1
|
Alfonzetti T, Moreau M, Yasmin-Karim S, Ngwa W, Avery S, Goia D. Phytoradiotherapy to enhance cancer treatment outcomes with cannabidiol, bitter melon juice, and plant hemoglobin. Front Oncol 2023; 12:1085686. [PMID: 36776362 PMCID: PMC9909600 DOI: 10.3389/fonc.2022.1085686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 01/28/2023] Open
Abstract
Despite technological advances in radiation therapy for cancer treatment, many patient populations still experience mediocre survival percentages, local control, and quality of life. Additionally, much of the world lacks access to expensive, modern treatment options. The need for innovative, cost-effective solutions that can improve patient treatment outcomes is essential. Phytomedicines have been shown to induce apoptotic tumor cell death, diminish tumor progression, reduce cancer incidence, alleviate harmful hypoxic conditions, and more. While an ample amount of research is available that characterizes many phytomedicines as having anti-cancer properties that increase tumor cell killing/control and mitigate the harmful side effects of radiation damage, little work has been done to investigate the synergistic effect of phytoradiotherapy: combining radiation treatment with phytomedicines. In this study, a protocol for testing the radiosensitizing effects of phytomedicines was validated and used to investigate the well-known plant based medicine cannabidiol (CBD) and the lesser-known medicinal fruit Bitter Melon. Additionally, based on its high concentration of plant hemoglobin which has been shown to abate hypoxia, the African-indigenous Justicia plant was tested in pancreatic adenocarcinoma mouse models. The studies reveal that these phytomedicines can effectively enhance tumor cell killing, minimize tumor growth, and prolong mice survival. There is certainly the need for additional research in this regard, however, phytoradiotherapy: the use of phytomedicines to enhance radiation therapy treatment outcomes, continues to show potential as a promising, innovative way to improve cancer care.
Collapse
Affiliation(s)
- Tyler Alfonzetti
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michele Moreau
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Boston, MA, United States
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Boston, MA, United States
| | - Stephen Avery
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Denisa Goia
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Lee HJ, Yoon JW, Jung KM, Kim YM, Park JS, Lee KY, Park KJ, Hwang YS, Park YH, Rengaraj D, Han JY. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J 2019; 33:8519-8529. [PMID: 30951374 DOI: 10.1096/fj.201802671r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) have facilitated the production of genome-edited animals for use as models. Because of their unique developmental system, avian species offer many advantages as model vertebrates. Here, we report the development of novel chicken models using the CRISPR/Cas9-mediated nonhomologous end joining repair pathway in chicken primordial germ cells (PGCs). Through the introduction of a donor plasmid containing short guide RNA recognition sequences and CRISPR/Cas9 plasmids into chicken PGCs, exogenous genes of donor plasmids were precisely inserted into target loci, and production of transgenic chickens was accomplished through subsequent transplantation of the Z chromosome-targeted PGCs. Using this method, we successfully accomplished the targeted gene insertion to the chicken sex Z chromosome without detected off-target effects. The genome-modified chickens robustly expressed green fluorescent protein from the Z chromosome, which could then be used for easy sex identification during embryogenesis. Our results suggest that this powerful genome-editing method could be used to develop many chicken models and should significantly expand the application of genome-modified avians.-Lee, H. J., Yoon, J. W., Jung, K. M., Kim, Y. M., Park, J. S., Lee, K. Y., Park, K. J., Hwang, Y. S., Park, Y. H., Rengaraj, D., Han, J. Y. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jong Won Yoon
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Zaboikin M, Zaboikina T, Freter C, Srinivasakumar N. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents. PLoS One 2017; 12:e0169931. [PMID: 28095454 PMCID: PMC5241150 DOI: 10.1371/journal.pone.0169931] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
Abstract
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Collapse
Affiliation(s)
- Michail Zaboikin
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Tatiana Zaboikina
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Carl Freter
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Narasimhachar Srinivasakumar
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|