1
|
Zhao Y, Jiang Z, Delgado E, Li H, Zhou H, Hu W, Perez-Basterrechea M, Janostakova A, Tan Q, Wang J, Mao M, Yin Z, Zhang Y, Li Y, Li Q, Zhou J, Li Y, Martinez Revuelta E, Maria García-Gala J, Wang H, Perez-Lopez S, Alvarez-Viejo M, Menendez E, Moss T, Guindi E, Otero J. Platelet-Derived Mitochondria Display Embryonic Stem Cell Markers and Improve Pancreatic Islet β-cell Function in Humans. Stem Cells Transl Med 2017; 6:1684-1697. [PMID: 28685960 PMCID: PMC5689778 DOI: 10.1002/sctm.17-0078] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a major global health issue and the number of individuals with type 1 diabetes (T1D) and type 2 diabetes (T2D) increases annually across multiple populations. Research to develop a cure must overcome multiple immune dysfunctions and the shortage of pancreatic islet β cells, but these challenges have proven intractable despite intensive research effort more than the past decades. Stem Cell Educator (SCE) therapy-which uses only autologous blood immune cells that are externally exposed to cord blood stem cells adhering to the SCE device, has previously been proven safe and effective in Chinese and Spanish subjects for the improvement of T1D, T2D, and other autoimmune diseases. Here, 4-year follow-up studies demonstrated the long-term safety and clinical efficacy of SCE therapy for the treatment of T1D and T2D. Mechanistic studies found that the nature of platelets was modulated in diabetic subjects after receiving SCE therapy. Platelets and their released mitochondria display immune tolerance-associated markers that can modulate the proliferation and function of immune cells. Notably, platelets also expressed embryonic stem cell- and pancreatic islet β-cell-associated markers that are encoded by mitochondrial DNA. Using freshly-isolated human pancreatic islets, ex vivo studies established that platelet-releasing mitochondria can migrate to pancreatic islets and be taken up by islet β cells, leading to the proliferation and enhancement of islet β-cell functions. These findings reveal new mechanisms underlying SCE therapy and open up new avenues to improve the treatment of diabetes in clinics. Stem Cells Translational Medicine 2017;6:1684-1697.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Research, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Zhaoshun Jiang
- Section of Endocrinology, General Hospital of Jinan Military Command, Jinan, Shandong, People's Republic of China
| | - Elias Delgado
- Endocrinology Section, Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Heng Li
- Section of Neurology, Jinan Central Hospital, Jinan, Shandong, People's Republic of China
| | - Huimin Zhou
- Section of Endocrinology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Wei Hu
- Department of Research, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Marcos Perez-Basterrechea
- Unit of Transplants, Cell Therapy and Regenerative Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Anna Janostakova
- Department of Research, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Qidong Tan
- Section of Endocrinology, General Hospital of Jinan Military Command, Jinan, Shandong, People's Republic of China
| | - Jing Wang
- Section of Endocrinology, General Hospital of Jinan Military Command, Jinan, Shandong, People's Republic of China
| | - Mao Mao
- Department of Research, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Zhaohui Yin
- Section of Endocrinology, General Hospital of Jinan Military Command, Jinan, Shandong, People's Republic of China
| | - Ye Zhang
- Tianhe Stem Cell Biotechnologies Inc., Jinan, Shandong, People's Republic of China
| | - Ying Li
- Tianhe Stem Cell Biotechnologies Inc., Jinan, Shandong, People's Republic of China
| | - Quanhai Li
- Cell Therapy Center, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jing Zhou
- Cell Therapy Center, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yunxiang Li
- Tianhe Stem Cell Biotechnologies Inc., Jinan, Shandong, People's Republic of China
| | - Eva Martinez Revuelta
- Hematology and Hemotherapy Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jose Maria García-Gala
- Hematology and Hemotherapy Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Honglan Wang
- Department of Research, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Silvia Perez-Lopez
- Unit of Transplants, Cell Therapy and Regenerative Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Maria Alvarez-Viejo
- Unit of Transplants, Cell Therapy and Regenerative Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Edelmiro Menendez
- Endocrinology Section, Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Thomas Moss
- CORD:USE Cord Blood Bank, Orlando, Florida, USA
| | | | - Jesus Otero
- Unit of Transplants, Cell Therapy and Regenerative Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
2
|
Melmed S. Pituitary Medicine From Discovery to Patient-Focused Outcomes. J Clin Endocrinol Metab 2016; 101:769-77. [PMID: 26908107 PMCID: PMC4803158 DOI: 10.1210/jc.2015-3653] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/27/2015] [Indexed: 12/14/2022]
Abstract
CONTEXT This perspective traces a pipeline of discovery in pituitary medicine over the past 75 years. OBJECTIVE To place in context past advances and predict future changes in understanding pituitary pathophysiology and clinical care. DESIGN Author's perspective on reports of pituitary advances in the published literature. SETTING Clinical and translational Endocrinology. OUTCOMES Discovery of the hypothalamic-pituitary axis and mechanisms for pituitary control, have culminated in exquisite understanding of anterior pituitary cell function and dysfunction. Challenges facing the discipline include fundamental understanding of pituitary adenoma pathogenesis leading to more effective treatments of inexorably growing and debilitating hormone secreting pituitary tumors as well as medical management of non-secreting pituitary adenomas. Newly emerging pituitary syndromes include those associated with immune-targeted cancer therapies and head trauma. CONCLUSIONS Novel diagnostic techniques including imaging genomic, proteomic, and biochemical analyses will yield further knowledge to enable diagnosis of heretofore cryptic syndromes, as well as sub classifications of pituitary syndromes for personalized treatment approaches. Cost effective personalized approaches to precision therapy must demonstrate value, and will be empowered by multidisciplinary approaches to integrating complex subcellular information to identify therapeutic targets for enabling maximal outcomes. These goals will be challenging to attain given the rarity of pituitary disorders and the difficulty in conducting appropriately powered prospective trials.
Collapse
Affiliation(s)
- Shlomo Melmed
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|