1
|
Bonora BM, Cappellari R, Mazzucato M, Rigato M, Grasso M, Menegolo M, Bruttocao A, Avogaro A, Fadini GP. Stem cell mobilization with plerixafor and healing of diabetic ischemic wounds: A phase IIa, randomized, double-blind, placebo-controlled trial. Stem Cells Transl Med 2020; 9:965-973. [PMID: 32485785 PMCID: PMC7445026 DOI: 10.1002/sctm.20-0020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow‐derived cells contribute to tissue repair, but traffic of hematopoietic stem/progenitor cells (HSPCs) is impaired in diabetes. We therefore tested whether HSPC mobilization with the CXCR4 antagonist plerixafor improved healing of ischemic diabetic wounds. This was a pilot, phase IIa, double‐blind, randomized, placebo‐controlled trial (NCT02790957). Patients with diabetes with ischemic wounds were randomized to receive a single subcutaneous injection of plerixafor or saline on top of standard medical and surgical therapy. The primary endpoint was complete healing at 6 months. Secondary endpoints were wound size, transcutaneous oxygen tension (TcO2), ankle‐brachial index (ABI), amputations, and HSPC mobilization. Twenty‐six patients were enrolled: 13 received plerixafor and 13 received placebo. Patients were 84.6% males, with a mean age of 69 years. HSPC mobilization was successful in all patients who received plerixafor. The trial was terminated after a preplanned interim analysis of 50% of the target population showed a significantly lower healing rate in the plerixafor vs the placebo group. In the final analysis data set, the rate of complete healing was 38.5% in the plerixafor group vs 69.2% in the placebo group (chi‐square P = .115). Wound size tended to be larger in the plerixafor group for the entire duration of observation. No significant difference was noted for the change in TcO2 and ABI or in amputation rates. No other safety concern emerged. In conclusion, successful HSPC mobilization with plerixafor did not improve healing of ischemic diabetic wounds. Contrary to what was expected, outside the context of hematological disorders, mobilization of diabetic HSPCs might exert adverse effects on wound healing.
Collapse
Affiliation(s)
- Benedetta Maria Bonora
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Roberta Cappellari
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Mauro Rigato
- Department of Medicine, University of Padova, Padova, Italy.,ULSS2 Diabetology Service, Treviso, Italy
| | - Marco Grasso
- Department of Medicine, University of Padova, Padova, Italy
| | - Mirko Menegolo
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy.,ULSS2 Diabetology Service, Treviso, Italy
| |
Collapse
|
2
|
Kim JY, Lee JY, Ha KS, Han ET, Park WS, Min CK, Hong SH. Perivascular Cells and NADPH Oxidase Inhibition Partially Restore Hyperglycemia-Induced Alterations in Hematopoietic Stem Cell and Myeloid-Derived Suppressor Cell Populations in the Bone Marrow. Int J Stem Cells 2019; 12:63-72. [PMID: 30595009 PMCID: PMC6457702 DOI: 10.15283/ijsc18097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background and Objectives Patients suffer from long-term diabetes can result in severe complications in multiple organs through induction of vascular dysfunctions. However, the effects of chronic hyperglycemic conditions on hematopoiesis and the microenvironment in the bone marrow (BM) are not yet well understood. Methods BM cells were harvested from femurs of mice and analyzed using flow cytometry. Human PVCs were cultured in serum-free α-MEM. After 24hrs, PVC-CM was collected and filtered through a 0.22 μm filter. Results In this study, we showed that hyperglycemia alters hematopoietic composition in the BM, which can partially be restored via paracrine mechanisms, including perivascular cells (PVCs) and NADPH oxidase (NOX) inhibition in mice with streptozotocin-induced diabetes. Prolonged hyperglycemic conditions resulted in an increase in the frequency and number of long-term hematopoietic stem cells as well as the number of total BM cells. The altered hematopoiesis in the BM was partially recovered by treatment with PVC-derived conditioned medium (CM). Long-term diabetes also increased the number of myeloid-derived suppressor cells in the BM, which was partially restored by the administration of PVC-CM and diphenyleneiodonium (DPI), a NOX inhibitor. We further showed the downregulation of ERK and p38 phosphorylation in BM cells of diabetic mice treated with PVC-CM and DPI. This may be associated with dysfunction of hematopoietic cells and promotion of subsequent diabetic complications. Conclusions Our data suggested that alterations in BM hematopoietic composition due to prolonged hyperglycemic conditions might be restored by improvement of the hematopoietic microenvironment and modulation of NOX activity.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji Yoon Lee
- Department of Biomedical Sciences, Stem Cell Institute, CHA University, Seongnam, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Chang-Ki Min
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
Seboko AM, Conradie MM, Kruger MJ, Ferris WF, Conradie M, van de Vyver M. Systemic Factors During Metabolic Disease Progression Contribute to the Functional Decline of Adipose Tissue-Derived Mesenchymal Stem Cells in Reproductive Aged Females. Front Physiol 2018; 9:1812. [PMID: 30631282 PMCID: PMC6315119 DOI: 10.3389/fphys.2018.01812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 12/04/2018] [Indexed: 12/28/2022] Open
Abstract
It is known that advanced metabolic disorders such as type 2 diabetes compromise the functional and regenerative capacity of endogenous adipose-tissue resident stem cells (ADSCs). It is, however, still unclear at which stage of disease progression ADSCs become compromised and whether systemic factors contribute to their functional decline. It was therefore hypothesized that inflammatory changes in the systemic microenvironment during distinct stages of disease progression negatively affect the functional capacity of ADSCs. A total of forty-seven (n = 47) black African reproductive aged females (32 ± 8 years; mean ± SD) were included in this study and subdivided into: (a) healthy lean (C; body mass index, BMI ≤ 25 kg/m2), (b) healthy overweight/obese (OB; BMI ≥ 25 kg/m2), (c) obese metabolic syndrome (MetS; BMI ≥ 30 kg/m2), and (d) type 2 diabetes mellitus (T2DM; previously diagnosed and on treatment) groups. Participants underwent anthropometric assessments and a DXA scan to determine their body composition and adipose indices. Each persons’ systemic metabolic- (cholesterol, HDL, LDL, triglycerides, and blood glucose) and inflammatory profiles (CRP, SDF1α, TNFα, IL6, IL8, IL10, and IFNy) were also evaluated. Participant-derived serum was then used to treat an ADSC cell line in vitro and its effect on viability (MTT-based assay), proliferation (BrdU), migration (wound healing assay), and osteogenic differentiation assessed. When exposed to serum derived from overweight/obese individuals (with or without metabolic syndrome), both the proliferative and migratory responses of ADSCs were less pronounced than when exposed to healthy control serum. Serum IL6 concentrations were identified as a factor influencing the proliferation of ADSCs, suggesting that long-term disruption to the systemic cytokine balance can potentially disrupt the proliferative responses of ADSCs. Obese participant-derived serum (with and without metabolic syndrome) furthermore resulted in lipid accumulation during osteogenic differentiation. This study, therefore demonstrated that systemic factors in obese individuals, regardless of the presence of metabolic syndrome, can be detrimental to the multifunctional properties of ADSCs.
Collapse
Affiliation(s)
- Ascentia M Seboko
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - M M Conradie
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - M J Kruger
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - William Frank Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Magda Conradie
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mari van de Vyver
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Satthenapalli VR, Lamberts RR, Katare RG. Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review. Stem Cells 2017; 35:2009-2026. [PMID: 28639375 DOI: 10.1002/stem.2661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022]
Abstract
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026.
Collapse
Affiliation(s)
- Venkata R Satthenapalli
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh G Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
de Lima KA, de Oliveira GLV, Yaochite JNU, Pinheiro DG, de Azevedo JTC, Silva WA, Covas DT, Couri CEB, Simões BP, Voltarelli JC, Oliveira MC, Malmegrim KCR. Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Res Ther 2016; 7:92. [PMID: 27406064 PMCID: PMC4942931 DOI: 10.1186/s13287-016-0351-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. Methods Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. Results T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. Conclusions Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalil A de Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil. .,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil. .,, Tenente Catao Roxo, 2501, Monte Alegre, 14051-140, Ribeirao Preto, Sao Paulo, Brazil.
| | - Gislane L V de Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana N U Yaochite
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Daniel G Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Júlia T C de Azevedo
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Wilson Araujo Silva
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Dimas T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos E B Couri
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Belinda P Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Julio C Voltarelli
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|