1
|
Derguine R, Rezgui A, Tachour RA, Zenbout I, Agred R, Benmanseur A, Hab FZ, Khenchouche A, Sobhi W. Comprehensive investigation into the discrete toxicity of curcumin on β-cell viability and insulin secretion. Food Chem Toxicol 2025; 200:115429. [PMID: 40185300 DOI: 10.1016/j.fct.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Curcumin possesses several therapeutic benefits. However, the precise mechanisms underlying these actions have not been fully elucidated. The aim of this study was to highlight the toxic effects on β-cells and islets. METHODS The toxic effects of curcumin were investigated on cell viability in ALB/c mouse-isolated Langerhans islets and NIT1 cells (CRL-2055™, a NOD mouse β cell line), and insulin secretion. We evaluated its effects on oxidative stress markers, ROS production, and its role in ER stress through the stimulation of three genes involved in the UPR response. In silico and in vitro studies were conducted to extract a set of genes and curcumin-PPI using a multistep pipeline. RESULTS Curcumin increases cell viability and insulin secretion in islets of Langerhans. At 60 μg/mL (0,163 μM), curcumin affected β-cell viability, reducing it by up to 70-75 %, and significantly reduced insulin secretion. It also induces oxidative stress and increases the expression of NFKB1, ATF4, and CHOP. These effects were enhanced when curcumin was combined with STZ. Bioinformatic studies have indicated that curcumin interacts with 14 proteins, including Jund, Ddit3, Dapk3, Cebpa, and the NFkB pathway through NFkBia. CONCLUSION At high concentrations, curcumin is cytotoxic. It induces β-cell apoptosis associated with UPR-ER and oxidative stress, implicating the NFkB pathway and its associated proteins.
Collapse
Affiliation(s)
- Rania Derguine
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, Ferhat ABBAS Setif 1 University (UFAS1), Setif, 19000, Algeria; Biotechnology Research Center (CRBt), Ali Mendjli, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria
| | - Abdelmalek Rezgui
- Biotechnology Research Center (CRBt), Ali Mendjli, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria
| | - Rechda Amel Tachour
- Biotechnology Research Center (CRBt), Ali Mendjli, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria; Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, Abderrahmane Mira University, Bejaia, 6000, Algeria
| | - Imène Zenbout
- MISC Laboratory, NTIC Faculty, Constantine 2 University Abdelhamid Mehri, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria
| | - Rym Agred
- Biotechnology Research Center (CRBt), Ali Mendjli, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria
| | - Anfel Benmanseur
- Biotechnology Research Center (CRBt), Ali Mendjli, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria; Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, Abderrahmane Mira University, Bejaia, 6000, Algeria
| | - Fatma-Zahra Hab
- Biotechnology Research Center (CRBt), Ali Mendjli, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria; Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, Abderrahmane Mira University, Bejaia, 6000, Algeria
| | - Abdelhalim Khenchouche
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, Ferhat ABBAS Setif 1 University (UFAS1), Setif, 19000, Algeria
| | - Widad Sobhi
- Biotechnology Research Center (CRBt), Ali Mendjli, Nouvelle Ville UV 03 BP E73 Constantine 25000, Algeria.
| |
Collapse
|
2
|
Liu Z, Li Q, Zhao F, Chen J. A decade review on phytochemistry and pharmacological activities of Cynomorium songaricum Rupr.: Insights into metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156602. [PMID: 40058318 DOI: 10.1016/j.phymed.2025.156602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Cynomorium songaricum Rupr. (CSR), a perennial herb with a rich history in traditional medicine, has demonstrated therapeutic potential against metabolic syndrome (MetS) through its active compounds, including proanthocyanidins, polysaccharides, and triterpenoids. MetS, a global health concern, encompasses interlinked conditions such as obesity, type 2 diabetes mellitus (T2DM), and inflammation. This review synthesizes recent findings on CSR's pharmacological and phytochemical properties, focusing on its role in ameliorating MetS. METHODS Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, relevant studies were retrieved from PubMed, Web of Science, and CNKI databases up to December 2024. Keywords included "Cynomorium Songaricum Rupr.", "Cynomorii Herba", "Suoyang", "Suo Yang", "Metabolic syndrome", "Proanthocyanidins", "Polysaccharides" and "Triterpenoids" and their combinations. Inclusion criteria emphasized studies exploring CSR's impact on MetS, while duplicate, low-quality studies and studies not written in Chinese, English, or unrelated were excluded. RESULTS A total of 92 studies were analyzed, revealing that CSR's active components exhibit multi-target effects. Proanthocyanidins reduce glucose absorption and oxidative stress, polysaccharides enhance insulin sensitivity and gut microbiota composition, and triterpenoids mitigate obesity and mitochondria damage. These mechanisms collectively contribute to the beneficial effects of CSR against MetS. CONCLUSION CSR presents a promising natural therapy for MetS, utilizing its pharmacologically active compounds to address core metabolic dysfunctions. Future studies should focus on clinical validation and safety assessments to facilitate CSR's integration into modern therapeutic regimens.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| | - Qihao Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Fu Zhao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Jihang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China.
| |
Collapse
|
3
|
Vasilev G, Kokudeva M, Siliogka E, Padilla N, Shumnalieva R, Della-Morte D, Ricordi C, Mihova A, Infante M, Velikova T. T helper 17 cells and interleukin-17 immunity in type 1 diabetes: From pathophysiology to targeted immunotherapies. World J Diabetes 2025; 16:99936. [PMID: 40236846 PMCID: PMC11947927 DOI: 10.4239/wjd.v16.i4.99936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic organ-specific autoimmune disorder characterized by a progressive loss of the insulin-secreting pancreatic beta cells, which ultimately results in insulinopenia, hyperglycemia and lifelong need for exogenous insulin therapy. In the pathophysiological landscape of T1D, T helper 17 cells (Th17 cells) and their hallmark cytokine, interleukin (IL)-17, play pivotal roles from disease onset to disease progression. In this narrative mini-review, we discuss the dynamic interplay between Th17 cells and IL-17 in the context of T1D, providing insights into the underlying immunologic mechanisms contributing to the IL-17-immunity-mediated pancreatic beta-cell destruction. Furthermore, we summarized the main animal and clinical studies that investigated Th17- and IL-17-targeted interventions as promising immunotherapies able to alter the natural history of T1D.
Collapse
Affiliation(s)
- Georgi Vasilev
- Clinic of Neurology and Department of Emergency Medicine, UMHAT "Sv. Georgi", Plovdiv 4000, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Maria Kokudeva
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria
| | - Elina Siliogka
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens 11527, Attikí, Greece
| | - Nathalia Padilla
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Russka Shumnalieva
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Anna", Medical University-Sofia, Sofia 1612, Bulgaria
| | - David Della-Morte
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, Rome 00133, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | | | - Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Rome 00131, Italy
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
4
|
Zhou H, Zhang J, Wang R, Huang J, Xin C, Song Z. The unfolded protein response is a potential therapeutic target in pathogenic fungi. FEBS J 2025. [PMID: 40227882 DOI: 10.1111/febs.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pathogenic fungal infections cause significant morbidity and mortality, particularly in immunocompromised patients. The frequent emergence of multidrug-resistant strains challenges existing antifungal therapies, driving the need to investigate novel antifungal agents that target new molecular moieties. Pathogenic fungi are subjected to various environmental stressors, including pH, temperature, and pharmacological agents, both in natural habitats and the host body. These stressors elevate the risk of misfolded or unfolded protein production within the endoplasmic reticulum (ER) which, if not promptly mitigated, can lead to the accumulation of these proteins in the ER lumen. This accumulation triggers an ER stress response, potentially jeopardizing fungal survival. The unfolded protein response (UPR) is a critical cellular defense mechanism activated by ER stress to restore the homeostasis of protein folding. In recent years, the regulatory role of the UPR in pathogenic fungi has garnered significant attention, particularly for its involvement in fungal adaptation, regulation of virulence, and drug resistance. In this review, we comparatively analyze the UPRs of fungi and mammals and examine the potential utility of the UPR as a molecular antifungal target in pathogenic fungi. By clarifying the specificity and regulatory functions of the UPR in pathogenic fungi, we highlight new avenues for identifying potential therapeutic targets for antifungal treatments.
Collapse
Affiliation(s)
- Hao Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ju Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, China
| |
Collapse
|
5
|
Zeng Z, Chen E, Xue J. Emerging roles of mechanically activated ion channels in autoimmune disease. Autoimmun Rev 2025; 24:103813. [PMID: 40194731 DOI: 10.1016/j.autrev.2025.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Mechanically activated (MA) ion channels have rapidly gained prominence as vital conduits bridging aberrant mechanical cues in tissues with the dysregulated immune responses at the core of autoimmune diseases. Once regarded as peripheral players in inflammation, these channels, exemplified by PIEZO1, TRPV4, and specific K2P family members, now play a central role in modulating T-cell effector functions, B- cell activation and the activity of macrophages and dendritic cells. Their gating is intimately tied to physical distortions such as increased tissue stiffness, osmotic imbalances, or fluid shear, triggering a cascade of ionic fluxes that elevate proinflammatory signaling and drive tissue-destructive loops. Recognition of these channels as central mediators of mechanical stress-induced inflammation responses in autoimmune pathogenesis is rapidly expanding. In parallel, the emerging therapeutic strategies aim to restrain overactive mechanosensors or selectively harness them in affected tissues. Small molecules, peptide blockers, and gene-targeting approaches show preclinical promise, although off-target effects and the broader homeostatic roles of these channels warrant caution. This review explores how integrating mechanobiological concepts with established immunological paradigms enables a more detailed understanding of autoimmune pathogenesis. By elucidating how mechanical forces potentiate or dampen pathological immunity, we propose innovative strategies that exploit mechanosensitivity to recalibrate immune responses across a spectrum of autoimmune conditions.
Collapse
Affiliation(s)
- Zhiru Zeng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Engeng Chen
- Department of Zhejiang Provincial Key Laboratory of Biotherapy, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
6
|
Cho H, Ha SE, Singh R, Kim D, Ro S. microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. Int J Mol Sci 2025; 26:3301. [PMID: 40244147 PMCID: PMC11990060 DOI: 10.3390/ijms26073301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency. The primary drivers of β-cell destruction in T1D involve autoimmune-mediated processes that trigger chronic inflammation and ultimately β-cell loss. Regulatory microRNAs (miRNAs) play a crucial role in modulating these processes by regulating gene expression through post-transcriptional suppression of target mRNAs. Dysregulated miRNAs have been implicated in T1D pathogenesis, serving as both potential diagnostic biomarkers and therapeutic targets. This review explores the role of miRNAs in T1D, highlighting their involvement in disease mechanisms across both rodent models and human patients. While current antidiabetic therapies manage T1D symptoms, they do not prevent β-cell destruction, leaving patients reliant on lifelong insulin therapy. By summarizing key miRNA expression profiles in diabetic animal models and patients, this review explores the potential of miRNA-based therapies to restore β-cell function and halt or slow the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (H.C.); (S.E.H.); (R.S.); (D.K.)
| |
Collapse
|
7
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025; 85:457-473. [PMID: 39873914 PMCID: PMC11949705 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Ma Y, Meng F, Lin Z, Chen Y, Lan T, Yang Z, Diao R, Zhang X, Chen Q, Zhang C, Tian Y, Li C, Fang W, Liang X, Zhang X. Bioengineering Platelets Presenting PD-L1, Galectin-9 and BTLA to Ameliorate Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501139. [PMID: 40019367 DOI: 10.1002/advs.202501139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Autoimmune destruction of pancreatic β-cells leads to impaired insulin production and onset of type 1 diabetes (T1D). Hence, immunomodulation of pancreas-infiltrated immune cells especially the β-cells autoreactive-T cells is a promising way to hinder and reverse the progress of T1D. Herein, megakaryocytes are primed with interferon-γ (IFN-γ) to produce platelets presenting high levels of immunosuppressive checkpoint ligands including programmed death-ligand 1 (PD-L1), Programmed Death-Ligand 2 (PD-L2), the B and T lymphocyte attenuator (BTLA) and Galectin-9 (Gal-9), termed as IFN-γ platelets. The IFN-γ platelets bound and interacted with T cells through immune checkpoint ligands and receptors, which efficaciously induced T cell exhaustion and apoptosis in vitro. Virtually, NOD diabetes mice received IFN-γ platelets treatments prominently preserved β-cell integrity and insulin production, ultimately hindering the progress to hyperglycemia. Intriguingly, both the amount and activity of the pancreas infiltrate-T cells intensively reduced, whereas the magnitude of regulatory T cells (Tregs) remarkably increased, which is attributed to IFN-γ platelets treatments. Moreover, IFN-γ platelets treatment instigated macrophage polarization toward an anti-inflammatory M2 phenotype that may stimulate pancreatic angiogenesis, and promote β-cell proliferation, consequently ameliorating the new-onset T1D.
Collapse
Grants
- 32371425 National Natural Science Foundation of China
- 32201084 National Natural Science Foundation of China
- JCYJ20240813151128037 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- RCYX20200714114643121 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- JCYJ20200109142610136 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- JCYJ20180507181654186 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- ZDSYS20220606100803007 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- 2022A1515012289 Natural Science Foundation of Guangdong Province
- GDMUB2022037 Doctoral personnel scientific research start-up Fund project of Guangdong Medical University
- 2024ZDZX2069 Key Field Special Programs of Guangdong Provincial Ordinary Colleges and Universities
- GDMULCJC2024114 Special Project for Clinical and Basic Sci & Tech Innovation of Guangdong Medical University
Collapse
Affiliation(s)
- Yumeng Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Yanjun Chen
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Zhaoxin Yang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Rui Diao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Xiaozhou Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, P. R. China
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, 523806, P. R. China
| | - Chi Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Yishi Tian
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Chanjuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, P. R. China
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, 523806, P. R. China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, P. R. China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| |
Collapse
|
9
|
Giri G, Doherty D, Azmi S, Khambalia H, Giuffrida G, Moinuddin Z, van Dellen D. The impact of pancreas transplantation on diabetic complications: A systematic review. Transplant Rev (Orlando) 2025; 39:100910. [PMID: 39864231 DOI: 10.1016/j.trre.2025.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Pancreas Transplantation (PT) provides optimal treatment for patients with severe complicated Type 1 Diabetes Mellitus (T1DM). Restoration of beta-cell mass allows return to euglycaemia and insulin independence. We aimed to examine its impact on the secondary complications associated with severe T1DM including diabetic eye disease, neuropathy and cardiovascular disease. METHODS A database search using MedLINE to identify publications to April 2023 was conducted. Searches were performed using MeSH terms 'Pancreas Transplantation' AND 'Diabetes Mellitus, Type 1' 'Diabetic Retinopathy' OR 'Heart Disease' OR 'Cardiovascular Diseases' OR 'Peripheral Vascular Disease' OR "Amputation' OR 'Neuropathy." RESULTS All articles were retrospective with 51.1 % (n = 23) case control studies and 48.9 % (n = 22) cohort studies. 82.2 % (n = 37) examined simultaneous pancreas and kidney (SPK) transplantation and 17.8 % (n = 8) analysed pancreas transplant alone (PTA). Heterogenous outcomes metrics were employed. 15 studies examined diabetic retinopathy (DR) with 53.3 % (n = 8) demonstrated improvements after PT, while the remainder (n = 7) exhibited stabilisation. 16 studies assessed neuropathy and 87.5 % (n = 14) demonstrated beneficial effects of PT on nerve conduction studies, vibration perception threshold or corneal confocal microscopy. There was a positive effect on cardiovascular disease by reduction in the incidence of cardiac events, improvement in metabolic profile and increased left ventricular ejection fraction. 14 studies examined cardiovascular disease (71.4 % (n = 10) improvement; 14.2 % (n = 2) stabilisation; 14.2 % (n = 2) progression). CONCLUSION SPK and PTA have beneficial effects in ameliorating or stabilising diabetes complications. Future work should seek to reduce heterogeneity of outcome metrics assessing T1DM complication profile to facilitate robust comparison of beta-cell replacement interventions.
Collapse
Affiliation(s)
- Gayathri Giri
- Faculty of Biology, Medicine & Health, University of Manchester, UK
| | - Daniel Doherty
- Faculty of Biology, Medicine & Health, University of Manchester, UK; Manchester Centre for Transplantation, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, UK.
| | - Shazli Azmi
- Department of Diabetes & Endocrinology, Manchester University NHS Foundation Trust, UK
| | - Hussein Khambalia
- Faculty of Biology, Medicine & Health, University of Manchester, UK; Manchester Centre for Transplantation, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, UK
| | - Giuseppe Giuffrida
- Manchester Centre for Transplantation, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, UK
| | - Zia Moinuddin
- Faculty of Biology, Medicine & Health, University of Manchester, UK; Manchester Centre for Transplantation, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, UK
| | - David van Dellen
- Faculty of Biology, Medicine & Health, University of Manchester, UK; Manchester Centre for Transplantation, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, UK
| |
Collapse
|
10
|
He Z, Liu Q, Wang Y, Zhao B, Zhang L, Yang X, Wang Z. The role of endoplasmic reticulum stress in type 2 diabetes mellitus mechanisms and impact on islet function. PeerJ 2025; 13:e19192. [PMID: 40166045 PMCID: PMC11956770 DOI: 10.7717/peerj.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a globally prevalent metabolic disorder characterized by insulin resistance and dysfunction of islet cells. Endoplasmic reticulum (ER) stress plays a crucial role in the pathogenesis and progression of T2DM, especially in the function and survival of β-cells. β-cells are particularly sensitive to ER stress because they require substantial insulin synthesis and secretion energy. In the early stages of T2DM, the increased demand for insulin exacerbates β-cell ER stress. Although the unfolded protein response (UPR) can temporarily alleviate this stress, prolonged or excessive stress leads to pancreatic cell dysfunction and apoptosis, resulting in insufficient insulin secretion. This review explores the mechanisms of ER stress in T2DM, particularly its impact on islet cells. We discuss how ER stress activates UPR signaling pathways to regulate protein folding and degradation, but when stress becomes excessive, these pathways may contribute to β-cell death. A deeper understanding of how ER stress impacts islet cells could lead to the development of novel T2DM treatment strategies aimed at improving islet function and slowing disease progression.
Collapse
Affiliation(s)
- Zhaxicao He
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Liu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Zhao
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Lumei Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xia Yang
- Tianshui Hospital of Traditional Chinese Medicine, Tianshui, China
| | - Zhigang Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Tianshui Hospital of Traditional Chinese Medicine, Tianshui, China
| |
Collapse
|
11
|
Chen Y, Shen M, Gu Y, Xu X, Bian L, Yang F, Chen S, Ji L, Liu J, Zhu J, Zhang Z, Fu Q, Cai Y, Chen H, Xu K, Sun M, Zheng X, Shen J, Zhou H, Zhang M, Haskins K, Yu L, Yang T, Shi Y. Pivotal epitopes for islet antigen-specific CD8 + T cell detection improve classification of suspected type 1 diabetes with the HLA-A*0201 allele. Immunol Res 2025; 73:65. [PMID: 40133500 DOI: 10.1007/s12026-025-09616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
A proportion of patients with new-onset diabetes share similar symptoms with type 1 diabetes (T1D) patients but they are negative for islet antigen-specific autoantibodies. This study was to develop an islet antigen-specific CD8+ T-cell assay to provide autoimmune evidence regarding these "suspected" T1D patients. HLA-A*0201 individuals with autoAbs+ T1D, autoAbs- suspected T1D, and type 2 diabetes, along with HLA-A*0201 healthy controls were recruited. Using interferon-γ enzyme-linked immunospot assays, the percentages of participants in each group with various islet antigen-specific CD8+ T cells were determined. Sixteen out of the 28 islet antigen-specific epitopes tested were T1D specific, meaning that there was a significantly (P < 0.05) greater epitope positivity rate in the autoAbs+ T1D cohort than in the healthy controls. Using a cutoff value of two positive epitopes, the 16-epitope panel led to a sensitivity of 75.0% and a specificity of 94.4% regarding the autoAbs+ T1D patients. Even when using an optimized five-epitope panel, the results were highly accurate. Notably, in the application phase of the study, 77.8% of a new cohort of autoAbs- suspected T1D patients exhibited positivity when using the five-epitope optimized panel. This highly accurate method, especially for pediatric patients, will improve clinical diagnosis and etiological classification of autoimmune T1D.
Collapse
Affiliation(s)
- Yang Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Min Shen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yong Gu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xinyu Xu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lingling Bian
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, Yancheng City No. 1 People's Hospital, Yancheng, 224005, Jiangsu, China
| | - Fan Yang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, The Affiliated Wuxi No.2 People'S Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Shuang Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Li Ji
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Emergency Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jin Liu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Pediatrics, Huai'an First People's Hospital, Huai'an, 223300, Jiangsu, China
| | - Jing Zhu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Zheng Zhang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yun Cai
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Heng Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kuanfeng Xu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Min Sun
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuqin Zheng
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jie Shen
- HLA Laboratory, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongwen Zhou
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Mei Zhang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, 1775 North Ursula Street, Aurora, CO, 80045, USA
| | - Tao Yang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yun Shi
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
12
|
Hong J, Lu S, Shan G, Yang Y, Li B, Yang D. Application and Progression of Single-Cell RNA Sequencing in Diabetes Mellitus and Diabetes Complications. J Diabetes Res 2025; 2025:3248350. [PMID: 40135071 PMCID: PMC11936531 DOI: 10.1155/jdr/3248350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Diabetes is a systemic metabolic disorder primarily caused by insulin deficiency and insulin resistance, leading to chronic hyperglycemia. Prolonged diabetes can result in metabolic damage to multiple organs, including the heart, brain, liver, muscles, and adipose tissue, thereby causing various chronic fatal complications such as diabetic retinopathy, diabetic cardiomyopathy, and diabetic nephropathy. Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable tool for investigating the cell diversity and pathogenesis of diabetes and identifying potential therapeutic targets in diabetes or diabetes complications. This review provides a comprehensive overview of recent applications of scRNA-seq in diabetes-related researches and highlights novel biomarkers and immunotherapy targets with cell-type information for diabetes and its associated complications.
Collapse
Affiliation(s)
- Jiajing Hong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Shiqi Lu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Guohui Shan
- Department of Endocrinology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yaoran Yang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Bailin Li
- Medical Quality Monitoring Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Dongyu Yang
- Center of Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
13
|
Serné EH, Buompensiere MI, de Portu S, Smith-Palmer J, Pöhlmann J, Cohen O. Automated Insulin Delivery Versus Standard of Care in the Management of People Living with Type 1 Diabetes and HbA1c <8%: A Cost-Utility Analysis in The Netherlands. Diabetes Technol Ther 2025. [PMID: 40099344 DOI: 10.1089/dia.2024.0647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Introduction: Automated insulin delivery (AID) systems improve glycemic control in people living with type 1 diabetes (PwT1D). AID is cost-effective versus other management approaches in a range of country settings and populations. This cost-utility analysis adds an evaluation of the MiniMedTM 780G system versus standard of care (SoC) in PwT1D and baseline glycated hemoglobin (HbA1c) level <8% not reaching glycemic targets, conducted from a societal perspective in The Netherlands. Methods: The analysis was run using the IQVIA CORE Diabetes Model, over 50 years. Costs were discounted at 3% per year, effects at 1.5% per year. Baseline cohort characteristics and treatment effects were sourced from the MiniMed 780G arm of a prospective multicenter study. Costs and utility estimates were taken from Dutch databases and published sources. Sensitivity analyses were conducted to address uncertainty. Results: AID improved life expectancy by 0.52 years and quality-adjusted life expectancy by 0.99 quality-adjusted life-years (QALYs) versus SoC. AID was associated with an incremental combined cost of EUR 28,635 due to higher acquisition costs, which were partially offset by reduced direct treatment costs for diabetes-related complications and reduced indirect costs due to less time off work. Based on combined costs, the MiniMed 780G system was associated with an incremental cost-utility ratio of EUR 29,836 per QALY gained. Conclusions: For PwT1D in The Netherlands, who had a baseline HbA1c <8% and do not reach glycemic targets, AID system initiation was projected to improve long-term clinical outcomes and reduce both direct costs for the treatment of diabetes-related complications and productivity losses. From a societal perspective, the MiniMed 780G likely represents good value for money in The Netherlands.
Collapse
Affiliation(s)
| | | | - Simona de Portu
- Medtronic International Trading SARL, Tolochenaz, Switzerland
| | | | | | - Ohad Cohen
- Medtronic International Trading SARL, Tolochenaz, Switzerland
| |
Collapse
|
14
|
Pacheco A, Diedisheim M, Goulvestre C, Alexandre-Heymann L, Mallone R, Dubois-Laforgue D, Larger E. Screening for autoimmune atrophic gastritis by serum gastrin measurement in subjects with type 1 diabetes. DIABETES & METABOLISM 2025; 51:101640. [PMID: 40113012 DOI: 10.1016/j.diabet.2025.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Despite associated risk of anemia and gastric cancer, screening for autoimmune atrophic gastritis (AAG) is underperformed in subjects with type 1 diabetes mellitus (T1DM). We measured the predictive value of serum gastrin as a biomarker of gastric atrophy in subjects with T1DM and parietal cell autoantibodies (PCA). SUBJECTS AND METHODS PCA measurements were retrospectively retrieved in 1,425 consecutive subjects with T1DM between 2014 and 2018. Screening for AAG was conducted in PCA+ subjects by measuring blood counts, serum ferritin, vitamin B12 and gastrin; and by performing gastroduodenal fibroscopy, with fundic biopsies for histology and Helicobacter pylori. The performance of blood biomarkers of gastric atrophy was analyzed in comparison with the histopathological gold standard. RESULTS PCA were found in 185/1,425 subjects (13 %). PCA positivity was associated with female sex, older age, longer T1DM duration, and co-occurrence of anti-GAD and anti-thyroperoxydase autoantibodies. Of the 185 PCA+ subjects, 122 (66 %) participated in screening. AAG was found in 69/122 (57 %) subjects and Helicobacter pylori infection in 20/122 (16 %). Compared to PCA+ subjects without gastric atrophy, those with gastric atrophy had more frequently iron deficiency (65 % vs. 18 %, P < 0.0001), and/or vitamin B12 deficiency (57 % vs. 7 %, P < 0.0001); 44/69 (64 %) presented a pre-tumoral lesion and 6 % a tumor. Using a cut-off of 1.2-fold above the upper normal limit, serum gastrin concentration displayed 91 % sensitivity and 82 % specificity at predicting gastric atrophy. CONCLUSION In subjects with T1DM and PCA, serum gastrin is a reliable biomarker of gastric atrophy that can be used to select subjects requiring gastroduodenal fibroscopy.
Collapse
Affiliation(s)
- Aude Pacheco
- Université Paris Cité, Paris, France; APHP, centre-Université Paris Cité, Hôpital Cochin, Service de diabétologie et immunologie clinique, Paris, France
| | - Marc Diedisheim
- Université Paris Cité, Paris, France; APHP, centre-Université Paris Cité, Hôpital Cochin, Service de diabétologie et immunologie clinique, Paris, France; Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Claire Goulvestre
- APHP, centre-Université Paris Cité, Hôpital Cochin, Laboratoire d'immunologie, Paris, France
| | - Laure Alexandre-Heymann
- Université Paris Cité, Paris, France; APHP, centre-Université Paris Cité, Hôpital Cochin, Service de diabétologie et immunologie clinique, Paris, France; Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Roberto Mallone
- Université Paris Cité, Paris, France; APHP, centre-Université Paris Cité, Hôpital Cochin, Service de diabétologie et immunologie clinique, Paris, France; Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Danièle Dubois-Laforgue
- Université Paris Cité, Paris, France; APHP, centre-Université Paris Cité, Hôpital Cochin, Service de diabétologie et immunologie clinique, Paris, France; Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Etienne Larger
- Université Paris Cité, Paris, France; APHP, centre-Université Paris Cité, Hôpital Cochin, Service de diabétologie et immunologie clinique, Paris, France; Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
| |
Collapse
|
15
|
Bermudes-Contreras JD, Gutiérrez-Velázquez MV, Delgado-Alvarado EA, Torres-Ricario R, Cornejo-Garrido J. Hypoglycemic and Hypolipidemic Effects of Triterpenoid Standardized Extract of Agave durangensis Gentry. PLANTS (BASEL, SWITZERLAND) 2025; 14:894. [PMID: 40265815 PMCID: PMC11944376 DOI: 10.3390/plants14060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Diabetes mellitus is a chronic, degenerative, and multifactorial disease characterized by hyperglycemia, and at least 537 million people suffered from diabetes in 2021. Agave durangensis Gentry, a species of agave native to the state of Durango, reports phenolic compounds, flavonols, flavonoids, and saponins and could be an alternative for the treatment of diabetes. The aim of this work was to identify the compounds in the leaves of Agave durangensis Gentry and their potential activity in diabetes. The leaf extract of Agave durangensis Gentry (EAD) was characterized by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), and different families of bioactive compounds were quantified by analytical methods. Probable pharmacological targets were identified in silico, and the inhibition of dipeptidyl peptidase-4 (DPP4) was validated in vitro. A model of hyperglycemia was established with streptozotocin in male Wistar rats, and we administered EAD intragastrically at a dose of 300 mg/kg, as well as combinations of the extract with metformin and sitagliptin over 30 days. Biochemical and histological parameters were analyzed. We identified thirty-six major compounds, where triterpenes represented 30% of the extract. Molecular docking showed that the extract could interact with α-glucosidases and DPP4 since a large number of compounds in the extract have a Δ G lower than that reported for the controls, and DPP4 inhibition was confirmed by in vitro assays. In vivo assays demonstrated that the administration of the extract was able to significantly decrease glucose levels by 56.75% and glycosylated hemoglobin by 52.28%, which is higher than that reported for sitagliptin with a decrease of 35.22%. In addition, the extract decreased triglycerides by 59.28% and very-low-density lipoprotein (VLDL) cholesterol by 60.27%, and when administered in combination with metformin, it decreased them more than when metformin was administered alone. For all the above reasons, Agave durangensis Gentry extract could be used for the development of phytomedicine for the treatment of diabetes.
Collapse
Affiliation(s)
- Juan David Bermudes-Contreras
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Gustavo A. Madero 07320, Ciudad de Mexico, Mexico;
| | - Marcela Verónica Gutiérrez-Velázquez
- Laboratorio de Biotecnología, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango-IPN, Durango 34220, Durango, Mexico; (M.V.G.-V.); (E.A.D.-A.); (R.T.-R.)
| | - Eli Amanda Delgado-Alvarado
- Laboratorio de Biotecnología, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango-IPN, Durango 34220, Durango, Mexico; (M.V.G.-V.); (E.A.D.-A.); (R.T.-R.)
| | - René Torres-Ricario
- Laboratorio de Biotecnología, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango-IPN, Durango 34220, Durango, Mexico; (M.V.G.-V.); (E.A.D.-A.); (R.T.-R.)
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Gustavo A. Madero 07320, Ciudad de Mexico, Mexico;
| |
Collapse
|
16
|
Li J, Li M, Kong S, Zhong C, Sun D, Zhang L. Bidirectional Mendelian Randomization Study Identifies No Genetic Link Between Psoriasis and Diabetes. J Diabetes Res 2025; 2025:9917071. [PMID: 40225016 PMCID: PMC11986917 DOI: 10.1155/jdr/9917071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/12/2025] [Indexed: 04/15/2025] Open
Abstract
Epidemiological studies proposed a bidirectional link between psoriasis (Ps) and diabetes mellitus (DM); their causal relationship remains inadequately explored. We obtained summary statistics of genome-wide association analyses for Type 1 diabetes mellitus (T1DM), Type 2 diabetes mellitus (T2DM), and Ps from individuals of European ancestry by accessing the UK Biobank and FinnGen datasets. Inverse-variance weighted (IVW) method was utilized as the primary method. Additional analyses included debiased IVW (dIVW), constrained maximum likelihood with model averaging, robust adjusted profile score, Mendelian randomization (MR)-Egger, weighted median, and weighted mode. Moreover, sensitivity tests were conducted, including Cochran's Q, MR pleiotropy residual sum, and outlier analyses. Eventually, bidirectional MR was conducted to examine the possibility of a causal link between Ps and DM. No significant causal associations were indicated between DM and Ps. Moreover, there was no causal link between Ps and T1DM. Although certain positive correlations were identified between Ps and T2DM, aggregate evidence remains insufficient to establish a causal relationship. The results demonstrated no evidence of horizontal pleiotropy between genetic variants. Furthermore, a leave-one-out test validated the stability and robustness of this correlation. Our study identifies no genetic causal effect of Ps on DM and of DM on Ps in European ancestry. Additional research is warranted to verify the presence of an association between Ps and DM in diverse populations.
Collapse
Affiliation(s)
- Jing Li
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Dermatology, Qingdao Municipal Hospital, Qingdao, China
| | - Shoufang Kong
- Department of Gynaecology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Chunmei Zhong
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Danting Sun
- Department of Gynaecology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Zhang
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Mujunen T, Sompa U, Muñoz-Ruiz M, Monto E, Rissanen V, Ruuskanen H, Ahtiainen P, Piitulainen H. Early peripheral nerve impairments in type 1 diabetes are associated with cortical inhibition of ankle joint proprioceptive afference. Clin Neurophysiol 2025; 173:99-112. [PMID: 40090238 DOI: 10.1016/j.clinph.2025.02.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE Diabetic sensorimotor peripheral neuropathy (DSPN) is a common complication of type 1 diabetes mellitus (T1DM). However, it is still unclear how the cortical processing of proprioceptive afference is altered due to DSPN. METHODS Cortical responses to right and left ankle joint rotations were recorded with magnetoencephalography and pooled together in 20 T1DM participants and 20 healthy controls for source space comparisons. T1DM participants also underwent a lower limb nerve-conduction study to correlate peripheral nerve function with the cortical responses. RESULTS Primary sensorimotor (SM1) cortex activation was wider in T1DM patients during beta suppression, with no between-group differences in the response strength. However, stronger beta suppressions in T1DM patients were correlated with axon-loss in the peripheral sensory afferents (p < 0.05). Weaker beta rebounds and stronger SM1 evoked field amplitudes were associated with impaired conduction velocities in the mixed nerves (p < 0.05). Lastly, stronger SM1 beta power was associated with both demyelination and axon-loss in the lower limb sensory afferents (p < 0.05). CONCLUSIONS T1DM is accompanied with wider SM1 cortex activation to proprioceptive stimuli, and the early asymptomatic DSPN impairments are linked to increased levels of cortical inhibition. SIGNIFICANCE T1DM is associated with comprehensive central pathophysiology evident in early DSPN.
Collapse
Affiliation(s)
- Toni Mujunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland.
| | - Urho Sompa
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Miguel Muñoz-Ruiz
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Elina Monto
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Valtteri Rissanen
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Heli Ruuskanen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Petteri Ahtiainen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
18
|
Walentek P. Mucociliary cell type compositions - bridging the gap between genes and emergent tissue functions. Cells Dev 2025:204019. [PMID: 40058594 DOI: 10.1016/j.cdev.2025.204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
When multiple cell types are brought together to form a tissue-specific collective, the combination of cell functions and cell-cell interactions leads to novel behaviors and properties beyond the simple addition of individual features, often referred to as emergent tissue functions. During evolution, functional adaptations in organs are significantly influenced by changes in cell type compositions, and in diseases, aberrations in cell type compositions result in impaired organ functions. Investigating the mechanisms that regulate cell type compositions could elucidate an important organizational meta-level that bridges gene functions and cellular features de facto facilitating the emergence of collective cell behaviors and novel tissue functions. Due to their unique evolutionary positioning and diverse functions, mucociliary epithelia could provide an optimal system to unravel principle mechanisms of adaptations in cell type compositions that facilitate the evolution of new or optimization of existing tissue functions, and could reveal novel entry points to counteract human diseases. An integrative investigation of signaling, transcriptional, epigenetic and morphogenetic mechanisms across a broad range of mucociliary tissues with different specialized cells and cell type compositions can help us to connect gene functions and contributions to self-organized behaviors in cell collectives determining emergent tissue functions. Taking such route moving forward has the potential to unravel novel principles in mucociliary self-organization and to reveal broadly applicable principles underlying the generation and modification of emergent tissue functions across species and organ systems.
Collapse
Affiliation(s)
- Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany.
| |
Collapse
|
19
|
Lin TC, Lacorcia M, Mannering SI. Current and Emerging Assays for Measuring Human T-Cell Responses Against Beta-Cell Antigens in Type 1 Diabetes. Biomolecules 2025; 15:384. [PMID: 40149920 PMCID: PMC11939970 DOI: 10.3390/biom15030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by T-cell mediated destruction of the pancreatic insulin-producing beta cells. Currently, the development of autoantibodies is the only measure of beta-cell autoimmunity used in the clinic. Despite T-cells' well-accepted role in the autoimmune pathogenesis of human T1D, autoimmune T-cell responses against beta cells remain very difficult to measure. An assay capable of measuring beta-cell antigen-specific T-cell responses has been a long-sought goal. Such an assay would facilitate the direct monitoring of T1D-associated T-cell responses facilitating, earlier diagnosis and rapid evaluation of candidate immune therapies in clinical trials. In addition, a simple and robust assay for beta-cell antigen-specific T-cell responses would be a powerful tool for dissecting the autoimmune pathogenesis of human T1D. Here, we review the challenges associated with measuring beta-cell antigen-specific T-cell responses, the current assays which are used to achieve this and, finally, we discuss BASTA, a promising emerging assay for measuring human beta-cell antigen-specific CD4+ T-cell responses.
Collapse
Affiliation(s)
| | | | - Stuart I. Mannering
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia; (T.-C.L.); (M.L.)
| |
Collapse
|
20
|
Mittal R, Prasad K, Lemos JRN, Arevalo G, Hirani K. Unveiling Gestational Diabetes: An Overview of Pathophysiology and Management. Int J Mol Sci 2025; 26:2320. [PMID: 40076938 PMCID: PMC11900321 DOI: 10.3390/ijms26052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by an inadequate pancreatic β-cell response to pregnancy-induced insulin resistance, resulting in hyperglycemia. The pathophysiology involves reduced incretin hormone secretion and signaling, specifically decreased glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), impairing insulinotropic effects. Pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), impair insulin receptor substrate-1 (IRS-1) phosphorylation, disrupting insulin-mediated glucose uptake. β-cell dysfunction in GDM is associated with decreased pancreatic duodenal homeobox 1 (PDX1) expression, increased endoplasmic reticulum stress markers (CHOP, GRP78), and mitochondrial dysfunction leading to impaired ATP production and reduced glucose-stimulated insulin secretion. Excessive gestational weight gain exacerbates insulin resistance through hyperleptinemia, which downregulates insulin receptor expression via JAK/STAT signaling. Additionally, hypoadiponectinemia decreases AMP-activated protein kinase (AMPK) activation in skeletal muscle, impairing GLUT4 translocation. Placental hormones such as human placental lactogen (hPL) induce lipolysis, increasing circulating free fatty acids which activate protein kinase C, inhibiting insulin signaling. Placental 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) overactivity elevates cortisol levels, which activate glucocorticoid receptors to further reduce insulin sensitivity. GDM diagnostic thresholds (≥92 mg/dL fasting, ≥153 mg/dL post-load) are lower than type 2 diabetes to prevent fetal hyperinsulinemia and macrosomia. Management strategies focus on lifestyle modifications, including dietary carbohydrate restriction and exercise. Pharmacological interventions, such as insulin or metformin, aim to restore AMPK signaling and reduce hepatic glucose output. Emerging therapies, such as glucagon-like peptide-1 receptor (GLP-1R) agonists, show potential in improving glycemic control and reducing inflammation. A mechanistic understanding of GDM pathophysiology is essential for developing targeted therapeutic strategies to prevent both adverse pregnancy outcomes and the progression to overt diabetes in affected women.
Collapse
Affiliation(s)
| | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (K.P.); (J.R.N.L.); (G.A.)
| |
Collapse
|
21
|
Zhao LP, Papadopoulos GK, Skyler JS, Kwok WW, Bondinas GP, Moustakas AK, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Two DRB3 residues predictively associate with the progression to type 1 diabetes among DR3 carriers. JCI Insight 2025; 10:e184348. [PMID: 40036070 PMCID: PMC11981622 DOI: 10.1172/jci.insight.184348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
HLA-DR genes are associated with the progression from stage 1 and stage 2 to onset of stage 3 type 1 diabetes (T1D), after accounting HLA-DQ genes with which they are in high linkage disequilibrium. Based on an integrated cohort of participants from 2 completed clinical trials, this investigation finds that, sharing a haplotype with the DRB1*03:01 (DR3) allele, DRB3*01:01:02 and *02:02:01 have respectively negative and positive associations with the progression. Furthermore, we uncovered 2 residues (β11, β26, participating in pockets 6 and 4, respectively) on the DRB3 molecule responsible for the progression among DR3 carriers; motif RY and LF respectively delay and promote the progression (hazard ratio [HR] = 0.73 and 2.38, P = 0.039 and 0.017, respectively). Two anchoring pockets 6 and 4 probably bind differential autoantigenic epitopes. We further investigated the progression association with the motifs RY and LF among carriers of DR3 and found that carriers of the motif LF have significantly faster progression than carriers of RY (HR = 1.48, P = 0.019 in unadjusted analysis; HR = 1.39, P = 0.047 in adjusted analysis), results of which provide an impetus to examine the possible role of specific DRB3-binding peptides in the progression to T1D.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - George K. Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute (TEI) of Epirus, Arta, Greece
| | - Jay S. Skyler
- Diabetes Research Institute and Division of Endocrinology, Diabetes & Metabolism, University of Miami Miler School of Medicine, Miami, Florida, USA
| | | | - George P. Bondinas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece
| | - Antonis K. Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wyatt C. Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
22
|
Bogaert L, Dirinck E, Calders P, Helleputte S, Lapauw B, Marlier J, Verbestel V, De Craemer M. Explanatory variables of objectively measured physical activity, sedentary behaviour and sleep in adults with type 1 diabetes: A systematic review. Diabet Med 2025; 42:e15473. [PMID: 39570861 DOI: 10.1111/dme.15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 02/14/2025]
Abstract
AIMS This systematic review aimed to summarize knowledge on explanatory variables of PA, SB and sleep in adults with T1D to support the development of healthy lifestyle interventions. METHODS A systematic search of four databases (PubMed, Web of Science, Scopus and Embase) was performed. Only objective measurements of PA, SB and sleep were included and all explanatory variables were classified according to the socio-ecological model (i.e. intrapersonal, interpersonal, environmental and policy level). Risk of bias (ROB) (Joanna Briggs Institute appraisal checklists) and level of evidence (Evidence-Based Guideline Development) were assessed. RESULTS Twenty-one studies were included (66.7% low ROB). Most explanatory variables were situated at the intrapersonal level. A favourable body composition was associated with more time spent in total PA and moderate-to-vigorous PA (MVPA). Men with T1D spent more time in MVPA than women and a younger age was associated with increased MVPA. Barriers to PA were indeterminately associated with MVPA and HbA1c showed an indeterminate association with sleep. Explanatory variables of SB and light PA were not studied in at least two independent studies. CONCLUSION This review underscores the focus on the individual level to identify explanatory variables of movement behaviours in adults with T1D, despite the necessity for a socio-ecological approach to develop effective interventions. More evidence on psychological, interpersonal and environmental variables is needed as these are modifiable.
Collapse
Affiliation(s)
- Lotte Bogaert
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Fonds wetenschappelijk onderzoek (FWO), Brussels, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Antwerp University hospital, Antwerp, Belgium
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Fonds wetenschappelijk onderzoek (FWO), Brussels, Belgium
| | - Simon Helleputte
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Joke Marlier
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Vera Verbestel
- Maastricht University Faculty of Health, Medicine and Life Sciences, Department of Health Promotion, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences, Department of Health Promotion, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
23
|
Bayat R, Salehi Z, Dalili S, Mashayekhi F. Influence of rs 1292037 Genetic Variant on miR-21 Gene Expression in Patients With Type 1 Diabetes Mellitus: A Case-Control Study. Health Sci Rep 2025; 8:e70480. [PMID: 40041782 PMCID: PMC11872810 DOI: 10.1002/hsr2.70480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background and Aims Alterations in the expression pattern of miRNAs seem to be linked with autoimmune diseases such as type 1 diabetes mellitus (T1DM). Regarding the importance of assessing this potential link, we aimed to evaluate the relationship between miR-21 rs1292037 single-nucleotide polymorphism (SNP) and T1DM susceptibility. Furthermore, we investigated the miR-21 expression level in T1DM. Methods A total of 250 T1DM patients and 250 controls were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and miR-21 expression levels were assessed using real-time PCR. Moreover, the potential targets of miR-21 were investigated using different bioinformatics web servers. Results Our results showed that the T/C genotype and the C allele were more frequent in T1DM patients than in controls. Individuals carrying the T/C genotype in overdominant model were 2.74-fold at a higher risk of T1DM (OR = 2.74; 95%CI, 1.78-4.27; p < 0.0001). In addition, miR-21 expression was more than twofold higher in patients than in controls (p < 0.0001) and it was found to be significantly upregulated when carrying the T/C genotype. Regarding miR-21 predicted target genes, its overexpression may be associated with beta cell death, diabetic nephropathy, inflammatory responses, impaired insulin production or secretion, and T-cell cytotoxicity, which are important in the initiation and progression of T1DM. Conclusion Our results suggested that miR-21 rs1292037 may confer genetic susceptibility to T1DM. Therefore, it seems that this genetic link should be further investigated to enhance diagnostic and therapeutic strategies in these patients.
Collapse
Affiliation(s)
- Reza Bayat
- Department of Biology, University Campus2University of GuilanRashtIran
| | - Zivar Salehi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Setila Dalili
- Pediatric Diseases Research CenterGuilan University of Medical SciencesRashtIran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| |
Collapse
|
24
|
Mavridou M, Pearce SH. Exploring antigenic variation in autoimmune endocrinopathy. Front Immunol 2025; 16:1561455. [PMID: 40093006 PMCID: PMC11906412 DOI: 10.3389/fimmu.2025.1561455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune disorders develop owing to a misdirected immune response against self-antigen. Genetic studies have revealed that numerous variants in genes encoding immune system proteins are associated with the development of autoimmunity. Indeed, many of these genetic variants in key immune receptors or transcription factors are common in the pathogenesis of several different autoimmune conditions. In contrast, the proclivity to develop autoimmunity to any specific target organ or tissue is under-researched. This has particular relevance to autoimmune endocrine conditions, where organ-specific involvement is the rule. Genetic polymorphisms in the genes encoding the targets of autoimmune responses have been shown to be associated with predisposition to several autoimmune diseases, including type 1 diabetes, autoimmune thyroid disease and Addison's disease. Mechanistically, variations leading to decreased intrathymic expression, overexpression, different localisation, alternative splicing or post-translational modifications can interfere in the tolerance induction process. This review will summarise the different ways genetic variations in certain genes encoding endocrine-specific antigens (INS, TSHR, TPO, CYP21A2, PIT-1) may predispose to different autoimmune endocrine conditions.
Collapse
Affiliation(s)
- Maria Mavridou
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
| | - Simon H Pearce
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
- Endocrine Unit, Royal Victoria Infirmary, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
25
|
Ranbhise JS, Ju S, Singh MK, Han S, Akter S, Ha J, Choe W, Kim SS, Kang I. Chronic Inflammation and Glycemic Control: Exploring the Bidirectional Link Between Periodontitis and Diabetes. Dent J (Basel) 2025; 13:100. [PMID: 40136728 PMCID: PMC11940948 DOI: 10.3390/dj13030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Periodontitis and diabetes mellitus are two highly prevalent chronic conditions that share a bidirectional relationship, significantly impacting public health. Periodontitis, a gum inflammation caused by microbial dysbiosis, aggravates glycemic control in diabetics, while uncontrolled diabetes heightens periodontitis severity. These conditions create a vicious cycle, where inflammation and microbial dysbiosis mutually drive disease progression, exacerbating systemic health. The underlying mechanisms involve inflammation, immune dysfunction, and microbial dysbiosis, with both diseases contributing to a chain of chronic inflammation that exacerbates systemic health. This relationship is significant because managing one condition can significantly impact the other. In diabetic individuals, interventions such as periodontal therapy have shown effectiveness in improving glycemic control, underscoring the potential of integrated strategies for managing these conditions simultaneously. In this review, we highlight the importance of a deeper understanding of the molecular and immunological interactions between these diseases is essential for developing integrated therapeutic approaches, with the potential to enhance the quality of life of the patient significantly.
Collapse
Affiliation(s)
- Jyotsna Suresh Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
26
|
Scrobota I, Iova GM, Marcu OA, Sachelarie L, Vlad S, Duncea IM, Blaga F. An Artificial Intelligence-Based Fuzzy Logic System for Periodontitis Risk Assessment in Patients with Type 2 Diabetes Mellitus. Bioengineering (Basel) 2025; 12:211. [PMID: 40150676 PMCID: PMC11939156 DOI: 10.3390/bioengineering12030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Since periodontitis prevalence has increased globally and there is a bidirectional relationship between periodontitis and diabetes mellitus (DM), new methods of preventing and screening involving DM biomarkers could impact periodontitis management. We aimed to develop a fuzzy system to estimate the risk of periodontitis in patients with DM. METHODS Body mass index (BMI), glycemia (G), total cholesterol (C), and triglyceride (T) measurements were collected from 87 patients diagnosed with DM. Oral examinations were performed, and the number of the periodontal pockets (nrPPs) was determined. A fuzzy system was developed: BMI and G as inputs resulted in Periodontitis Risk 1 (PRisk1) output; C and T as inputs resulted in Periodontitis Risk 2 (PRisk2) output. From PRisk1 and PRisk2, the cumulative periodontitis risk (PCRisk) was assessed. Linguistic terms and linguistic grades (very small, small, medium, big, and very big) were assigned to the numerical variables by using 25 different membership functions. PCRisk and nrPP values were statistically processed. RESULTS In our developed fuzzy system, BMI, G, C, and T as input data resulted in periodontitis risk estimation. PCRisk was correlated with nrPP: when PCRisk increased by 1.881 units, nrPP increased by 1 unit. The fuzzy logic-based system effectively estimated periodontitis risk in type 2 diabetes patients, showing a significant correlation with the number of periodontal pockets. These findings highlight its potential for early diagnosis and improved interdisciplinary care.
Collapse
Affiliation(s)
- Ioana Scrobota
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (G.M.I.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (G.M.I.)
| | - Olivia Andreea Marcu
- Preclinics Department, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania;
| | - Liliana Sachelarie
- Department of Preclinical Discipline, Faculty of Medicine, Apollonia University, 700511 Iasi, Romania
| | - Siviu Vlad
- Department of Surgical Specialties, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Monica Duncea
- Prosthetic Dentistry and Dental Materials Department, Iuliu Hațieganu University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Florin Blaga
- Industrial Engineering Department, Faculty of Management and Technological Engineering, University of Oradea, 1 Universității Street, 410087 Oradea, Romania;
| |
Collapse
|
27
|
Du M, Li S, Jiang J, Ma X, Liu L, Wang T, Zhang J, Niu D. Advances in the Pathogenesis and Treatment Strategies for Type 1 Diabetes Mellitus. Int Immunopharmacol 2025; 148:114185. [PMID: 39893858 DOI: 10.1016/j.intimp.2025.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder distinguished by the infiltration of immune cells into pancreatic islets, primarily resulting in damage to pancreatic β-cells. Despite extensive research, the precise pathogenesis of T1D remains elusive, with its etiology linked to a complex interplay of genetic, immune, and environmental factors. While genetic predispositions, such as HLA and other susceptibility genes, are necessary, they do not fully account for disease development. Environmental influences such as viral infections and dietary factors may contribute to the disease by affecting the immune system and epigenetic modifications. Additionally, endogenous retroviruses (ERVs) might play a role in T1D pathogenesis. Current therapeutic approaches, including insulin replacement therapy, immune omodulatory therapy, autoantigen immunotherapy, organ transplantation, and genetic modification, offer potential to alter disease progression but are still constrained by limitations. This review presents updated knowledge on T1D, with a focus on risk factors, predisposing hypotheses, and recent advancements in therapeutic strategies.
Collapse
Affiliation(s)
- Meiheng Du
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Jun Jiang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Lu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
28
|
Geetha AVS, Harithpriya K, Ganesan K, Ramkumar KM. Exploring the Role of Hypoxia and HIF-1α in the Intersection of Type 2 Diabetes Mellitus and Endometrial Cancer. Curr Oncol 2025; 32:106. [PMID: 39996906 PMCID: PMC11854729 DOI: 10.3390/curroncol32020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes and Cancer are the most complex chronic diseases, accounting for significant global mortality and morbidity. The association between Type 2 DM (T2DM) and endometrial cancer (EC) is multifaced, sharing numerous risk factors, including insulin resistance, obesity, hypoxia, and oxidative stress. Hypoxia plays a vital role in T2DM pathogenesis by altering the insulin level and pancreatic β-cell failure through an imbalance between antioxidant enzymes and cellular oxidative levels, while chronic inflammation contributes to EC malignancy. HIF-1α is a potent transcription factor involved in modulating cellular responses to hypoxia within the disease environment. Targeting the HIF-1α signaling cascade, a major metabolic regulator may contribute to advanced therapeutic advances. This review focuses on the association between T2DM and EC, especially focusing on hypoxia and HIF signaling pathways. These intersect with key pathways involved in T2DM and EC pathology, such as insulin signaling, PI3K/AKT, mTOR pathway, MUC1/HIF-1α pathway, and hormonal imbalance. Understanding this complex relationship paves the way for future researchers to develop HIF-1α-targeted therapies that could lead to novel combination therapies to treat these comorbid conditions.
Collapse
Affiliation(s)
- Alagappan V. S. Geetha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (A.V.S.G.); (K.H.)
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (A.V.S.G.); (K.H.)
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (A.V.S.G.); (K.H.)
| |
Collapse
|
29
|
Mu-u-min RBA, Diane A, Allouch A, Al-Siddiqi HH. Immune Evasion in Stem Cell-Based Diabetes Therapy-Current Strategies and Their Application in Clinical Trials. Biomedicines 2025; 13:383. [PMID: 40002796 PMCID: PMC11853723 DOI: 10.3390/biomedicines13020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Human pancreatic islet transplantation shows promise for long-term glycemic control in diabetes patients. A shortage of healthy donors and the need for continuous immunosuppressive therapy complicates this. Enhancing our understanding of the immune tolerance mechanisms related to graft rejection is crucial to generate safer transplantation strategies. This review will examine advancements in immune protection strategies for stem cell-derived islet therapy and discuss key clinical trials involving stem cell-derived β-cells and their protective strategies against the host immune system. Methods: A comprehensive literature search was performed on peer-reviewed publications on Google Scholar, Pubmed, and Scopus up to September 2024 to extract relevant studies on the various strategies of immune evasion of stem cell-derived β-cells in humans. The literature search was extended to assimilate all relevant clinical studies wherein stem cell-derived β-cells are transplanted to treat diabetes. Results: Our analysis highlighted the importance of human pluripotent stem cells (hPSCs) as a potentially unlimited source of insulin-producing β-cells. These cells can be transplanted as an effective source of insulin in diabetes patients if they can be protected against the host immune system. Various strategies of immune protection, such as encapsulation and genetic manipulation, are currently being studied and clinically tested. Conclusions: Investigating immune tolerance in hPSC-derived islets may help achieve a cure for diabetes without relying on exogenous insulin. Although reports of clinical trials show promise in reducing insulin dependency in patients, their safety and efficacy needs to be further studied to promote their use as a long-term solution to cure diabetes.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-u-min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.D.); (H.H.A.-S.)
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.D.); (H.H.A.-S.)
| | - Asma Allouch
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
| | - Heba Hussain Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.D.); (H.H.A.-S.)
| |
Collapse
|
30
|
Wang Y, Sun Y, Zhang X, Wang S, Huang X, Xu K, Liu Y, Huang Y, Xu J, Wei X, Cheng H, Pan L, Wang J, Gu Z. A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes. J Am Chem Soc 2025; 147:4167-4179. [PMID: 39869523 DOI: 10.1021/jacs.4c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8+ T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection. A therapeutic that can reverse new-onset T1D without harming the immune system remains urgently needed. Herein, we have constructed cellular vesicles presenting granzyme B-responsive fusion proteins (designated aCD8-GrzBcs-IL2) composed of a single-chain variable fragment of anti-CD8 antibodies and a mutein interleukin-2 (IL2). aCD8-GrzBcs-IL2 is designed to simultaneously inhibit CD8+ T cells and promote Treg cells, especially when CD8+ T cells are attacking β-cells. In vitro, these cellular vesicles can inhibit the cell-killing effect of CD8+ T cells and enhance the expansion of Treg cells. Notably, intravenous administration of aCD8-GrzBcs-IL2-expressed cellular vesicles reversed newly onset diabetes in 77.8% of nonobese diabetic (NOD) mice without reducing blood CD3+ T cells and CD8+ T cells, indicating a favorable safety profile.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuwen Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Kairui Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Liqiang Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Liangzhu Laboratory, Hangzhou 311121, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Forkan CP, Shrestha A, Yu A, Chuang C, Pociot F, Yarani R. Could hypoxic conditioning augment the potential of mesenchymal stromal cell-derived extracellular vesicles as a treatment for type 1 diabetes? Stem Cell Res Ther 2025; 16:37. [PMID: 39901225 PMCID: PMC11792614 DOI: 10.1186/s13287-025-04153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
Type1 Diabetes (T1D) is an autoimmune disorder characterised by the loss of pancreatic β-cells. This β cell loss occurs primarily through inflammatory pathways culminating in apoptosis. Mesenchymal stromal cells (MSCs) have been heavily studied for therapeutic applications due to their regenerative, anti-apoptotic, immunomodulatory, and anti-inflammatory properties. The therapeutic effects of MSCs are mediated through cell-to-cell contact, differentiation, and the release of paracrine factors, which include the release of extracellular vesicles (EVs). Culturing MSCs in hypoxia, a low oxygen tension state more analogous to their physiological environment, seems to increase the therapeutic efficacy of MSC cell therapy, enhancing their immunomodulatory, anti-inflammatory, and anti-fibrotic properties. This is also the case with MSC-derived EVs, which show altered properties based on the parent cell preconditioning. In this review, we examine the evidence supporting the potential application of hypoxic preconditioning in strengthening MSC-EVs for treating the inflammatory and apoptotic causes of β cell loss in T1D.
Collapse
Affiliation(s)
- Cathal Patrick Forkan
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Aruna Shrestha
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Alfred Yu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Christine Chuang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
32
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2025; 227:52-63. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| |
Collapse
|
33
|
Osman AAM, Seres-Bokor A, Ducza E. Diabetes mellitus therapy in the light of oxidative stress and cardiovascular complications. J Diabetes Complications 2025; 39:108941. [PMID: 39671854 DOI: 10.1016/j.jdiacomp.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Type 2 diabetes is a chronic disease requiring comprehensive pharmacological and non-pharmacological interventions to slow its progression and prevent or delay its micro- and macrovascular complications. Oxidative stress contributes to the development and progression of type 2 diabetes as well as to the development of its complications through several mechanisms. Therefore, therapeutic targeting of oxidative stress could aid in managing this disease and its complications. In our study, we have collected information on the most frequently used antidiabetic drugs (metformin, glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors) in the EU and the USA based on their antioxidant effects. Based on our results, we can conclude that the antioxidant effects of the investigated antidiabetics may contribute significantly to the management of the disease and its complications and may open new therapeutic perspectives in their prevention.
Collapse
Affiliation(s)
- Alaa A M Osman
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
34
|
Long Q, Huang P, Kuang J, Huang Y, Guan H. Diabetes exerts a causal impact on the nervous system within the right hippocampus: substantiated by genetic data. Endocrine 2025; 87:599-608. [PMID: 39480567 DOI: 10.1007/s12020-024-04081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION Diabetes and neuronal loss in the hippocampus have been observed to be correlated in several studies; however, the exact causality of this association remains uncertain. This study aims to explore the potential causal relationship between diabetes and the hippocampal nervous system. METHODS We utilized the two-sample Mendelian randomization (MR) analysis to investigate the potential causal connection between diabetes and the hippocampal nervous system. The summary statistics of Genome-wide association study (GWAS) for diabetes and hippocampus neuroimaging measurement were acquired from published GWASs, all of which were based on European ancestry. Several two-sample MR analyses were conducted in this study, utilizing inverse-variance weighted (IVW), MR Egger, and Weight-median methods. To ensure the reliability of the results and identify any horizontal pleiotropy, sensitivity analyses were undertaken using Cochran's Q test and the MR-PRESSO global test. RESULTS Causal associations were found between diabetes and the nervous system in the hippocampus. Type 1 and type 2 diabetes were both identified as having adverse causal connections with the right hippocampal nervous system. This was supported by specific ranges of IVW-OR values (P < 0.05). The consistency of the sensitivity analyses further reinforced the main findings, revealing no significant heterogeneity or presence of horizontal pleiotropy. CONCLUSIONS This study delved into the causal associations between diabetes and the hippocampal nervous system, revealing that both type 1 and type 2 diabetes have detrimental effects on the right hippocampal nervous system. Our findings have significant clinical implications as they indicate that diabetes may play a role in the decline of neurons in the right hippocampus among European populations, often resulting in cognitive decline.
Collapse
Affiliation(s)
- Qian Long
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Piao Huang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Curto A, Gómez-Polo C, Curto D, Muñoz-Bruguier M, Lorenzo-Luengo MC, Montero J. Influence of the metabolic control in patients with type 1 diabetes on their oral health status and the need for orthodontic treatment in a group of Spanish children (aged 6-12 years): a cross-sectional study. BMC Oral Health 2025; 25:155. [PMID: 39881266 PMCID: PMC11776116 DOI: 10.1186/s12903-025-05541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The aim of this study was to analyze the influence of good metabolic control, based on glycosylated hemoglobin (HbA1c) levels, on oral health status and the need for orthodontic treatment in children. METHODS This cross-sectional study was carried out at the Dental Clinic of the University of Salamanca (Spain) during the years 2020 and 2024. A total of 260 children with type 1 diabetes (aged between 6 and 12 years) participated. The sample was divided into two study groups based on their metabolic control: good metabolic control (HbA1c < 7%) (n = 130) and poor metabolic control (HbA1c > 7%) (n = 130). Oral health status was assessed using the Decayed, Missing, and Filled Teeth index for permanent teeth (DMF-T) and the need for orthodontic treatment using the Dental Health Component of the Index of Orthodontic Treatment Need (DHC-IOTN). RESULTS The mean age was 9.2 ± 1.9 years old. The total sample (n = 260) consisted of 53.8% boys and 46.2% girls. In the group of patients with poor metabolic control, a significant increase was observed in the number of decayed teeth (1.83 ± 1.36), filled teeth (1.05 ± 0.84), and DMF-T score (3.14 ± 1.87) compared to patients with good metabolic control (1.38 ± 1.20 decayed teeth; 0.88 ± 0.86 filled teeth; DMF-T score 2.46 ± 1.87). However, no significant differences were observed in relation to the influence of metabolic control on the need for orthodontic treatment. CONCLUSIONS In the sample studied, metabolic control had a negative influence on caries rates in children with type 1 diabetes, but not on the need for orthodontic treatment.
Collapse
Affiliation(s)
- Adrián Curto
- Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| | - Cristina Gómez-Polo
- Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Daniel Curto
- Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain
| | - Marta Muñoz-Bruguier
- Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | | | - Javier Montero
- Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
36
|
Almarzooq MA, Almarzoug HA, Alhassan MJ, Alrashed MI, Alnajjar JS, Albejais NA, Albahrani S, Alibrahim IA, Almaqhawi A. Impact of Virtual Clinics on Diabetes Distress and HbA1c Levels Among Patients with Diabetes Mellitus in Saudi Arabia. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:234. [PMID: 40005351 PMCID: PMC11857536 DOI: 10.3390/medicina61020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Diabetes mellitus is a prevalent chronic disease caused by inadequate insulin secretion or ineffective insulin response, leading to complications such as retinopathy, nephropathy, heart attacks, and strokes. Recently, "diabetes distress (DD)" has emerged as a concept, highlighting the significant emotional burden of managing diabetes, which can impact disease outcomes. Thus, this study evaluates the impact of virtual clinics on diabetes distress and glycemic measures in individuals with diabetes mellitus. Materials and Methods: A cross-sectional study was conducted between May and August 2024 at the Endocrine and Diabetes Center in Alahsa, Saudi Arabia, targeting persons aged 18 and older with diabetes who had engaged in-person clinics, virtual clinics, or both between 2019 and 2024. Data were collected through structured phone interviews, supplemented by laboratory results from clinical records. The survey included demographic details, diabetes information, and the Diabetes Distress Scale. Statistical analyses, including descriptive statistics, were performed to explore the relationships between diabetes distress, clinic visit type, and glycemic control, with Mann-Whitney and Chi-Squared tests used to compare variables between two groups. Results: Of the 108 participants, 55.6% were male, with a mean age of 38.5 years. Type 2 diabetes was reported in 51.9% of individuals, while 48.1% had type 1. High emotional burden (44.4%) and regimen-related distress (28.7%) were prevalent, particularly among individuals with suboptimal glycemic control. While virtual visits were not significantly correlated with lower distress levels, individuals with suboptimal glycemic control exhibited significantly higher diabetes distress across various domains, including emotional and regimen-related distress (p < 0.05). Laboratory analysis showed a median HbA1c of 8.2%, with poor control associated with greater distress. Conclusions: Diabetic individuals with suboptimal glycemic control report higher diabetes distress levels, underscoring the need for integrated psychological support in DM care. Although virtual clinic visits did not significantly reduce distress, they provide a feasible option for individual follow-up.
Collapse
Affiliation(s)
- Mohammed A. Almarzooq
- College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.A.); (H.A.A.); (M.J.A.); (M.I.A.)
| | - Hussain A. Almarzoug
- College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.A.); (H.A.A.); (M.J.A.); (M.I.A.)
| | - Mohammed Jassim Alhassan
- College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.A.); (H.A.A.); (M.J.A.); (M.I.A.)
| | - Mukhtar Ibrahim Alrashed
- College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.A.); (H.A.A.); (M.J.A.); (M.I.A.)
| | - Jawad S. Alnajjar
- College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.A.); (H.A.A.); (M.J.A.); (M.I.A.)
| | | | - Suha Albahrani
- Department of Family and Community Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.A.); (A.A.)
| | - Ibrahim A. Alibrahim
- Endocrine Consultant, Endocrine and Diabetes Center, King Fahad Hospital Al Hofuf, Al Hofuf 36441, Saudi Arabia;
| | - Abdullah Almaqhawi
- Department of Family and Community Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (S.A.); (A.A.)
| |
Collapse
|
37
|
Zhou M, Shen Q, Li B. JAK inhibitors: a new choice for diabetes mellitus? Diabetol Metab Syndr 2025; 17:33. [PMID: 39849637 PMCID: PMC11755809 DOI: 10.1186/s13098-025-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Altered tyrosine kinase signaling is associated with a variety of diseases. Tyrosine kinases can be classified into two groups: receptor type and nonreceptor type. Nonreceptor-type tyrosine kinases are subdivided into Janus kinases (JAKs), focal adhesion kinases (FAKs) and tec protein tyrosine kinases (TECs). The beneficial effects of receptor-type tyrosine kinase inhibitors (TKIs) for the treatment of diabetes mellitus (DM) and the mechanisms involved have been previously described. Recently, several clinical cases involving the reversal of type 1 diabetes mellitus (T1DM) during treatment with JAK inhibitors have been reported, and clinical studies have described the improvement of type 2 diabetes mellitus (T2DM) during treatment with JAK inhibitors. In vivo and in vitro experimental studies have elucidated some of the mechanisms behind this effect, which seem to be based mainly on the reduction in β-cell disruption and the improvement of insulin resistance. In this review, we briefly describe the beneficial effects of JAK inhibitors among nonreceptor tyrosine kinase inhibitors for the treatment of DM and attempt to analyze the mechanisms involved.
Collapse
Affiliation(s)
- Mengjun Zhou
- Department of Cardiology, Zibo Central Hospital, Binzhou Medical University, No. 10, South Shanghai Road, Zibo, People's Republic of China
| | - Qi Shen
- School of Clinical Medicine, Zibo Central Hospital, Shandong Second Medical University, No. 10, South Shanghai Road, Zibo, People's Republic of China
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, People's Republic of China.
| |
Collapse
|
38
|
Li Y, Zhu J, Yue C, Song S, Tian L, Wang Y. Recent advances in pancreatic α-cell transdifferentiation for diabetes therapy. Front Immunol 2025; 16:1551372. [PMID: 39911402 PMCID: PMC11794509 DOI: 10.3389/fimmu.2025.1551372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
As the global prevalence of diabetes mellitus rises, traditional treatments like insulin therapy and oral hypoglycemic agents often fail to achieve optimal glycemic control, leading to severe complications. Recent research has focused on replenishing pancreatic β-cells through the transdifferentiation of α-cells, offering a promising therapeutic avenue. This review explores the molecular mechanisms underlying α-cell to β-cell transdifferentiation, emphasizing key transcription factors such as Dnmt1, Arx, Pdx1, MafA, and Nkx6.1. The potential clinical applications, especially in type 1 and type 2 diabetes characterized by significant β-cell dysfunction, are addressed. Challenges, including low transdifferentiation efficiency, cell stability, and safety concerns, are also included. Future research directions include optimizing molecular pathways, enhancing transdifferentiation efficiency, and ensuring the long-term stability of β-cell identity. Overall, the ability to convert α-cells into β-cells represents a transformative strategy for diabetes treatment, offering hope for more effective and sustainable therapies for patients with severe β-cell loss.
Collapse
Affiliation(s)
- Yanjiao Li
- Department of Pharmacy, Qionglai Hospital of Traditional Chinese Medicine, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinyu Zhu
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Congyang Yue
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Limin Tian
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Jonsdottir B, Clasen JL, Vehik K, Lernmark Å, Lundgren M, Bonifacio E, Schatz D, Ziegler AG, Hagopian W, Rewers M, McIndoe R, Toppari J, Krischer J, Akolkar B, Steck A, Veijola R, Haller MJ, Elding Larsson H. Early Appearance of Thyroid Autoimmunity in Children Followed From Birth for Type 1 Diabetes Risk. J Clin Endocrinol Metab 2025; 110:498-510. [PMID: 38996042 PMCID: PMC11747670 DOI: 10.1210/clinem/dgae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
CONTEXT Autoantibodies to thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) define preclinical autoimmune thyroid disease (AITD), which can progress to either clinical hypothyroidism or hyperthyroidism. OBJECTIVE We determined the age at seroconversion in children genetically at risk for type 1 diabetes. METHODS TPOAb and TgAb seropositivity were determined in 5066 healthy children with human leukocyte antigen (HLA) DR3- or DR4-containing haplogenotypes from The Environmental Determinants of Diabetes in the Young (TEDDY) study. Children seropositive on the cross-sectional initial screen at age 8 to 13 years had longitudinally collected samples (from age 3.5 months) screened retrospectively and prospectively for thyroid autoantibodies to identify age at seroconversion. The first-appearing autoantibody was related to sex, HLA genotype, family history of AITD, and subsequent thyroid dysfunction and disease. RESULTS The youngest appearance of TPOAb and TgAb was age 10 and 15 months, respectively. Girls had higher incidence rates of both autoantibodies. Family history of AITD was associated with a higher risk of TPOAb hazard ratio (HR) 1.90; 95% CI, 1.17-3.08; and TgAb HR 2.55; 95% CI, 1.91-3.41. The risk of progressing to hypothyroidism or hyperthyroidism was not different between TgAb and TPOAb, but children with both autoantibodies appearing at the same visit had a higher risk compared to TPOAb appearing first (HR 6.34; 95% CI, 2.72-14.76). CONCLUSION Thyroid autoantibodies may appear during the first years of life, especially in girls, and in children with a family history of AITD. Simultaneous appearance of both autoantibodies increases the risk for hypothyroidism or hyperthyroidism.
Collapse
Affiliation(s)
- Berglind Jonsdottir
- Department of Pediatrics, The Children's Hospital Iceland, 101 Reykjavik, Iceland
- Department of Clinical Science Malmö, Lund University, 20502 Malmö, Sweden
| | - Joanna L Clasen
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Åke Lernmark
- Department of Clinical Science Malmö, Lund University, 20502 Malmö, Sweden
| | - Markus Lundgren
- Department of Clinical Science Malmö, Lund University, 20502 Malmö, Sweden
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Anette-Gabriele Ziegler
- German Center for Environmental Health, Institute of Diabetes Research, Helmholtz Munich, 80939 Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, 80939 Munich, Germany
| | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, 20520 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, University of Turku, 20520 Turku, Finland
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Beena Akolkar
- Division of Diabetes, Endocrinology, & Metabolic Diseases, National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Andrea Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014 Oulu, Finland
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Helena Elding Larsson
- Department of Clinical Science Malmö, Lund University, 20502 Malmö, Sweden
- Department of Pediatrics, Skåne University Hospital, 20502 Malmö, Sweden
| |
Collapse
|
40
|
Terracina S, Caronti B, Lucarelli M, Francati S, Piccioni MG, Tarani L, Ceccanti M, Caserta M, Verdone L, Venditti S, Fiore M, Ferraguti G. Alcohol Consumption and Autoimmune Diseases. Int J Mol Sci 2025; 26:845. [PMID: 39859557 PMCID: PMC11766456 DOI: 10.3390/ijms26020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alcohol is the second-most misused substance after tobacco. It has been identified as a causal factor in more than 200 diseases and 5.3% of all deaths and is associated with significant behavioral, social, and economic difficulties. As alcohol consumption may modulate the immune system's regulatory mechanisms to avoid attacking the body's tissues, it has been proven to play a dichotomic role in autoimmune diseases (ADs) based on the quantity of consumption. In this review, we report updated evidence on the role of alcohol in ADs, with a focus on alcohol addiction and the human biological immune system and the relationship between them, with alcohol as a risk or protective factor. Then, in this narrative review, we report the main evidence on the most studied ADs where alcohol represents a key modulator, including autoimmune thyroiditis, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, diabetes, allergic rhinitis, and primary biliary cholangitis. Alcohol at low-moderate dosages seems mostly to have a protective role in these diseases, while at higher dosages, the collateral risks surpass possible benefits. The specific mechanisms by which low-to-moderate alcohol intake relieves AD symptoms are not yet fully understood; however, emerging studies suggest that alcohol may have a systemic immunomodulatory effect, potentially altering the balance of anti-inflammatory innate and adaptive immune cells, as well as cytokines (via the NF-κB or NLRP3 pathways). It might influence the composition of the gut microbiome (increasing amounts of beneficial gut microbes) and the production of their fatty acid metabolites, such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs), as well as elevated concentrations of acetate, high-density lipoprotein (HDL), and nitric oxide (NO). Unfortunately, a definite acceptable daily intake (ADI) of ethanol is complicated to establish because of the many mechanisms associated with alcohol consumption such that despite the interesting content of these findings, there is a limit to their applicability and risks should be weighed in cases of alcoholic drinking recommendations. The aim of future studies should be to modulate those beneficial pathways involved in the alcohol-protective role of ADs with various strategies to avoid the risks associated with alcohol intake.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.G.P.); (L.T.)
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy; (M.C.); (L.V.)
| | - Sabrina Venditti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), c/o Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.T.); (M.L.); (S.F.)
| |
Collapse
|
41
|
Zhang Y, Qian L, Zhang Q, Li Y, Liu Y, Jiang D. Enhanced Electrochemiluminescence from Ruthenium-Tagged Immune Complex at Flexible Chains for Sensitive Analysis of Glutamate Decarboxylase Antibody. BIOSENSORS 2025; 15:47. [PMID: 39852098 PMCID: PMC11763322 DOI: 10.3390/bios15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical characterizations confirm the loose structure of the assembled layer with the immune complex, providing an increase in the current and the resultant enhanced ECL emissions. Comparing the sensors with the rigid structure, a 34-fold increase in the maximal ECL emission is recorded when PEG3400 is used as a linker. Using the optimized protocol, the prepared immunosensor exhibits a wide-ranging linear response to the model antibody (glutamate decarboxylase antibody) ranging from 10 pg/mL to 10 ng/mL. The detection limit is almost two orders lower than the value using the classic enzyme-linked immunosorbent assay, which offers a new design to enhance ECL emissions and the resultant analytical performance.
Collapse
Affiliation(s)
- Yuyao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China; (Y.Z.); (Q.Z.); (D.J.)
| | - Li Qian
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, China;
| | - Qian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China; (Y.Z.); (Q.Z.); (D.J.)
| | - Yu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China; (Y.Z.); (Q.Z.); (D.J.)
- School of Materials Engineering, Jingling Institute of Technology, Nanjing 211169, China
| | - Yu Liu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, China;
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China; (Y.Z.); (Q.Z.); (D.J.)
| |
Collapse
|
42
|
Ahmed MF, Raby KH, Tasnim N, Islam MT, Chowdhury M, Juthi ZT, Mia MA, Jahan L, Hossain AZ, Ahmed S. Optimization of the extraction methods and evaluation of the hypoglycemic effect of Adhatoda Zeylanica extracts on artificially induced diabetic mice. Heliyon 2025; 11:e41627. [PMID: 39866458 PMCID: PMC11758211 DOI: 10.1016/j.heliyon.2025.e41627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Synthetic antidiabetic drugs are often associated with various adverse side effects, including hypoglycemia, nausea, gastrointestinal disturbances, headaches, and even liver damage. In contrast, plant-derived natural antidiabetic bioactive compounds typically exhibit lower toxicity and fewer side effects and have been reported to aid effectively in diabetes management. These plant extracts regulate diabetes by restoring pancreatic function, enhancing insulin secretion, inhibiting intestinal glucose absorption, and facilitating insulin dependent metabolism. This study explored four extraction methods, including reflux distillation (RD), ultrasound assisted extraction (UAE), microwave assisted extraction (MAE), and enzyme assisted extraction (EAE) to optimize the yield of crude leaf extract and vasicine from Adhatoda zeylanica. RD produced the highest crude extract yield (98.29 g/kg of dried leaf), while MAE was the most effective for vasicine extraction, yielding 2.44 g vasicine per kg dried leaf. High Performance Liquid Chromatography (HPLC) with a diode array detector (DAD) was used to identify and quantify vasicine, a quinazoline alkaloid with known antidiabetic properties. The hypoglycemic effects of leaf extracts were evaluated in alloxan-induced diabetic mice, and the effect of A. zeylanica extract was compared to the extracts of Centella asiatica, Allamanda cathartica, and the standard drug metformin. At a dose of 400 mg/kg body weight (BW), methanolic leaf extracts of A. zeylanica, C. asiatica, and A. cathartica reduced blood glucose level by 78.95 %, 74.50 %, and 70.19 %, respectively, compared to the standard drug metformin, which reduced blood glucose levels by 85.84 %. A. zeylanica at 400 mg/kg BW dose and metformin demonstrated statistically similar and significant blood glucose level reduction (p < 0.001). Additionally, therapeutic doses of A. zeylanica leaf extract exhibited low cytotoxicity (cell survival rate >89 %), highlighting its potential as a safe and effective source of antidiabetic agent.
Collapse
Affiliation(s)
- Md Fahim Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Khalid Hasan Raby
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Nishat Tasnim
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Tariful Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Mahbub Chowdhury
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Zarin Tasnim Juthi
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Ashik Mia
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Lubna Jahan
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - A.K.M. Zakir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
43
|
Kim JE, Lee JW, Cha GD, Yoon JK. The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus. Biomimetics (Basel) 2025; 10:49. [PMID: 39851765 PMCID: PMC11760843 DOI: 10.3390/biomimetics10010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Diabetes mellitus (DM) is a fatal metabolic disease characterized by persistent hyperglycemia. In recent studies, mesenchymal stem cell (MSC)-derived exosomes, which are being investigated clinically as a cell-free therapy for various diseases, have gained attention due to their biomimetic properties that closely resemble natural cellular communication systems. These MSC-derived exosomes inherit the regenerative and protective effects from MSCs, inducing pancreatic β-cell proliferation and inhibiting apoptosis, as well as ameliorating insulin resistance by suppressing the release of various inflammatory cytokines. Consequently, MSC-derived exosomes have attracted attention as a novel treatment for DM as an alternative to stem cell therapy. In this review, we will introduce the potential of MSC-derived exosomes for the treatment of DM by discussing the studies that have used MSC-derived exosomes to treat DM, which have shown therapeutic effects in both type 1 and type 2 DM.
Collapse
Affiliation(s)
| | | | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea (G.D.C.)
| |
Collapse
|
44
|
Slater AS, Hickey RM, Davey GP. Interactions of human milk oligosaccharides with the immune system. Front Immunol 2025; 15:1523829. [PMID: 39877362 PMCID: PMC11772441 DOI: 10.3389/fimmu.2024.1523829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are abundant, diverse and complex sugars present in human breast milk. HMOs are well-characterized barriers to microbial infection and by modulating the human microbiome they are also thought to be nutritionally beneficial to the infant. The structural variety of over 200 HMOs, including neutral, fucosylated and sialylated forms, allows them to interact with the immune system in various ways. Clinically, HMOs impact allergic diseases, reducing autoimmune and inflammatory responses, and offer beneficial support to the preterm infant immune health. This review examines the HMO composition and associated immunomodulatory effects, including interactions with immune cell receptors and gut-associated immune responses. These immunomodulatory properties highlight the potential for HMO use in early stage immune development and for use as novel immunotherapeutics. HMO research is rapidly evolving and promises innovative treatments for immune-related conditions and improved health outcomes.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Hwang KC, Choi JJE, Hussaini HM, Cooper PR, Friedlander LT. Effect of diabetes and hyperglycaemia on the physical and mechanical properties of dentine: a systematic review. Clin Oral Investig 2025; 29:55. [PMID: 39792250 PMCID: PMC11723890 DOI: 10.1007/s00784-025-06151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
OBJECTIVES The aim of this systematic review was to assess the effect of DM (Type 1 and Type 2 Diabetes) and hyperglycaemia on the physical and mechanical properties of dentine which is critical for successful endodontic treatment. METHOD An electronic search of the following databases: PubMed, MEDLINE, Web of Science and the grey literature was performed up until July 2024. In vitro and in vivo studies on the effect of DM or hyperglycaemia on the mechanical and physical properties of dentine were included. Non-English language literature was excluded. RESULTS Of the 234 articles identified, 15 met the inclusion criteria. Four studies evaluated how artificially induced glycation or natural glycation of dentine due to aging affects the mechanical properties of dentine. Five studies investigated the influence of Type 2 Diabetes (T2D) on dentine's mechanical properties, while two studies focused on the effects of Type 1 Diabetes (T1D). A further, four studies compared the effects of both T1D and T2D on the dentine. The studies were heterogeneous and a range of mechanical and physical properties were evaluated. CONCLUSION DM and AGEs negatively influence the physical and mechanical properties of dentine however, there remains a paucity of evidence and further studies are needed. CLINICAL SIGNIFICANCE Diabetes Mellitus (DM) is a chronic metabolic disease characterised by hyperglycaemia, an altered immune response and complications associated with collagen connective tissues. DM can influence bone metabolism and alter its physical and mechanical properties via glycation processes within collagen and changes to osteoblast activities. While bone and dentine share similarities, dentine is unique as it is intimately associated with the dental pulp. Inflammation within the pulp can induce calcification and tertiary dentine deposition and so exploring the influence of DM on the mechanical properties of dentine is warranted to understand the clinical significance.
Collapse
Affiliation(s)
- Kuan-Chieh Hwang
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Joanne Jung Eun Choi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Haizal Mohd Hussaini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Paul R Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Lara T Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Sundheim B, Hirani K, Blaschke M, Lemos JRN, Mittal R. Pre-Type 1 Diabetes in Adolescents and Teens: Screening, Nutritional Interventions, Beta-Cell Preservation, and Psychosocial Impacts. J Clin Med 2025; 14:383. [PMID: 39860389 PMCID: PMC11765808 DOI: 10.3390/jcm14020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 Diabetes (T1D) is a progressive autoimmune disease often identified in childhood or adolescence, with early stages detectable through pre-diabetic markers such as autoantibodies and subclinical beta-cell dysfunction. The identification of the pre-T1D stage is critical for preventing complications, such as diabetic ketoacidosis, and for enabling timely interventions that may alter disease progression. This review examines the multifaceted approach to managing T1D risk in adolescents and teens, emphasizing early detection, nutritional interventions, beta-cell preservation strategies, and psychosocial support. Screening for T1D-associated autoantibodies offers predictive insight into disease risk, particularly when combined with education and family resources that promote lifestyle adjustments. Although nutritional interventions alone are not capable of preventing T1D, certain lifestyle interventions, such as weight management and specific nutritional choices, have shown the potential to preserve insulin sensitivity, reduce inflammation, and mitigate metabolic strain. Pharmacological strategies, including immune-modulating drugs like teplizumab, alongside emerging regenerative and cell-based therapies, offer the potential to delay disease onset by protecting beta-cell function. The social and psychological impacts of a T1D risk diagnosis are also significant, affecting adolescents' quality of life, family dynamics, and mental health. Supportive interventions, including counseling, cognitive-behavioral therapy (CBT), and group support, are recommended for managing the emotional burden of pre-diabetes. Future directions call for integrating universal or targeted screening programs within schools or primary care, advancing research into nutrition and psychosocial support, and promoting policies that enhance access to preventive resources. Advocacy for the insurance coverage of screening, nutritional counseling, and mental health services is also crucial to support families in managing T1D risk. By addressing these areas, healthcare systems can promote early intervention, improve beta-cell preservation, and support the overall well-being of adolescents at risk of T1D.
Collapse
Affiliation(s)
- Brody Sundheim
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Ransom Everglades High School, 3575 Main Hwy, Miami, FL 33133, USA
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krish Hirani
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- American Heritage School, 12200 W Broward Blvd, Plantation, FL 33325, USA
| | - Mateo Blaschke
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Coral Gables High School, 450 Bird Rd, Coral Gables, FL 33146, USA
| | - Joana R. N. Lemos
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Mittal
- Young Leaders Advocacy Group, Diabetes Research Institute Foundation, Hollywood, FL 33021, USA; (B.S.); (K.H.); (M.B.); (J.R.N.L.)
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
47
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
48
|
Zhao J, Gao H, Sun L, Shi L, Kuang Z, Wang H. Type 2 diabetes prediction method based on dual-teacher knowledge distillation and feature enhancement. Sci Rep 2025; 15:133. [PMID: 39747427 PMCID: PMC11696117 DOI: 10.1038/s41598-024-83902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetes prediction is an important topic in the field of medical health. Accurate prediction can help early intervention and reduce patients' health risks and medical costs. This paper proposes a data preprocessing method, including removing outliers, filling missing values, and using sparse autoencoder (SAE) feature enhancement. This study proposes a new method for type 2 diabetes classification using a dual Convolutional Neural Network (CNN) teacher-student distillation model (DCTSD-Model), aiming to improve the accuracy and reliability of diabetes prediction. The variables of the original data are expanded by SAE to enhance the expressive power of the features. The proposed CNN and DCTSD-Model models are evaluated on the feature enhancement dataset using 10-fold cross validation. The experimental results show that after data preprocessing, DCTSD-Model adopts the dual teacher model knowledge distillation method to help the student model learn rich category information by generating soft labels, and uses weighted random samplers to learn samples of different categories, which solves the category imbalance problem and achieves excellent classification performance. The accuracy of DCTSD-Model on the classification task reached 98.57%, which is significantly higher than other models, showing higher classification ability and reliability. This method provides an effective solution for diabetes prediction and lays a solid foundation for further research and application.
Collapse
Affiliation(s)
- Jian Zhao
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun University, Changchun, 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun, 130022, China
| | - Hanlin Gao
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun University, Changchun, 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun, 130022, China
| | - Lei Sun
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
| | - Lijuan Shi
- College of Electronic Information Engineering, Changchun University, Changchun, 130012, China
- Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun University, Changchun, 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun, 130022, China
| | - Zhejun Kuang
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China.
- Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun University, Changchun, 130022, China.
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun, 130022, China.
| | - Haiyan Wang
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun University, Changchun, 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun, 130022, China
| |
Collapse
|
49
|
Lv W, Wu T, Xiong L, Wu L, Zhou J, Tang Y, Qian F. Hybrid Control Policy for Artificial Pancreas via Ensemble Deep Reinforcement Learning. IEEE Trans Biomed Eng 2025; 72:309-323. [PMID: 39208051 DOI: 10.1109/tbme.2024.3451712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The artificial pancreas (AP) shows promise for closed-loop glucose control in type 1 diabetes mellitus (T1DM). However, designing effective control policies for the AP remains challenging due to complex physiological processes, delayed insulin response, and inaccurate glucose measurements. While model predictive control (MPC) offers safety and stability through the dynamic model and safety constraints, it lacks individualization and is adversely affected by unannounced meals. Conversely, deep reinforcement learning (DRL) provides personalized and adaptive strategies but struggles with distribution shifts and substantial data requirements. METHODS We propose a hybrid control policy for the artificial pancreas (HyCPAP) to address the above challenges. HyCPAP combines an MPC policy with an ensemble DRL policy, leveraging the strengths of both policies while compensating for their respective limitations. To facilitate faster deployment of AP systems in real-world settings, we further incorporate meta-learning techniques into HyCPAP, leveraging previous experience and patient-shared knowledge to enable fast adaptation to new patients with limited available data. RESULTS We conduct extensive experiments using the UVA/Padova T1DM simulator across five scenarios. Our approaches achieve the highest percentage of time spent in the desired range and the lowest occurrences of hypoglycemia. CONCLUSION The results clearly demonstrate the superiority of our methods for closed-loop glucose management in individuals with T1DM. SIGNIFICANCE The study presents novel control policies for AP systems, affirming their great potential for efficient closed-loop glucose control.
Collapse
|
50
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|