1
|
Infante M, Baidal DA, Rickels MR, Fabbri A, Skyler JS, Alejandro R, Ricordi C. Dual-hormone artificial pancreas for management of type 1 diabetes: Recent progress and future directions. Artif Organs 2021; 45:968-986. [PMID: 34263961 PMCID: PMC9059950 DOI: 10.1111/aor.14023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Over the last few years, technological advances have led to tremendous improvement in the management of type 1 diabetes (T1D). Artificial pancreas systems have been shown to improve glucose control compared with conventional insulin pump therapy. However, clinically significant hypoglycemic and hyperglycemic episodes still occur with the artificial pancreas. Postprandial glucose excursions and exercise-induced hypoglycemia represent major hurdles in improving glucose control and glucose variability in many patients with T1D. In this regard, dual-hormone artificial pancreas systems delivering other hormones in addition to insulin (glucagon or amylin) may better reproduce the physiology of the endocrine pancreas and have been suggested as an alternative tool to overcome these limitations in clinical practice. In addition, novel ultra-rapid-acting insulin analogs with a more physiological time-action profile are currently under investigation for use in artificial pancreas devices, aiming to address the unmet need for further improvements in postprandial glucose control. This review article aims to discuss the current progress and future outlook in the development of novel ultra-rapid insulin analogs and dual-hormone closed-loop systems, which offer the next steps to fully closing the loop in the artificial pancreas.
Collapse
Affiliation(s)
- Marco Infante
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Systems Medicine, CTO A. Alesini Hospital, Diabetes Research Institute Federation, University of Rome Tor Vergata, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - David A. Baidal
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Fabbri
- Division of Endocrinology, Metabolism and Diabetes, Department of Systems Medicine, CTO A. Alesini Hospital, Diabetes Research Institute Federation, University of Rome Tor Vergata, Rome, Italy
| | - Jay S. Skyler
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodolfo Alejandro
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Nishino T, Shiigi H, Kiguchi M, Nagaoka T. Specific single-molecule detection of glucose in a supramolecularly designed tunnel junction. Chem Commun (Camb) 2018; 53:5212-5215. [PMID: 28443849 DOI: 10.1039/c6cc09932g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scanning tunneling microscopy tips were functionalized with a boronic acid derivative. In combination with a similarly modified substrate, the molecular tip forms a supramolecular complex selectively with a glucose molecule. The conductance of the resulting single complex allows one to achieve the specific single-molecule detection of glucose.
Collapse
Affiliation(s)
- Tomoaki Nishino
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | |
Collapse
|
3
|
Iturralde E, Tanenbaum ML, Hanes SJ, Suttiratana SC, Ambrosino JM, Ly TT, Maahs DM, Naranjo D, Walders-Abramson N, Weinzimer SA, Buckingham BA, Hood KK. Expectations and Attitudes of Individuals With Type 1 Diabetes After Using a Hybrid Closed Loop System. DIABETES EDUCATOR 2017; 43:223-232. [PMID: 28340542 DOI: 10.1177/0145721717697244] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose The first hybrid closed loop (HCL) system, which automates insulin delivery but requires user inputs, was approved for treatment of type 1 diabetes (T1D) by the US Food and Drug Administration in September 2016. The purpose of this study was to explore the benefits, expectations, and attitudes of individuals with T1D following a clinical trial of an HCL system. Methods Thirty-two individuals with T1D (17 adults, 15 adolescents) participated in focus groups after 4 to 5 days of system use. Content analysis generated themes regarding perceived benefits, hassles, and limitations. Results Some participants felt misled by terms such as "closed loop" and "artificial pancreas," which seemed to imply a more "hands-off" experience. Perceived benefits were improved glycemic control, anticipated reduction of long-term complications, better quality of life, and reduced mental burden of diabetes. Hassles and limitations included unexpected tasks for the user, difficulties wearing the system, concerns about controlling highs, and being reminded of diabetes. Conclusion Users are willing to accept some hassles and limitations if they also perceive health and quality-of-life benefits beyond current self-management. It is important for clinicians to provide a balanced view of positives and negatives to help manage expectations.
Collapse
Affiliation(s)
- Esti Iturralde
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California (Dr Iturralde, Dr Tanenbaum, Ms Hanes, Dr Ly, Dr Maahs, Dr Buckingham, Dr Hood)
| | - Molly L Tanenbaum
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California (Dr Iturralde, Dr Tanenbaum, Ms Hanes, Dr Ly, Dr Maahs, Dr Buckingham, Dr Hood)
| | - Sarah J Hanes
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California (Dr Iturralde, Dr Tanenbaum, Ms Hanes, Dr Ly, Dr Maahs, Dr Buckingham, Dr Hood)
| | - Sakinah C Suttiratana
- Department of Social and Behavioral Sciences, University of California San Francisco, San Francisco, California (Ms Suttiratana)
| | - Jodie M Ambrosino
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (Dr Ambrosino, Dr Weinzimer)
| | - Trang T Ly
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California (Dr Iturralde, Dr Tanenbaum, Ms Hanes, Dr Ly, Dr Maahs, Dr Buckingham, Dr Hood).,Insulet Corporation, Billerica, Massachusetts (Dr Ly)
| | - David M Maahs
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California (Dr Iturralde, Dr Tanenbaum, Ms Hanes, Dr Ly, Dr Maahs, Dr Buckingham, Dr Hood).,Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado (Dr Maahs, Dr Walders-Abramson)
| | - Diana Naranjo
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California (Dr Naranjo, Dr Hood)
| | - Natalie Walders-Abramson
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, Colorado (Dr Maahs, Dr Walders-Abramson)
| | - Stuart A Weinzimer
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut (Dr Ambrosino, Dr Weinzimer)
| | - Bruce A Buckingham
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California (Dr Iturralde, Dr Tanenbaum, Ms Hanes, Dr Ly, Dr Maahs, Dr Buckingham, Dr Hood)
| | - Korey K Hood
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California (Dr Iturralde, Dr Tanenbaum, Ms Hanes, Dr Ly, Dr Maahs, Dr Buckingham, Dr Hood).,Department of Psychiatry, Stanford University School of Medicine, Stanford, California (Dr Naranjo, Dr Hood)
| |
Collapse
|
4
|
Trevitt S, Simpson S, Wood A. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes: What Systems Are in Development? J Diabetes Sci Technol 2016; 10:714-23. [PMID: 26589628 PMCID: PMC5038530 DOI: 10.1177/1932296815617968] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. METHODS A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. RESULTS Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. CONCLUSIONS There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life.
Collapse
Affiliation(s)
- Sara Trevitt
- NIHR Horizon Scanning Research & Intelligence Centre, University of Birmingham, Birmingham, UK
| | - Sue Simpson
- NIHR Horizon Scanning Research & Intelligence Centre, University of Birmingham, Birmingham, UK
| | - Annette Wood
- NIHR Horizon Scanning Research & Intelligence Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Abstract
Artificial pancreas (AP) systems, a long-sought quest to replicate mechanically islet physiology that is lost in diabetes, are reaching the clinic, and the potential of automating insulin delivery is about to be realized. Significant progress has been made, and the safety and feasibility of AP systems have been demonstrated in the clinical research center and more recently in outpatient "real-world" environments. An iterative road map to AP system development has guided AP research since 2009, but progress in the field indicates that it needs updating. While it is now clear that AP systems are technically feasible, it remains much less certain that they will be widely adopted by clinicians and patients. Ultimately, the true success of AP systems will be defined by successful integration into the diabetes health care system and by the ultimate metric: improved diabetes outcomes.
Collapse
|