1
|
Zhang Y, Guo H, Bu J, Wang W, Wang L, Liu Z, Qiu Y, Wang Q, Zhou L, Liu X, Ma L, Wei J. ADAR1 Promotes the Progression and Temozolomide Resistance of Glioma Through p62-Mediated Selective Autophagy. CNS Neurosci Ther 2025; 31:e70168. [PMID: 39825637 PMCID: PMC11742087 DOI: 10.1111/cns.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear. METHODS We first constructed stable transfected strains in which ADAR1 was knocked down and overexpressed to investigate the effect of ADAR1 on the first-line glioma chemotherapy drug TMZ. Subsequently, we validated that ADAR1 induces autophagy activation and used autophagy inhibitors to suppress autophagy, demonstrating that ADAR1 enhances TMZ resistance through autophagy. We further knocked down p62 (SQSTM1) based on the overexpression of ADAR1, and the results showed that ADAR1 regulates selective autophagy through the p62 regulation. Finally, we demonstrated through mutations at both edited and nonedited sites that ADAR1 regulates selective autophagy in an edited dependent way. RESULTS Further analysis showed that in the presence of TMZ, elevated ADAR1 promoted TMZ induced autophagy activation. Further research revealed that ADAR1 enhances TMZ resistance through p62-mediated selective autophagy. Further, ADAR1 regulates selective autophagy in an edited dependent way. Our results indicate a relationship between ADAR1 levels and the response of glioma patients to TMZ treatment. CONCLUSIONS We found that the expression of ADAR1 is upregulated in GBM and is associated with tumor grade and TMZ resistance. Elevated expression of ADAR1 predicts poor prognosis in GBM patients and promotes tumor growth in vivo or in vitro.
Collapse
Affiliation(s)
- Yuyan Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Huiling Guo
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Clinical Laboratory of Henan ProvinceZhengzhouHenanChina
| | - Jiahao Bu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Weiwei Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Li Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhibo Liu
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Clinical Laboratory of Henan ProvinceZhengzhouHenanChina
| | - Yuning Qiu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Qimeng Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lijuan Zhou
- Electron Microscopy Laboratory of Renal PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xianzhi Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liwei Ma
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Clinical Laboratory of Henan ProvinceZhengzhouHenanChina
| | - Jianwei Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
2
|
Cheng H, Yu J, Wong CC. Adenosine-to-Inosine RNA editing in cancer: molecular mechanisms and downstream targets. Protein Cell 2024:pwae039. [PMID: 39126156 DOI: 10.1093/procel/pwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine-to-Inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| |
Collapse
|
3
|
Wang SY, Zhang LJ, Chen GJ, Ni QQ, Huang Y, Zhang D, Han FY, He WF, He LL, Ding YQ, Jiao HL, Ye YP. COPA A-to-I RNA editing hijacks endoplasmic reticulum stress to promote metastasis in colorectal cancer. Cancer Lett 2023; 553:215995. [PMID: 36336148 DOI: 10.1016/j.canlet.2022.215995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
RNA editing is among the most common RNA level modifications for generating amino acid changes. We identified a COPA A-to-I RNA editing event in CRC metastasis. Our results showed that the COPA A-to-I RNA editing rate was significantly increased in metastatic CRC tissues and was closely associated with aggressive tumors in the T and N stages. The COPA I164V protein damaged the Golgi-ER reverse transport function, induced ER stress, promoted the translocation of the transcription factors ATF6, XBP1 and ATF4 into the nucleus, and activated the expression of MALAT1, MET, ZEB1, and lead to CRC cell invasion and metastasis. Moreover, the COPA A-to-I RNA editing rate was positively correlated with the immune infiltration score. Collectively, the COPA I164V protein hijacked ER stress to promote the metastasis of CRC, and the COPA A-to-I RNA editing rate may be a potential predictor for patient response to immune checkpoint inhibitor (ICIs) treatment.
Collapse
Affiliation(s)
- Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Guo-Jun Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Qi-Qi Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Yuan Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Fang-Yi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Wen-Feng He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Li-Ling He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| | - Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| |
Collapse
|
4
|
Jiang L, Park MJ, Cho CJ, Lee K, Jung MK, Pack CG, Myung SJ, Chang S. ADAR1 Suppresses Interferon Signaling in Gastric Cancer Cells by MicroRNA-302a-Mediated IRF9/STAT1 Regulation. Int J Mol Sci 2020; 21:ijms21176195. [PMID: 32867271 PMCID: PMC7504523 DOI: 10.3390/ijms21176195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
ADAR (adenosine deaminase acting on RNA) catalyzes the deamination of adenosine to generate inosine, through its binding to double-stranded RNA (dsRNA), a phenomenon known as RNA editing. One of the functions of ADAR1 is suppressing the type I interferon (IFN) response, but its mechanism in gastric cancer is not clearly understood. We analyzed changes in RNA editing and IFN signaling in ADAR1-depleted gastric cancer cells, to clarify how ADAR1 regulates IFN signaling. Interestingly, we observed a dramatic increase in the protein level of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 9 (IRF9) upon ADAR1 knockdown, in the absence of type I or type II IFN treatment. However, there were no changes in protein expression or localization of the mitochondrial antiviral signaling protein (MAVS) and interferon alpha and beta-receptor subunit 2 (IFNAR2), the two known mediators of IFN production. Instead, we found that miR-302a-3p binds to the untranslated region (UTR) of IRF9 and regulate its expression. The treatment of ADAR1-depleted AGS cells with an miR-302a mimic successfully restored IRF9 as well as STAT1 protein level. Hence, our results suggest that ADAR1 regulates IFN signaling in gastric cancer through the suppression of STAT1 and IRF9 via miR-302a, which is independent from the RNA editing of known IFN production pathway.
Collapse
Affiliation(s)
- Lushang Jiang
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Min Ji Park
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Charles J. Cho
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Kihak Lee
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Min Kyo Jung
- Department of Convergence Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (M.K.J.); (C.G.P.)
| | - Chan Gi Pack
- Department of Convergence Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (M.K.J.); (C.G.P.)
| | - Seung-Jae Myung
- Department of Gastroenterology, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea
- Correspondence: (S.-J.M.); (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
- Department of Physiology, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea
- Correspondence: (S.-J.M.); (S.C.)
| |
Collapse
|