure. A new azobenzene-based β-turn mimic was designed, synthesized, and found to display improved photochemical properties, both prior and after incorporation into the backbone of a polyQ polypeptide. The two isomers of the azobenzene-polyQ peptide showed different aggregate structures of the polyQ peptide fibrils, as demonstrated by electron microscopy and solid-state NMR (ssNMR). Notably, only peptides in which the β-turn structure was stabilized (azobenzene in the cis configuration) closely reproduced the spectral fingerprints of toxic, β-hairpin-containing fibrils formed by mutant huntingtin protein fragments implicated in HD. These approaches and findings will enable better deciphering of the roles of β-hairpin structures in protein aggregation processes in HD and other amyloid-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Raffaella Parlato
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jana Volarić
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mahdi Bagherpoor Helabad
- Department
of Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Piermichele Kobauri
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Greeshma Jain
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Computational
Biology Unit, Departments of Chemistry and Informatics, University of Bergen, 5020 Bergen, Norway
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
- Medical
Imaging Center, University Medical Center
Groningen, Hanzeplein
1, 9713 GZ Groningen, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
30
|
Longobardi A, Catania M, Geviti A, Salvi E, Vecchi ER, Bellini S, Saraceno C, Nicsanu R, Squitti R, Binetti G, Di Fede G, Ghidoni R. Autophagy Markers Are Altered in Alzheimer's Disease, Dementia with Lewy Bodies and Frontotemporal Dementia. Int J Mol Sci 2024; 25:1125. [PMID: 38256197 PMCID: PMC10816165 DOI: 10.3390/ijms25021125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The accumulation of protein aggregates defines distinct, yet overlapping pathologies such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). In this study, we investigated ATG5, UBQLN2, ULK1, and LC3 concentrations in 66 brain specimens and 120 plasma samples from AD, DLB, FTD, and control subjects (CTRL). Protein concentration was measured with ELISA kits in temporal, frontal, and occipital cortex specimens of 32 AD, 10 DLB, 10 FTD, and 14 CTRL, and in plasma samples of 30 AD, 30 DLB, 30 FTD, and 30 CTRL. We found alterations in ATG5, UBQLN2, ULK1, and LC3 levels in patients; ATG5 and UBQLN2 levels were decreased in both brain specimens and plasma samples of patients compared to those of the CTRL, while LC3 levels were increased in the frontal cortex of DLB and FTD patients. In this study, we demonstrate alterations in different steps related to ATG5, UBQLN2, and LC3 autophagy pathways in DLB and FTD patients. Molecular alterations in the autophagic processes could play a role in a shared pathway involved in the pathogenesis of neurodegeneration, supporting the hypothesis of a common molecular mechanism underlying major neurodegenerative dementias and suggesting different potential therapeutic targets in the autophagy pathway for these disorders.
Collapse
Affiliation(s)
- Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (C.S.); (R.N.); (R.S.); (R.G.)
| | - Marcella Catania
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (E.R.V.); (G.D.F.)
| | - Andrea Geviti
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Data Science Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elena Rita Vecchi
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (E.R.V.); (G.D.F.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (C.S.); (R.N.); (R.S.); (R.G.)
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (C.S.); (R.N.); (R.S.); (R.G.)
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (C.S.); (R.N.); (R.S.); (R.G.)
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (C.S.); (R.N.); (R.S.); (R.G.)
- Dipartimento di Scienze di Laboratorio, Ospedale Isola Tiberina-Gemelli Isola, 00186 Rome, Italy
| | - Giuliano Binetti
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Giuseppe Di Fede
- Neurology 5/Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (E.R.V.); (G.D.F.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.B.); (C.S.); (R.N.); (R.S.); (R.G.)
| |
Collapse
|
31
|
Yu J, Chen G, Zhu H, Zhong Y, Yang Z, Jian Z, Xiong X. Metabolic and proteostatic differences in quiescent and active neural stem cells. Neural Regen Res 2024; 19:43-48. [PMID: 37488842 PMCID: PMC10479840 DOI: 10.4103/1673-5374.375306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. Therefore, neural regeneration may be a promising target for treatment of many neurological illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits. This review focuses on differences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and underlying advantages of these differences. Due to the limited number of adult neural stem cells studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
Collapse
Affiliation(s)
- Jiacheng Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
32
|
Hippman RS, Snead AM, Petros ZA, Korkmaz-Vaisys MA, Patel S, Sotelo D, Dobria A, Salkovski M, Nguyen TTA, Linares R, Cologna SM, Gowrishankar S, Aldrich LN. Discovery of a Small-Molecule Modulator of the Autophagy-Lysosome Pathway That Targets Lamin A/C and LAMP1, Induces Autophagic Flux, and Affects Lysosome Positioning in Neurons. ACS Chem Neurosci 2023; 14:4363-4382. [PMID: 38069806 PMCID: PMC10739612 DOI: 10.1021/acschemneuro.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
Autophagy is a major catabolic degradation and recycling process that maintains homeostasis in cells and is especially important in postmitotic neurons. We implemented a high-content phenotypic assay to discover small molecules that promote autophagic flux and completed target identification and validation studies to identify protein targets that modulate the autophagy pathway and promote neuronal health and survival. Efficient syntheses of the prioritized compounds were developed to readily access analogues of the initial hits, enabling initial structure-activity relationship studies to improve potency and preparation of a biotin-tagged pulldown probe that retains activity. This probe facilitated target identification and validation studies through pulldown and competition experiments using both an unbiased proteomics approach and western blotting to reveal Lamin A/C and LAMP1 as the protein targets of compound RH1115. Evaluation of RH1115 in neurons revealed that this compound induces changes to LAMP1 vesicle properties and alters lysosome positioning. Dysfunction of the autophagy-lysosome pathway has been implicated in a variety of neurodegenerative diseases, including Alzheimer's disease, highlighting the value of new strategies for therapeutic modulation and the importance of small-molecule probes to facilitate the study of autophagy regulation in cultured neurons and in vivo.
Collapse
Affiliation(s)
- Ryan S. Hippman
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Amanda M. Snead
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Zoe A. Petros
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Melissa A. Korkmaz-Vaisys
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Sruchi Patel
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Daniel Sotelo
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Andrew Dobria
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Maryna Salkovski
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Thu T. A. Nguyen
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Ricardo Linares
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Stephanie M. Cologna
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Swetha Gowrishankar
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood Street, Chicago, Illinois 60612, United States
| | - Leslie N. Aldrich
- Department
of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
33
|
Spisni E, Valerii MC, Massimino ML. Essential Oil Molecules Can Break the Loop of Oxidative Stress in Neurodegenerative Diseases. BIOLOGY 2023; 12:1504. [PMID: 38132330 PMCID: PMC10740714 DOI: 10.3390/biology12121504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Essential oils (EOs) are mixtures of volatile compounds, extracted from aromatic plants, with multiple activities including antioxidant and anti-inflammatory ones. EOs are complex mixtures easy to find on the market and with low costs. In this mini narrative review, we have collected the results of in vitro and in vivo studies, which tested these EOs on validated models of neurodegeneration and in particular of the two main neurodegenerative diseases (NDs) that afflict humans: Alzheimer's and Parkinson's. Since EO compositions can vary greatly, depending on the environmental conditions, plant cultivar, and extraction methods, we focused our attention to studies involving single EO molecules, and in particular those that have demonstrated the ability to cross the blood-brain barrier. These single EO molecules, alone or in defined mixtures, could be interesting new therapies to prevent or slow down oxidative and inflammatory processes which are common mechanisms that contribute to neuronal death in all NDs.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Lina Massimino
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padova, Italy
| |
Collapse
|
34
|
Cui D, Chen Y, Ye B, Guo W, Wang D, He J. Natural products for the treatment of neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155101. [PMID: 37778246 DOI: 10.1016/j.phymed.2023.155101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the most common diseases in older adults worldwide. Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common neurodegenerative diseases, and are accompanied by cerebral cortical atrophy, neuronal loss, protein accumulation, and excessive accumulation of metal ions. Natural products exhibit outstanding performance in improving cerebral circulatory disorders, promoting cerebral haematoma absorption, repairing damaged nerve tissue, and improving damaged nerve function. In recent years, studies have shown that neuroinflammatory mechanisms and signalling pathways closely related to the occurrence and development of neurological diseases include microglial activation, nuclear factor-κB (NF-κB) pathway, mitogen activated protein kinases (MAPK) pathway, reactive oxygen pathway, nucleotide binding oligomerisation domain-like receptor protein3 (NLRP3) inflammasomes, toll-like receptor4 (TLR4) pathway, nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, and intestinal flora. Therefore, this study considered the mechanism of neurological diseases as the starting point to review the mechanism of action of natural products in the prevention and treatment of AD and PD in recent years to provide a theoretical basis for clinical prevention and treatment. AIM Natural products are a promising source of novel lead structures that have long been used to treat various nervous system diseases. METHODOLOGY This review collected literature on neurological diseases and natural products from 2012 to 2022, which were mainly searched through databases such as ScienceDirect, Springer, PubMed, SciFinder, China National Knowledge Infrastructure (CNKI), Wanfang, Google Scholar, and Baidu Academic. The following keywords were searched: neurological disorders, natural products, signalling pathway, mechanism of action. RESULTS This review summarises the pathogenesis of degenerative neurological diseases, recent findings on natural products used in neurodegenerative diseases, and the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Donghan Cui
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University, West China Hospital, Chengdu 610041, China
| | - Yajuan Chen
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bengui Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China; Medical College of Tibet University, Lasa 850002, China
| | - Wenhao Guo
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University, West China Hospital, Chengdu 610041, China.
| | - Dongdong Wang
- Centre for Metabolism, Obesity, and Diabetes Research, Department of Medicine, McMaster University, HSC 4N71, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada.
| | - Jun He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China.
| |
Collapse
|
35
|
Kang S, Kim M, Sun J, Lee M, Min K. Prediction of Protein Aggregation Propensity via Data-Driven Approaches. ACS Biomater Sci Eng 2023; 9:6451-6463. [PMID: 37844262 DOI: 10.1021/acsbiomaterials.3c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Protein aggregation occurs when misfolded or unfolded proteins physically bind together and can promote the development of various amyloid diseases. This study aimed to construct surrogate models for predicting protein aggregation via data-driven methods using two types of databases. First, an aggregation propensity score database was constructed by calculating the scores for protein structures in the Protein Data Bank using Aggrescan3D 2.0. Moreover, feature- and graph-based models for predicting protein aggregation have been developed by using this database. The graph-based model outperformed the feature-based model, resulting in an R2 of 0.95, although it intrinsically required protein structures. Second, for the experimental data, a feature-based model was built using the Curated Protein Aggregation Database 2.0 to predict the aggregated intensity curves. In summary, this study suggests approaches that are more effective in predicting protein aggregation, depending on the type of descriptor and the database.
Collapse
Affiliation(s)
- Seungpyo Kang
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu 06978, Seoul, Republic of Korea
| | - Minseon Kim
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu 06978, Seoul, Republic of Korea
| | - Jiwon Sun
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu 06978, Seoul, Republic of Korea
| | - Myeonghun Lee
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu 06978, Seoul, Republic of Korea
| | - Kyoungmin Min
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu 06978, Seoul, Republic of Korea
| |
Collapse
|
36
|
Kreiser T, Sogolovsky-Bard I, Zaguri D, Shaham-Niv S, Laor Bar-Yosef D, Gazit E. Branched-Chain Amino Acid Assembly into Amyloid-like Fibrils Provides a New Paradigm for Maple Syrup Urine Disease Pathology. Int J Mol Sci 2023; 24:15999. [PMID: 37958982 PMCID: PMC10650742 DOI: 10.3390/ijms242115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Inborn error of metabolism disorders (IEMs) are a family of diseases resulting from single-gene mutations that lead to the accumulation of metabolites that are usually toxic or interfere with normal cell function. The etiological link between metabolic alteration and the symptoms of IEMs is still elusive. Several metabolites, which accumulate in IEMs, were shown to self-assemble to form ordered structures. These structures display the same biophysical, biochemical, and biological characteristics as proteinaceous amyloid fibrils. Here, we have demonstrated, for the first time, the ability of each of the branched-chain amino acids (BCAAs) that accumulate in maple syrup urine disease (MSUD) to self-assemble into amyloid-like fibrils depicted by characteristic morphology, binding to indicative amyloid-specific dyes and dose-dependent cytotoxicity by a late apoptosis mechanism. We could also detect the presence of the assemblies in living cells. In addition, by employing several in vitro techniques, we demonstrated the ability of known polyphenols to inhibit the formation of the BCAA fibrils. Our study implies that BCAAs possess a pathological role in MSUD, extends the paradigm-shifting concept regarding the toxicity of metabolite amyloid-like structures, and suggests new pathological targets that may lead to highly needed novel therapeutic opportunities for this orphan disease.
Collapse
Affiliation(s)
- Topaz Kreiser
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Ilana Sogolovsky-Bard
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dor Zaguri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Shira Shaham-Niv
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (I.S.-B.); (D.Z.); (S.S.-N.); (D.L.B.-Y.)
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
37
|
Younis D, Mosbah A, Zakaria MM, Awadalla A, El-Kannishy G, Shemies RS. Urinary congophilia in pregnancy: a marker of kidney injury rather than preeclampsia. J Hypertens 2023; 41:1760-1767. [PMID: 37602468 DOI: 10.1097/hjh.0000000000003531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND The differentiation between preeclampsia and similarly presenting kidney disease in pregnancy is a diagnostic challenge. Although some laboratory tests have been utilized, globally validated tools are yet needed, particularly in resource-limited settings. Congophilic proteins are abundantly detected in the urine of pregnant women who develop preeclampsia that is thought to be a marker of disease process. The present study aimed to assess the diagnostic and predictive utility of urinary congophilia in pregnant women with hypertensive disorders of pregnancy as well as kidney diseases. METHODS This cohort study included 157 pregnant women, classified as healthy controls ( n = 38), preeclampsia/eclampsia ( n = 45), gestational hypertension ( n = 9), chronic hypertension ( n = 8), chronic kidney disease (CKD) ( n = 27), and pregnancy-related acute kidney injury (PR-AKI) ( n = 30). Urinary congophilia was assessed by Congo Red Dot Blot assay. RESULTS Congo red retention (CRR) values were significantly higher in women with preeclampsia/eclampsia ( P ≤ 0.001), chronic hypertension ( P = 0.029), gestational hypertension ( P = 0.017), CKD ( P ≤ 0.001), PR-AKI secondary to preeclampsia ( P ≤ 0.001), and PR-AKI secondary to other causes ( P = 0.001), compared with healthy controls. Women with preeclampsia, CKD, and PR-AKI (non-preeclampsia related) exhibited the highest levels of CRR. CRR positively correlated to proteinuria ( P = 0.006) and serum creatinine ( P = 0.027). CRR did not significantly vary between women who presented antepartum and those presented postpartum after removal of the placenta ( P = 0.707). CRR at a cut-off point of at least 1.272 had 91% specificity and 61.1% sensitivity in predicting renal recovery in PR-AKI patients. CRR had a poor specificity in discriminating preeclampsia from the other clinical presentations. CONCLUSION Urinary congophilia could not discriminate preeclampsia from similarly presenting kidney diseases in pregnancy. Further studies are needed to improve differentiation of these conditions.
Collapse
Affiliation(s)
| | | | - Mahmoud M Zakaria
- Clinical Pathology Department, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura City, Egypt
| | - Amira Awadalla
- Clinical Pathology Department, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura City, Egypt
| | | | | |
Collapse
|
38
|
Yuan Y, Chen L, Kong L, Qiu L, Fu Z, Sun M, Liu Y, Cheng M, Ma S, Wang X, Zhao C, Jiang J, Zhang X, Wang L, Gao L. Histidine modulates amyloid-like assembly of peptide nanomaterials and confers enzyme-like activity. Nat Commun 2023; 14:5808. [PMID: 37726302 PMCID: PMC10509148 DOI: 10.1038/s41467-023-41591-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Amyloid-like assembly is not only associated with pathological events, but also leads to the development of novel nanomaterials with unique properties. Herein, using Fmoc diphenylalanine peptide (Fmoc-F-F) as a minimalistic model, we found that histidine can modulate the assembly behavior of Fmoc-F-F and induce enzyme-like catalysis. Specifically, the presence of histidine rearranges the β structure of Fmoc-F-F to assemble nanofilaments, resulting in the formation of active site to mimic peroxidase-like activity that catalyzes ROS generation. A similar catalytic property is also observed in Aβ assembled filaments, which is correlated with the spatial proximity between intermolecular histidine and F-F. Notably, the assembled Aβ filaments are able to induce cellular ROS elevation and damage neuron cells, providing an insight into the pathological relationship between Aβ aggregation and Alzheimer's disease. These findings highlight the potential of histidine as a modulator in amyloid-like assembly of peptide nanomaterials exerting enzyme-like catalysis.
Collapse
Affiliation(s)
- Ye Yuan
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun, 130012, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingfei Kong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zhendong Fu
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan Liu
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Miaomiao Cheng
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Saiyu Ma
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changhui Zhao
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
39
|
Yu H, Xiong M, Zhang Z. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Front Mol Neurosci 2023; 16:1209703. [PMID: 37781096 PMCID: PMC10540228 DOI: 10.3389/fnmol.2023.1209703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Neurodegenerative diseases (NDDs) pose an increasingly prevalent threat to the well-being and survival of elderly individuals worldwide. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and so on. They are characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system and share several cellular and molecular mechanisms, including protein aggregation, mitochondrial dysfunction, gene mutations, and chronic neuroinflammation. Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase that is believed to play a pivotal role in the pathogenesis of NDDs. Here we summarize the structure and physiological functions of GSK3β and explore its involvement in NDDs. We also discussed its potential as a therapeutic target.
Collapse
Affiliation(s)
- Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Sahoo BR, Bardwell JCA. SERF, a family of tiny highly conserved, highly charged proteins with enigmatic functions. FEBS J 2023; 290:4150-4162. [PMID: 35694898 DOI: 10.1111/febs.16555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a misfolding process that has been linked to age-related diseases, including Alzheimer's and Huntington's. Understanding how cellular factors affect this process in vivo is vital in realizing the dream of controlling this insidious process that robs so many people of their humanity. SERF (small EDRK-rich factor) was initially isolated as a factor that accelerated polyglutamine amyloid formation in a C. elegans model. SERF knockouts inhibit amyloid formation of a number of proteins that include huntingtin, α-synuclein and β-amyloid which are associated with Huntington's, Parkinson's and Alzheimer's disease, respectively, and purified SERF protein speeds their amyloid formation in vitro. SERF proteins are highly conserved, highly charged and conformationally dynamic proteins that form a fuzzy complex with amyloid precursors. They appear to act by specifically accelerating the primary step of amyloid nucleation. Brain-specific SERF knockout mice, though viable, appear to be more prone to deposition of amyloids, and show modified fibril morphology. Whole-body knockouts are perinatally lethal due to an apparently unrelated developmental issue. Recently, it was found that SERF binds RNA and is localized to nucleic acid-rich membraneless compartments. SERF-related sequences are commonly found fused to zinc finger sequences. These results point towards a nucleic acid-binding function. How this function relates to their ability to accelerate amyloid formation is currently obscure. In this review, we discuss the possible biological functions of SERF family proteins in the context of their structural fuzziness, modulation of amyloid pathway, nucleic acid binding and their fusion to folded proteins.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Basha S, Mukunda DC, Rodrigues J, Gail D'Souza M, Gangadharan G, Pai AR, Mahato KK. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res Rev 2023; 90:102017. [PMID: 37468112 DOI: 10.1016/j.arr.2023.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Proteins are the most common biological macromolecules in living system and are building blocks of life. They are extremely dynamic in structure and functions. Due to several modifications, proteins undergo misfolding, leading to aggregation and thereby developing neurodegenerative and systemic diseases. Understanding the pathology of these diseases and the techniques used to diagnose them is therefore crucial for their effective management . There are several techniques, currently being in use to diagnose them and those will be discussed in this review. AIM/OBJECTIVES Current review aims to discuss an overview of protein aggregation and the underlying mechanisms linked to neurodegeneration and systemic diseases. Also, the review highlights protein misfolding disorders, their clinical diagnosis, and treatment strategies. METHODOLOGY Literature related to neurodegenerative and systemic diseases was explored through PubMed, Google Scholar, Scopus, and Medline databases. The keywords used for literature survey and analysis are protein aggregation, neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, systemic diseases, protein aggregation mechanisms, etc. DISCUSSION /CONCLUSION: This review summarises the pathogenesis of neurodegenerative and systemic disorders caused by protein misfolding and aggregation. The clinical diagnosis and therapeutic strategies adopted for the management of these diseases are also discussed to aid in a better understanding of protein misfolding disorders. Many significant concerns about the role, characteristics, and consequences of protein aggregates in neurodegenerative and systemic diseases are not clearly understood to date. Regardless of technological advancements, there are still great difficulties in the management and cure of these diseases. Therefore, for better understanding, diagnosis, and treatment of neurodegenerative and systemic diseases, more studies to identify novel drugs that may aid in their treatment and management are required.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
42
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
43
|
Zheng Q, Liu H, Yu W, Dong Y, Zhou L, Deng W, Hua F. Mechanical properties of the brain: Focus on the essential role of Piezo1-mediated mechanotransduction in the CNS. Brain Behav 2023; 13:e3136. [PMID: 37366640 PMCID: PMC10498085 DOI: 10.1002/brb3.3136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The brain is a highly mechanosensitive organ, and changes in the mechanical properties of brain tissue influence many physiological and pathological processes. Piezo type mechanosensitive ion channel component 1 (Piezo1), a protein found in metazoans, is highly expressed in the brain and involved in sensing changes of the mechanical microenvironment. Numerous studies have shown that Piezo1-mediated mechanotransduction is closely related to glial cell activation and neuronal function. However, the precise role of Piezo1 in the brain requires further elucidation. OBJECTIVE This review first discusses the roles of Piezo1-mediated mechanotransduction in regulating the functions of a variety of brain cells, and then briefly assesses the impact of Piezo1-mediated mechanotransduction on the progression of brain dysfunctional disorders. CONCLUSIONS Mechanical signaling contributes significantly to brain function. Piezo1-mediated mechanotransduction regulates processes such as neuronal differentiation, cell migration, axon guidance, neural regeneration, and oligodendrocyte axon myelination. Additionally, Piezo1-mediated mechanotransduction plays significant roles in normal aging and brain injury, as well as the development of various brain diseases, including demyelinating diseases, Alzheimer's disease, and brain tumors. Investigating the pathophysiological mechanisms through which Piezo1-mediated mechanotransduction affects brain function will give us a novel entry point for the diagnosis and treatment of numerous brain diseases.
Collapse
Affiliation(s)
- Qingcui Zheng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Hailin Liu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wen Yu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Yao Dong
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Lanqian Zhou
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wenze Deng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Fuzhou Hua
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| |
Collapse
|
44
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
45
|
Li M, Chen G, Zhang Z. Modeling the effects of phosphorylation on phase separation of the FUS low-complexity domain. Biophys J 2023; 122:2636-2645. [PMID: 37211763 PMCID: PMC10397571 DOI: 10.1016/j.bpj.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023] Open
Abstract
Aggregation of the RNA-binding protein fused in sarcoma (FUS) is a hallmark of neurodegenerative diseases. Phosphorylation of Ser/Thr in the FUS low-complexity domain (FUS-LC) may regulate phase separation of FUS and prevent pathological aggregation in cells. However, many details of this process remain elusive to date. In this work, we systematically investigated the phosphorylation of FUS-LC and the underlying molecular mechanism by molecular dynamics (MD) simulations and free energy calculations. The results clearly show that phosphorylation can destroy the fibril core structure of FUS-LC by breaking interchain interactions, particularly contacts involving residues like Tyr, Ser, and Gln. Among the six phosphorylation sites, Ser61 and Ser84 may have more important effects on the stability of the fibril core. Our study reveals structural and dynamic details of FUS-LC phase separation modulated by phosphorylation.
Collapse
Affiliation(s)
- Mingwei Li
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Guanglin Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, P.R. China.
| |
Collapse
|
46
|
Espina M, Di Franco N, Brañas-Navarro M, Navarro IR, Brito V, Lopez-Molina L, Costas-Insua C, Guzmán M, Ginés S. The GRP78-PERK axis contributes to memory and synaptic impairments in Huntington's disease R6/1 mice. Neurobiol Dis 2023:106225. [PMID: 37442396 DOI: 10.1016/j.nbd.2023.106225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that a key factor in neurodegenerative diseases is the activation of the unfolded protein response (UPR) caused by an accumulation of misfolded proteins in the endoplasmic reticulum (ER stress). Particularly, in Huntington's disease (HD) mutant huntingtin (mHtt) toxicity involves disruption of the ER-associated degradation pathway and loss of the ER protein homeostasis leading to neuronal dysfunction and degeneration. Besides the role of the UPR in regulating cell survival and death, studies that demonstrate the contribution of sustained UPR activation, particularly of PERK signaling, in memory disturbances and synaptic plasticity deficiencies are emerging. Given the contribution of hippocampal dysfunction to emotional and cognitive deficits seen in HD, we have analyzed the involvement of ER stress in HD memory alterations. We have demonstrated that at early disease stages, ER stress activation manifested as an increase in GRP78 and CHOP is observed in the hippocampus of R6/1 mice. Genetic reduction of GRP78 expression resulted in preventing hippocampal-dependent memory alterations but no motor deficits. Accordingly, hippocampal neuropathology namely, dendritic spine loss and accumulation of mHtt aggregates was ameliorated by GRP78 reduction. To elucidate the signaling pathways, we found that the inactivation of PERK by GSK2606414 restored spatial and recognition memories in R6/1 mice and rescued dendritic spine density in CA1 pyramidal neurons and protein levels of some specific immediate early genes. Our study unveils the critical role of the GRP78/PERK axis in memory impairment in HD mice and suggests the modulation of PERK activation as a novel therapeutic target for HD intervention.
Collapse
Affiliation(s)
- Marc Espina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Nadia Di Franco
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Martina Brañas-Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Irene Rodriguez Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Veronica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Laura Lopez-Molina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Carlos Costas-Insua
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid 28040, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid 28040, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28031, Spain.
| |
Collapse
|
47
|
Ramirez E, Ganegamage SK, Elbatrawy AA, Alnakhala H, Shimanaka K, Tripathi A, Min S, Rochet JC, Dettmer U, Fortin JS. 5-Nitro-1,2-benzothiazol-3-amine and N-Ethyl-1-[(ethylcarbamoyl)(5-nitro-1,2-benzothiazol-3-yl)amino]formamide Modulate α-Synuclein and Tau Aggregation. ACS OMEGA 2023; 8:20102-20115. [PMID: 37305264 PMCID: PMC10249125 DOI: 10.1021/acsomega.3c02668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Protein misfolding results in a plethora of known diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, transthyretin-related amyloidosis, type 2 diabetes, Lewy body dementia, and spongiform encephalopathy. To provide a diverse portfolio of therapeutic small molecules with the ability to reduce protein misfolding, we evaluated a set of 13 compounds: 4-(benzo[d]thiazol-2-yl)aniline (BTA) and its derivatives containing urea (1), thiourea (2), sulfonamide (3), triazole (4), and triazine (5) linker. In addition, we explored small modifications on a very potent antioligomer 5-nitro-1,2-benzothiazol-3-amine (5-NBA) (compounds 6-13). This study aims to define the activity of BTA and its derivatives on a variety of prone-to-aggregate proteins such as transthyretin (TTR81-127, TTR101-125), α-synuclein (α-syn), and tau isoform 2N4R (tau 2N4R) through various biophysical methods. Thioflavin T (ThT) fluorescence assay was used to monitor fibril formation of the previously mentioned proteins after treatment with BTA and its derivatives. Antifibrillary activity was confirmed using transmission electron microscopy (TEM). Photoreactive cross-linking assay (PICUP) was utilized to detect antioligomer activity and lead to the identification of 5-NBA (at low micromolar concentration) and compound 13 (at high concentration) as the most promising in reducing oligomerization. 5-NBA and not BTA inhibited the inclusion formation based on the cell-based assay using M17D neuroblastoma cells that express inclusion-prone αS-3K::YFP. 5-NBA abrogated the fibril, oligomer, and inclusion formation in a dose-dependent manner. 5-NBA derivatives could be the key to mitigate protein aggregation. In the future, the results made from this study will provide an initial platform to generate more potent inhibitors of α-syn and tau 2N4R oligomer and fibril formation.
Collapse
Affiliation(s)
- Eduardo Ramirez
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| | - Susantha K. Ganegamage
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| | - Ahmed A. Elbatrawy
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| | - Heba Alnakhala
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Kazuma Shimanaka
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Arati Tripathi
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Sehong Min
- Department
of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jean-Christophe Rochet
- Department
of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ulf Dettmer
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Jessica S. Fortin
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| |
Collapse
|
48
|
Jiang Y, Xu N. The Emerging Role of Autophagy-Associated lncRNAs in the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24119686. [PMID: 37298636 DOI: 10.3390/ijms24119686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases (NDDs) have become a significant global public health problem and a major societal burden. The World Health Organization predicts that NDDs will overtake cancer as the second most common cause of human mortality within 20 years. Thus, it is urgently important to identify pathogenic and diagnostic molecular markers related to neurodegenerative processes. Autophagy is a powerful process for removing aggregate-prone proteins in neurons; defects in autophagy are often associated with the pathogenesis of NDDs. Long non-coding RNAs (lncRNAs) have been suggested as key regulators in neurodevelopment; aberrant regulation of lncRNAs contributes to neurological disorders. In this review, we summarize the recent progress in the study of lncRNAs and autophagy in the context of neurodegenerative disorders, especially Alzheimer's disease (AD) and Parkinson's disease (PD). The information presented here should provide guidance for future in-depth investigations of neurodegenerative processes and related diagnostic molecular markers and treatment targets.
Collapse
Affiliation(s)
- Yapei Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
49
|
Leppert A, Poska H, Landreh M, Abelein A, Chen G, Johansson J. A new kid in the folding funnel: Molecular chaperone activities of the BRICHOS domain. Protein Sci 2023; 32:e4645. [PMID: 37096906 PMCID: PMC10182729 DOI: 10.1002/pro.4645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
The BRICHOS protein superfamily is a diverse group of proteins associated with a wide variety of human diseases, including respiratory distress, COVID-19, dementia, and cancer. A key characteristic of these proteins-besides their BRICHOS domain present in the ER lumen/extracellular part-is that they harbor an aggregation-prone region, which the BRICHOS domain is proposed to chaperone during biosynthesis. All so far studied BRICHOS domains modulate the aggregation pathway of various amyloid-forming substrates, but not all of them can keep denaturing proteins in a folding-competent state, in a similar manner as small heat shock proteins. Current evidence suggests that the ability to interfere with the aggregation pathways of substrates with entirely different end-point structures is dictated by BRICHOS quaternary structure as well as specific surface motifs. This review aims to provide an overview of the BRICHOS protein family and a perspective of the diverse molecular chaperone-like functions of various BRICHOS domains in relation to their structure and conformational plasticity. Furthermore, we speculate about the physiological implication of the diverse molecular chaperone functions and discuss the possibility to use the BRICHOS domain as a blood-brain barrier permeable molecular chaperone treatment of protein aggregation disorders.
Collapse
Affiliation(s)
- Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Helen Poska
- School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
| | - Michael Landreh
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
50
|
Martins GF, Nascimento C, Galamba N. Mechanistic Insights into Polyphenols' Aggregation Inhibition of α-Synuclein and Related Peptides. ACS Chem Neurosci 2023; 14:1905-1920. [PMID: 37125909 DOI: 10.1021/acschemneuro.3c00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
While several polyphenols were found to either inhibit or modulate the aggregation of proteins implicated in neurodegenerative diseases, such as Parkinson's disease (PD), discrepant action mechanisms have been reported. This, in addition to some polyphenols' pan-assay interference compounds' reputation, casts some doubts concerning their therapeutic relevance. Here, we studied, through molecular dynamics and enhanced sampling methods, the aggregation of 11-mer peptides from the non-amyloid-β component, an aggregation-prone domain of α-synuclein (α-syn) implicated in PD and other synucleinopathies, in neat water and aqueous solutions of resveratrol (RSV) and gallic acid (GA). Further, simulations of the complete protein were carried out in aqueous urea, RSV, and GA solutions. Our results show that peptide aggregation is not disrupted by either phenolic compound. Thus, instead, intrusion of RSV and GA in the inter-peptide region induces a peptide-peptide re-orientation, favoring terminal interactions that manifest in the formation of barrierless solvent-separated configurations. Moreover, although the (poly)phenols induce a pronounced peptide dewetting at high concentrations, β-sheet-rich regions, a hallmark of α-syn aggregation, are not disrupted. Thus, our results indicate that, if anything, RSV and GA delay or modulate peptide aggregation at high concentrations via the stabilization of solvent-separated conformations as opposed to aggregation inhibition. Structural analysis of the full protein, however, shows that the (poly)phenols induce more extended conformations of α-syn, similar to urea, possibly also influencing its aggregation propensity. However, opposite to urea, the (poly)phenols reduce α-syn's conformational space, likely due to steric effects and a slowdown of the solvent dynamics. These effects are concentration-dependent and possibly unattainable at therapeutic-relevant concentrations. These results suggest that the aggregation inhibition activity of RSV and GA in vitro should involve, instead, either the non-covalent binding to oligomeric intermediates or the stabilization of the monomer and/or oligomers through the formation of covalent bonds of the respective quinones with α-syn. In addition, the enhanced aggregation tendency of the peptides observed here could be associated with the formation of non-toxic oligomers, reported for some polyphenols.
Collapse
Affiliation(s)
- G F Martins
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| | - C Nascimento
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| | - N Galamba
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| |
Collapse
|