1
|
Xiong J, Liu DM, Huang YY. Exopolysaccharides from Lactiplantibacillus plantarum: isolation, purification, structure–function relationship, and application. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
2
|
Song Y, Sun M, Feng L, Liang X, Song X, Mu G, Tuo Y, Jiang S, Qian F. Antibiofilm Activity of Lactobacillus plantarum 12 Exopolysaccharides against Shigella flexneri. Appl Environ Microbiol 2020; 86:e00694-20. [PMID: 32444475 PMCID: PMC7376565 DOI: 10.1128/aem.00694-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
In developing countries, Shigella flexneri is the most common enteric pathogen causing bacillary dysentery. Biofilm formation by S. flexneri can cause the emergence of antibiotic-resistant strains, which poses serious threats to food safety and human health. In this study, the effects of Lactobacillus plantarum 12 exopolysaccharides (L-EPSs) and S. flexneri exopolysaccharides (S-EPSs) on S. flexneri CMCC51574 biofilm formation were investigated. The results showed that L-EPS could decrease polysaccharide production in the extracellular polymeric matrix of S. flexneri and inhibit biofilm formation by S. flexneri L-EPS could decrease the minimum biofilm elimination concentration (MBEC) of antibiotics against S. flexneri biofilm and inhibit S. flexneri adhesion to and invasion into HT-29 cell monolayers, which might be ascribed to S. flexneri biofilm disturbance by L-EPS. In contrast, S-EPS exhibited the opposite effects compared to L-EPS. The monosaccharide composition analysis showed that L-EPS was composed of mannose, glucuronic acid, galactosamine, glucose, galactose, and xylose, with the molar ratio of 32.26:0.99:1.79:5.63:0.05:4.07, while S-EPS was composed of mannose, glucuronic acid, galactosamine, glucose, and galactose, with the molar ratio of 25.43:2.28:7.13:5.35. L-EPS was separated into the neutral polysaccharide L-EPS 1-1 and the acidic polysaccharide L-EPS 2-1 by ion-exchange chromatography and gel chromatography. L-EPS 2-1 exerted higher antibiofilm activity than L-EPS 1-1. The antibiofilm activity of L-EPS might be associated with its structure.IMPORTANCES. flexneri is a widespread foodborne pathogen causing food contamination and responsible for food poisoning outbreaks related to various foods in developing countries. Not only has biofilm formation by S. flexneri been difficult to eliminate, but it has also increased the drug resistance of the strain. In the present study, it was demonstrated that L-EPSs secreted by Lactobacillus plantrum 12 could inhibit S. flexneri biofilm formation on, adhesion to, and invasion into HT-29 cells. Also, L-EPSs could decrease the minimum biofilm elimination concentration (MBEC) of the antibiotics used against S. flexneri biofilm. Therefore, L-EPSs were shown to be bioactive macromolecules with the potential ability to act against S. flexneri infections.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Lu Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Xue Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Xing Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| |
Collapse
|
3
|
Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J, Zheng X, Chang ZM, Wang Z, Dong WF, Tang CB. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int J Nanomedicine 2018; 13:7697-7709. [PMID: 30538453 PMCID: PMC6251470 DOI: 10.2147/ijn.s181168] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Oral plaque biofilms pose a threat to periodontal health and are challenging to eradicate. There is a growing belief that a combination of silver nanoparticles and chlorhexidine (CHX) is a promising strategy against oral biofilms. PURPOSE To overcome the side effects of this strategy and to exert maximum efficiency, we fabricated biodegradable disulfide-bridged mesoporous silica nanoparticles (MSNs) to co-deliver silver nanoparticles and CHX for biofilm inhibition. MATERIALS AND METHODS CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) were fabricated after CHX loading, and the pH- and glutathione-responsive release profiles of CHX and silver ions along with their mechanism of degradation were systematically investigated. Then, the efficacy of Ag-MSNs@CHX against Streptococcus mutans and its biofilm was comprehensively assessed by determining the minimum inhibitory concentration, minimum bactericidal concentration, minimal biofilm inhibitory concentration, and the inhibitory effect on S. mutans biofilm formation. In addition, the biosafety of nanocarriers was evaluated by oral epithelial cells and a mouse model. RESULTS The obtained Ag-MSNs@CHX possessed redox/pH-responsive release properties of CHX and silver ions, which may be attributed to the redox-triggered matrix degradation mechanism of exposure to biofilm-mimetic microenvironments. Ag-MSNs@CHX displayed dose-dependent antibacterial activity against planktonic and clone formation of S. mutans. Importantly, Ag-MSNs@CHX had an increased and long-term ability to restrict the growth of S. mutans biofilms compared to free CHX. Moreover, Ag-MSNs@CHX showed less cytotoxicity to oral epithelial cells, whereas orally administered Ag-MSNs exhibited no obvious toxic effects in mice. CONCLUSION Our findings constitute a highly effective and safe strategy against biofilms that has a good potential as an oral biofilm therapy.
Collapse
Affiliation(s)
- Meng-Meng Lu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| | - Yuran Ge
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| | - Dan Shao
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Yue Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhi-Min Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Zheng Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Chun-Bo Tang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| |
Collapse
|