1
|
Oettinger D, Yamamoto A. Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Li J, Chen D, Tang Y, Chen Z, Zhou M, Wan L, Xiao L, Fu Y, He Z, Tang Z, Hu Z, Yuan X, Yang J, Zhu S, Guo X, Ouyang R, Qiu R, Tang B, Guo J, Jiang H, Hu S. Synaptic Density Reductions in MSA: A Potential Biomarker Identified Through [ 18F]SynVesT-1 PET Imaging. Ann Neurol 2025; 97:879-893. [PMID: 39829068 DOI: 10.1002/ana.27179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE The objective of this study was to delineate synaptic density alterations in multiple system atrophy (MSA) and explore its potential role as a biomarker for MSA diagnosis and disease severity monitoring using [18F]SynVesT-1 positron emission tomography / computed tomography (PET CT). METHODS In this prospective study, 60 patients with MSA (30 patients with MSA-parkinsonian [MSA-P] subtype and 30 patients with MSA-cerebellar [MSA-C] subtype), 30 patients with Parkinson's disease (PD), and 30 age-matched healthy controls (HCs) underwent [18F]SynVesT-1 PET/CT for synaptic density assessment. Visual, voxel, and volumetric region of interest (VOI) analyses were used to elucidate synaptic density patterns in the MSA brain and establish diagnostic criteria. The diagnostic performances of both visual and VOI-based diagnostics were evaluated using receiver operating characteristic (ROC) analysis. Spearman correlation analyses were conducted to investigate the relationship between brain synaptic density and disease severity RESULTS: Patients with MSA displayed extensive reductions in synaptic density throughout the brain, notably affecting both primary VOIs (the cerebellum and putamen) and secondary VOIs including the medulla oblongata, ventral tegmental area, and pons. Notably, patients with MSA-C exhibited a remarkable decrease in cerebellar synaptic density, whereas patients with MSA-P demonstrated significant synaptic loss within the posterior putamen. Compared with patients with PD, the patients with MSA show a more pronounced reduction in synaptic density in infratentorial brain regions. VOI-based diagnosis significantly outperformed visual analysis in diagnosing and differentiating MSA and its subtypes. Synaptic density in primary and multiple secondary VOIs correlated significantly with motor scales in patients with MSA. INTERPRETATION Our study identified widespread synaptic density reductions in MSA, particularly in the basal ganglia and infratentorial region, suggesting [18F]SynVesT-1 PET as a potential biomarker for diagnosing and evaluating the disease, and guiding synaptic restoration trials. ANN NEUROL 2025;97:879-893.
Collapse
Affiliation(s)
- Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, People's Republic of China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - You Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhiyou He
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhichao Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhengqun Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jinhui Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xuan Guo
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Riwei Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, People's Republic of China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biological Nanotechnology, Changsha, People's Republic of China
| |
Collapse
|
3
|
Li X, Bi L, Zhang S, Xu Q, Xia W, Tao Y, Wu S, Li Y, Le W, Kang W, Li D, Sun B, Liu C. Single-Molecule Insight Into α-Synuclein Fibril Structure and Mechanics Modulated by Chemical Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416721. [PMID: 39951335 PMCID: PMC11984887 DOI: 10.1002/advs.202416721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 04/12/2025]
Abstract
α-Syn fibrils, a key pathological hallmark of Parkinson's disease, is closely associated with disease initiation and progression. Several small molecules are found to bind or dissolve α-syn fibrils, offering potential therapeutic applications. Here, an innovative optical tweezers-based, fluorescence-combined approach is developed to probe the mechanical characteristics of α-syn fibrils at the single-molecule level. When subjected to axial stretching, local deformation within α-syn fibrils appeared at forces above 50 pN. These structural alternations occurred stepwise and are irreversible, suggesting unfolding of individual α-syn molecules or subdomains. Additionally, α-syn fibrils exhibits high heterogeneity in lateral disruption, with rupture force ranging from 50 to 500 pN. The impact of different compounds on the structure and mechanical features of α-syn fibrils is further examined. Notably, epigallocatechin gallate (EGCG) generally attenuates the rupture force of fibrils by wedging into the N-terminal polar groove and induces fibril dissociation. Conversely, copper chlorophyllin A (CCA) attaches to four different sites wrapping around the fibril core, reinforcing the stability of the fibril against rupture forces. The work offers an effective method for characterizing single-fibril properties and bridges compound-induced structural alternations with mechanical response. These insights are valuable for understanding amyloid fibril mechanics and their regulation by small molecules.
Collapse
Affiliation(s)
- Xiang Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shenqing Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Youqi Tao
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Shaojuan Wu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yanan Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Weidong Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu HospitalShanghai201318China
| | - Wenyan Kang
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dan Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
- Shanghai Academy of Natural Sciences (SANS)Fudan UniversityShanghai200433China
| |
Collapse
|
4
|
Sidow NO, Ibrahim AA, Ibrahim IG, Hassan MS, Mohamed SA. A challenging case presentation of multiple system atrophy cerebellar type: A rare case report from Somalia. Radiol Case Rep 2024; 19:6183-6186. [PMID: 39376957 PMCID: PMC11456811 DOI: 10.1016/j.radcr.2024.08.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Multiple system atrophy is a rare and quickly progressing neurological condition characterized by autonomic failure, parkinsonism, or cerebellar ataxia. It is classified into two subtypes: MSA with predominant parkinsonism (MSA-P) and MSA with predominant cerebellar ataxia (MSA-C). We are presenting here a 54-year-old male with parkinsonism, ataxia, and dysarthria. He was diagnosed with parkinson disease and was given a maximum dose of levodopa but has not responded. After a close neurological evaluation with magnetic resonance imaging of the brain, which shows atrophy of the cerebellum and a brainstem with a hot cross bun sign of the pons, suggestive of multiple system atrophy, he was diagnosed with multiple system atrophy cerebellar type, which is the first time to have this diagnosis in Somalia, which is a low-resource country.
Collapse
Affiliation(s)
- Nor Osman Sidow
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
- Faculty of Medicine and Surgery, Jazeera Univesity, Mogadishu, Somalia
| | - Abdiwahid Ahmed Ibrahim
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Ismail Gedi Ibrahim
- Department of Radiology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Mohamed Sheikh Hassan
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| | - Said Abdi Mohamed
- Department of Neurology, Mogadishu-Somalia Turkey Recep Tayyip Erdoğan Training and Research Hospital, Mogadishu, Somalia
| |
Collapse
|
5
|
Izydorczyk MB, Kalef-Ezra E, Horner DW, Zheng X, Holmes N, Toffoli M, Sahin ZG, Han Y, Mehta HH, Muzny DM, Ameur A, Sedlazeck FJ, Proukakis C. Single cell long read whole genome sequencing reveals somatic transposon activity in human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.11.24317113. [PMID: 39606404 PMCID: PMC11601780 DOI: 10.1101/2024.11.11.24317113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The advent of single cell DNA sequencing revealed astonishing dynamics of genomic variability, but failed at characterizing smaller to mid size variants that on the germline level have a profound impact. In this work we discover novel dynamics in three brains utilizing single cell long-read sequencing. This provides key insights into the dynamic of the genomes of individual cells and further highlights brain specific activity of transposable elements.
Collapse
Affiliation(s)
- Michal B Izydorczyk
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ester Kalef-Ezra
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Dominic W Horner
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xinchang Zheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
| | - Zeliha Gozde Sahin
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Heer H Mehta
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Royal Free Campus, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
6
|
Tamaš O, Kostić M, Marić G, Milovanović A, Janković M, Salak Ðokić B, Pekmezović T, Dragašević-Mišković N. Neuropsychiatric Manifestations of Degenerative Cerebellar Ataxia. Brain Sci 2024; 14:1003. [PMID: 39452017 PMCID: PMC11506162 DOI: 10.3390/brainsci14101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Degenerative cerebellar ataxias (DCA) present a group of complex neurological disorders primarily affecting the cerebellum and its pathways. Classic manifestations include motor symptoms of cerebellar ataxia. However, emerging evidence suggests that the cerebellum also plays a crucial role in various cognitive and emotional processes. The objective was to assess the psychiatric profile of a heterogeneous group of patients with degenerative cerebellar ataxia. METHODS Our sample comprised 107 participants diagnosed with cerebellar degenerative ataxia. All patients were clinically evaluated using SARA, INAS, and different neuropsychiatric scales (ACE-R, HAMA, HAMD, AS, and GAF). RESULTS The majority of patients had autosomal dominant ataxia (38.3%) followed by sporadic ataxia (32.7%) with an average age at the moment of diagnosis of 35.3 ± 16.23 years, while the mean duration of disease at the study beginning was 12.1 ± 9.9 years. Psychiatric disorders were present in 40 patients (37.4%), with dysthymia (14.2%), major depressive disorder (9.4%), and MDD with melancholic features (7.6%). The presence of MDD with melancholic features was statistically significantly correlated with a lower ACE-R total score (r = -0.223; p = 0.022), while dysthymia was statistically significantly associated with a shorter duration of the disease (r = -0.226; p = 0.020) and older age (r = 0.197; p = 0.043). Statistically significant differences were observed between MSA-C patients and those with sporadic ataxia (HDRS p < 0.001, HARS p < 0.001, Apathy Scale p = 0.003, and GAF p = 0.004). CONCLUSIONS Based on our findings, we can conclude that the degree of motor deficit has a significant impact on the development of psychiatric disorders, including depression, anxiety, and apathy. However, it is not the only factor, and the impact also depends on the type of DCA.
Collapse
Affiliation(s)
- Olivera Tamaš
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (M.J.); (B.S.Đ.); (N.D.-M.)
| | - Milutin Kostić
- Institute of Mental Health, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gorica Marić
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (G.M.); (T.P.)
| | - Andona Milovanović
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (M.J.); (B.S.Đ.); (N.D.-M.)
| | - Mladen Janković
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (M.J.); (B.S.Đ.); (N.D.-M.)
| | - Biljana Salak Ðokić
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (M.J.); (B.S.Đ.); (N.D.-M.)
| | - Tatjana Pekmezović
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (G.M.); (T.P.)
| | - Nataša Dragašević-Mišković
- Neurology Clinic, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (M.J.); (B.S.Đ.); (N.D.-M.)
| |
Collapse
|
7
|
Quattrone A, Zappia M, Quattrone A. Simple biomarkers to distinguish Parkinson's disease from its mimics in clinical practice: a comprehensive review and future directions. Front Neurol 2024; 15:1460576. [PMID: 39364423 PMCID: PMC11446779 DOI: 10.3389/fneur.2024.1460576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
In the last few years, a plethora of biomarkers have been proposed for the differentiation of Parkinson's disease (PD) from its mimics. Most of them consist of complex measures, often based on expensive technology, not easily employed outside research centers. MRI measures have been widely used to differentiate between PD and other parkinsonism. However, these measurements were often performed manually on small brain areas in small patient cohorts with intra- and inter-rater variability. The aim of the current review is to provide a comprehensive and updated overview of the literature on biomarkers commonly used to differentiate PD from its mimics (including parkinsonism and tremor syndromes), focusing on parameters derived by simple qualitative or quantitative measurements that can be used in routine practice. Several electrophysiological, sonographic and MRI biomarkers have shown promising results, including the blink-reflex recovery cycle, tremor analysis, sonographic or MRI assessment of substantia nigra, and several qualitative MRI signs or simple linear measures to be directly performed on MR images. The most significant issue is that most studies have been conducted on small patient cohorts from a single center, with limited reproducibility of the findings. Future studies should be carried out on larger international cohorts of patients to ensure generalizability. Moreover, research on simple biomarkers should seek measurements to differentiate patients with different diseases but similar clinical phenotypes, distinguish subtypes of the same disease, assess disease progression, and correlate biomarkers with pathological data. An even more important goal would be to predict the disease in the preclinical phase.
Collapse
Affiliation(s)
- Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
8
|
Sian-Hulsmann J, Riederer P. The 'α-synucleinopathy syndicate': multiple system atrophy and Parkinson's disease. J Neural Transm (Vienna) 2024; 131:585-595. [PMID: 37227594 PMCID: PMC11192696 DOI: 10.1007/s00702-023-02653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Multiple System Atrophy (MSA) and Parkinson's diseases (PD) are elite members of the α-synucleinopathy organization. Aberrant accumulations of the protein α-synuclein characterize them. A plethora of evidence indicates the involvement of these rogue inclusions in a cascade of events that disturb cellular homeostasis resulting in neuronal dysfunction. These two neurodegenerative diseases share many features both clinically and pathologically. Cytotoxic processes commonly induced by reactive free radical species have been associated with oxidative stress and neuroinflammation, frequently reported in both diseases. However, it appears they have characteristic and distinct α-synuclein inclusions. It is glial cytoplasmic inclusions in the case of MSA while Lewy bodies manifest in PD. This is probably related to the etiology of the illness. At present, precise mechanism(s) underlying the characteristic configuration of neurodegeneration are unclear. Furthermore, the "prion-like" transmission from cell to cell prompts the suggestion that perhaps these α-synucleinopathies are prion-like diseases. The possibility of some underlying genetic foul play remains controversial. But as major culprits of pathological processes or even single triggers of PD and MSA are the same-like oxidative stress, iron-induced pathology, mitochondriopathy, loss of respiratory activity, loss of proteasomal function, microglial activation, neuroinflammation-it is not farfetched to assume that in sporadic PD and also in MSA a variety of combinations of susceptibility genes contribute to the regional specificity of pathological onset. These players of pathology, as mentioned above, in a synergistic combination, are responsible for driving the progression of PD, MSA and other neurodegenerative disorders. Elucidating the triggers and progression factors is vital for advocating disease modification or halting its progression in both, MSA and PD.
Collapse
Affiliation(s)
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
9
|
Ye L, Greten S, Wegner F, Doll-Lee J, Krey L, Heine J, Gandor F, Vogel A, Berger L, Gruber D, Levin J, Katzdobler S, Peters O, Dashti E, Priller J, Spruth EJ, Kühn AA, Krause P, Spottke A, Schneider A, Beyle A, Kimmich O, Donix M, Haussmann R, Brandt M, Dinter E, Wiltfang J, Schott BH, Zerr I, Bähr M, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Weidinger E, Düzel E, Glanz W, Teipel S, Kilimann I, Wurster I, Brockmann K, Hoffmann DC, Klockgether T, Krause O, Heck J, Höglinger GU, Klietz M. The comorbidity profiles and medication issues of patients with multiple system atrophy: a systematic cross-sectional analysis. J Neurol 2024; 271:2639-2648. [PMID: 38353748 PMCID: PMC11055732 DOI: 10.1007/s00415-024-12207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Multiple system atrophy (MSA) is a complex and fatal neurodegenerative movement disorder. Understanding the comorbidities and drug therapy is crucial for MSA patients' safety and management. OBJECTIVES To investigate the pattern of comorbidities and aspects of drug therapy in MSA patients. METHODS Cross-sectional data of MSA patients according to Gilman et al. (2008) diagnostic criteria and control patients without neurodegenerative diseases (non-ND) were collected from German, multicenter cohorts. The prevalence of comorbidities according to WHO ICD-10 classification and drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were identified using AiDKlinik®. RESULTS The analysis included 254 MSA and 363 age- and sex-matched non-ND control patients. MSA patients exhibited a significantly higher burden of comorbidities, in particular diseases of the genitourinary system. Also, more medications were prescribed MSA patients, resulting in a higher prevalence of polypharmacy. Importantly, the risk of potential drug-drug interactions, including severe interactions and contraindicated combinations, was elevated in MSA patients. When comparing MSA-P and MSA-C subtypes, MSA-P patients suffered more frequently from diseases of the genitourinary system and diseases of the musculoskeletal system and connective tissue. CONCLUSIONS MSA patients face a substantial burden of comorbidities, notably in the genitourinary system. This, coupled with increased polypharmacy and potential drug interactions, highlights the complexity of managing MSA patients. Clinicians should carefully consider these factors when devising treatment strategies for MSA patients.
Collapse
Affiliation(s)
- Lan Ye
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stephan Greten
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Doll-Lee
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lea Krey
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanne Heine
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Florin Gandor
- Neurologisches Fachkrankenhaus für Bewegungsstörungen/Parkinson, Kliniken Beelitz, 14547, Beelitz-Heilstätten, Germany
| | - Annemarie Vogel
- Neurologisches Fachkrankenhaus für Bewegungsstörungen/Parkinson, Kliniken Beelitz, 14547, Beelitz-Heilstätten, Germany
| | - Luise Berger
- Neurologisches Fachkrankenhaus für Bewegungsstörungen/Parkinson, Kliniken Beelitz, 14547, Beelitz-Heilstätten, Germany
| | - Doreen Gruber
- Neurologisches Fachkrankenhaus für Bewegungsstörungen/Parkinson, Kliniken Beelitz, 14547, Beelitz-Heilstätten, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Eman Dashti
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Charité, Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Charité, Berlin, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Aline Beyle
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Okka Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Markus Donix
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Haussmann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Dinter
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Mathias Bähr
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University, Magdeburg, Germany
- Clinic for Neurology, Medical Faculty, University Hospital Magdeburg, Magdeburg, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Isabel Wurster
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Olaf Krause
- DIAKOVERE Henriettenstift and Department of General Medicine and Palliative Care, Center for Medicine of the Elderly, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Center for Geriatric Medicine, Hospital DIAKOVERE Henriettenstift, Schwe-Mannstrasse 19, 30559, Hannover, Germany
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Günter U Höglinger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
10
|
Sidoroff V, Carbone F, Ellmerer P, Bair S, Hoffmann A, Maran T, Krismer F, Mahlknecht P, Mair K, Raccagni C, Ndayisaba JP, Seppi K, Wenning GK, Djamshidian A. Emotion Recognition in Multiple System Atrophy: An Exploratory Eye-Tracking Study. J Mov Disord 2024; 17:38-46. [PMID: 37748924 PMCID: PMC10846972 DOI: 10.14802/jmd.23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/25/2023] [Accepted: 09/24/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE Emotional processing is a core feature of social interactions and has been well studied in patients with idiopathic Parkinson's disease (PD), albeit with contradictory. RESULTS . However, these studies excluded patients with atypical parkinsonism, such as multiple system atrophy (MSA). The objective of this exploratory study was to provide better insights into emotion processing in patients with MSA using eye tracking data. METHODS We included 21 MSA patients, 15 PD patients and 19 matched controls in this study. Participants performed a dynamic and a static emotion recognition task, and gaze fixations were analyzed in different areas of interest. Participants underwent neuropsychological testing and assessment of depression and alexithymia. RESULTS MSA patients were less accurate in recognizing anger than controls (p = 0.02) and had overall fewer fixations than controls (p = 0.001). In the static task, MSA patients had fewer fixations (p < 0.001) and a longer time to first fixation (p = 0.026) on the eye region. Furthermore, MSA patients had a longer fixation duration overall than PD patients (p = 0.004) and longer fixations on the nose than controls (p = 0.005). Alexithymia scores were higher in MSA patients compared to controls (p = 0.038). CONCLUSION This study demonstrated impaired recognition of anger in MSA patients compared to HCs. Fewer and later fixations on the eyes along with a center bias suggest avoidance of eye contact, which may be a characteristic gaze behavior in MSA patients.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Federico Carbone
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Ellmerer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Bair
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Thomas Maran
- Department of Strategic Management & Leadership, University of Innsbruck, Innsbruck Austria
- Entrepreneurship and Innovation, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Mahlknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katherina Mair
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cecilia Raccagni
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neurology, Provincial Hospital of Bolzano Teaching Hospital of Paracelsus Medical Private University Bolzano-Bozen, Bolzano, Italy
| | | | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Krismer F, Péran P, Beliveau V, Seppi K, Arribarat G, Pavy-Le Traon A, Meissner WG, Foubert-Samier A, Fabbri M, Schocke MM, Gordon MF, Wenning GK, Poewe W, Rascol O, Scherfler C. Progressive Brain Atrophy in Multiple System Atrophy: A Longitudinal, Multicenter, Magnetic Resonance Imaging Study. Mov Disord 2024; 39:119-129. [PMID: 37933745 DOI: 10.1002/mds.29633] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/27/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE To determine the rates of brain atrophy progression in vivo in patients with multiple system atrophy (MSA). BACKGROUND Surrogate biomarkers of disease progression are a major unmet need in MSA. Small-scale longitudinal studies in patients with MSA using magnetic resonance imaging (MRI) to assess progression of brain atrophy have produced inconsistent results. In recent years, novel MRI post-processing methods have been developed enabling reliable quantification of brain atrophy in an automated fashion. METHODS Serial 3D-T1-weighted MRI assessments (baseline and after 1 year of follow-up) of 43 patients with MSA were analyzed and compared to a cohort of early-stage Parkinson's disease (PD) patients and healthy controls (HC). FreeSurfer's longitudinal analysis stream was used to determine the brain atrophy rates in an observer-independent fashion. RESULTS Mean ages at baseline were 64.4 ± 8.3, 60.0 ± 7.5, and 59.8 ± 9.2 years in MSA, PD patients and HC, respectively. A mean disease duration at baseline of 4.1 ± 2.5 years in MSA patients and 2.3 ± 1.4 years in PD patients was observed. Brain regions chiefly affected by MSA pathology showed progressive atrophy with annual rates of atrophy for the cerebellar cortex, cerebellar white matter, pons, and putamen of -4.24 ± 6.8%, -8.22 ± 8.8%, -4.67 ± 4.9%, and - 4.25 ± 4.9%, respectively. Similar to HC, atrophy rates in PD patients were minimal with values of -0.41% ± 1.8%, -1.47% ± 4.1%, -0.04% ± 1.8%, and -1.54% ± 2.2% for cerebellar cortex, cerebellar white matter, pons, and putamen, respectively. CONCLUSIONS Patients with MSA show significant brain volume loss over 12 months, and cerebellar, pontine, and putaminal volumes were the most sensitive to change in mid-stage disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Vincent Beliveau
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Germain Arribarat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Anne Pavy-Le Traon
- French Reference Center for MSA, Neurology Department, University Hospital of Toulouse and INSERM-Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, Toulouse, France
| | - Wassilios G Meissner
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, Bordeaux, France
- University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Alexandra Foubert-Samier
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, Bordeaux, France
- University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- INSERM, UMR1219, Bordeaux Population Health Research Center, University of Bordeaux, ISPED, Bordeaux, France
| | - Margherita Fabbri
- French Reference Center for MSA, Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN Network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| | - Michael M Schocke
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | | | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Olivier Rascol
- French Reference Center for MSA, Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN Network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| | - Christoph Scherfler
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Chen L, Mao L, Lu H, Liu P. Detecting ferroptosis and immune infiltration profiles in multiple system atrophy using postmortem brain tissue. Front Neurosci 2023; 17:1269996. [PMID: 38222105 PMCID: PMC10784378 DOI: 10.3389/fnins.2023.1269996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 01/16/2024] Open
Abstract
Background The importance of ferroptosis and the immune system has been mentioned in the pathogenesis of α-synucleinopathy. The α-synuclein-immunoreactive inclusions that primarily affect oligodendrocytes are the hallmark of multiple system atrophy (MSA). Limited evidence implicates that iron and immune responses are involved in the pathogenesis of MSA, which is associated with neurodegeneration and α-synuclein aggregation. Methods The RNA sequencing data were collected from the Gene Expression Omnibus database. MSA-C-related module genes were identified through weighted gene co-expression network analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict the potential molecular functions. The candidate ferroptosis-related genes associated with MSA-C were obtained using a machine-learning algorithm. CIBERSORT was used to estimate the compositional patterns of the 22 types of immune cells. Results The tissues for sequencing were extracted from postmortem cerebellar white matter tissues of 11 MSA-C patients and 47 healthy controls. The diagnostic ability of the six MSA-C-related ferroptosis-related genes in discriminating MSA-C from the healthy controls demonstrated a favorable diagnostic value, with the AUC ranging from 0.662 to 0.791. The proportion of CD8+ T cells in MSA-C was significantly higher than in the controls (P = 0.02). The proportion of NK cells resting in MSA-C was significantly higher than in the controls (P = 0.011). Conclusion Ferroptosis and T-cell infiltration may be important pathways of disease development in MSA-C, and targeting therapies for these pathways may be disease-modifying.
Collapse
Affiliation(s)
- Linxi Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
13
|
Wang Z, Mo J, Zhang J, Feng T, Zhang K. Surface-Based Neuroimaging Pattern of Multiple System Atrophy. Acad Radiol 2023; 30:2999-3009. [PMID: 37495425 DOI: 10.1016/j.acra.2023.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 07/28/2023]
Abstract
RATIONALE AND OBJECTIVES Overlapping parkinsonism, cerebellar ataxia, and pyramidal signs render challenges in the clinical diagnosis of multiple system atrophy (MSA). The neuroimaging pattern is valuable to understand its pathophysiology and improve its diagnostic effect. MATERIALS AND METHODS We retrospectively obtained magnetic resonance imaging and susceptibility-weighted imaging in patients with MSA (including parkinsonian type [MSA-P] and cerebellar type [MSA-C]), Parkinson's disease, and normal controls. We quantified neuroimaging features to identify the optimal threshold for diagnosis. Furthermore, we explore neuroimaging patterns of MSA by mapping the subcortical morphological alterations and constructing a diagnostic model. RESULTS Compared to controls, normalized putaminal volume significantly decreased in patients with MSA-P (P < .001) and normalized pontine volume significantly decreased in patients with MSA-C (P < .001). The Youden index of the threshold-based clinical prediction model was 0.871-0.928 in patients with MSA. The neuroimaging pattern in patients with MSA was jointly located in the lateral putamen, and the neuroimaging pattern prediction model achieved a classification accuracy of 83.9%-100%. CONCLUSION The quantitative neuroimaging features and surface-based morphologic anomalies represent the markers of MSA and open new avenues for personalized clinical diagnosis.
Collapse
Affiliation(s)
- Zhan Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.).
| |
Collapse
|
14
|
Andersen AM, Kaalund SS, Marner L, Salvesen L, Pakkenberg B, Olesen MV. Quantitative cellular changes in multiple system atrophy brains. Neuropathol Appl Neurobiol 2023; 49:e12941. [PMID: 37812040 DOI: 10.1111/nan.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.
Collapse
Affiliation(s)
- Alberte M Andersen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Sanne S Kaalund
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel V Olesen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
15
|
Maurer M, Lazaridis T. Transmembrane β-Barrel Models of α-Synuclein Oligomers. J Chem Inf Model 2023; 63:7171-7179. [PMID: 37963823 DOI: 10.1021/acs.jcim.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The aggregation of α-synuclein is implicated in a number of neurodegenerative diseases, such as Parkinson's and Multiple System Atrophy, but the role of these aggregates in disease development is not clear. One possible mechanism of cytotoxicity is the disturbance or permeabilization of cell membranes by certain types of oligomers. However, no high-resolution structure of such membrane-embedded complexes has ever been determined. Here we construct and evaluate putative transmembrane β-barrels formed by this protein. Examination of the α-synuclein sequence reveals two regions that could form membrane-embedded β-hairpins: 64-92 (the NAC), and 35-56, which harbors many familial Parkinson's mutations. The stability of β-barrels formed by these hairpins is examined first in implicit membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and hydrated for at least 10 μs. A 35-56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated for at least 10 μs. Possible implications of these findings for α-synuclein pathology are discussed.
Collapse
Affiliation(s)
- Manuela Maurer
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| |
Collapse
|
16
|
Eschlboeck S, Goebel G, Eckhardt C, Fanciulli A, Raccagni C, Boesch S, Djamshidian A, Heim B, Mahlknecht P, Mair K, Nachbauer W, Scherfler C, Stockner H, Poewe W, Seppi K, Kiechl S, Wenning G, Krismer F, and the EMSA‐SG NHS Investigators. Development and Validation of a Prognostic Model to Predict Overall Survival in Multiple System Atrophy. Mov Disord Clin Pract 2023; 10:1368-1376. [PMID: 37772304 PMCID: PMC10525072 DOI: 10.1002/mdc3.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 09/30/2023] Open
Abstract
Background Multiple system atrophy (MSA) is a devastating disease characterized by a variable combination of motor and autonomic symptoms. Previous studies identified numerous clinical factors to be associated with shorter survival. Objective To enable personalized patient counseling, we aimed at developing a risk model of survival based on baseline clinical symptoms. Methods MSA patients referred to the Movement Disorders Unit in Innsbruck, Austria, between 1999 and 2016 were retrospectively analyzed. Kaplan-Meier curves and multivariate Cox regression analysis with least absolute shrinkage and selection operator penalty for variable selection were performed to identify prognostic factors. A nomogram was developed to estimate the 7 years overall survival probability. The performance of the predictive model was validated and calibrated internally using bootstrap resampling and externally using data from the prospective European MSA Study Group Natural History Study. Results A total of 210 MSA patients were included in this analysis, of which 124 patients died. The median survival was 7 years. The following clinical variables were found to significantly affect overall survival and were included in the nomogram: age at symptom onset, falls within 3 years of onset, early autonomic failure including orthostatic hypotension and urogenital failure, and lacking levodopa response. The time-dependent area under curve for internal and external validation was >0.7 within the first 7 years of the disease course. The model was well calibrated showing good overlap between predicted and actual survival probability at 7 years. Conclusion The nomogram is a simple tool to predict survival on an individual basis and may help to improve counseling and treatment of MSA patients.
Collapse
Affiliation(s)
| | - Georg Goebel
- Department of Medical Statistics Informatics and Health EconomicsInnsbruck Medical UniversityInnsbruckAustria
| | - Christine Eckhardt
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
- Department of AnesthesiaInnsbruck Medical UniversityInnsbruckAustria
| | | | - Cecilia Raccagni
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
- Department of Neurology, Provincial Hospital of BolzanoTeaching hospital of Paracelsus Medical Private UniversityBolzano‐BozenItaly
| | - Sylvia Boesch
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Beatrice Heim
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Katherina Mair
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | | | | - Heike Stockner
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Werner Poewe
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Klaus Seppi
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
- Department of NeurologyProvincial Hospital of KufsteinKufsteinAustria
| | - Stefan Kiechl
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Gregor Wenning
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Florian Krismer
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | |
Collapse
|
17
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
18
|
Carceles-Cordon M, Weintraub D, Chen-Plotkin AS. Cognitive heterogeneity in Parkinson's disease: A mechanistic view. Neuron 2023; 111:1531-1546. [PMID: 37028431 PMCID: PMC10198897 DOI: 10.1016/j.neuron.2023.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023]
Abstract
Cognitive impairment occurs in most individuals with Parkinson's disease (PD), exacting a high toll on patients, their caregivers, and the healthcare system. In this review, we begin by summarizing the current clinical landscape surrounding cognition in PD. We then discuss how cognitive impairment and dementia may develop in PD based on the spread of the pathological protein alpha-synuclein (aSyn) from neurons in brainstem regions to those in the cortical regions of the brain responsible for higher cognitive functions, as first proposed in the Braak hypothesis. We appraise the Braak hypothesis from molecular (conformations of aSyn), cell biological (cell-to-cell spread of pathological aSyn), and organ-level (region-to-region spread of aSyn pathology at the whole brain level) viewpoints. Finally, we argue that individual host factors may be the most poorly understood aspect of this pathological process, accounting for substantial heterogeneity in the pattern and pace of cognitive decline in PD.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
20
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14:176. [PMID: 36859484 PMCID: PMC9977911 DOI: 10.1038/s41419-023-05672-9] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy. .,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.
| | - Alessandro Mechelli
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.,Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
21
|
Martin NB, Koga S, Appleby BS, Sekiya H, Dickson D. Creutzfeldt-Jakob Disease Misdiagnosed as Multiple System Atrophy. Mov Disord Clin Pract 2023; 10:496-500. [PMID: 36949796 PMCID: PMC10026315 DOI: 10.1002/mdc3.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Background Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar syndromes. Although consensus criteria have been widely used to diagnose MSA, accurate clinical diagnosis remains challenging. Other neurodegenerative disorders, such as Lewy body disease, can mimic MSA. Objectives We described clinical and neuropathologic findings of two patients with Creutzfeldt-Jakob disease (CJD) who had antemortem clinical diagnoses of MSA. Methods The brain bank for neurodegenerative disorders was queried for cases with a clinical diagnosis of MSA, but neuropathologic findings of CJD. Results Case 1 was a 55-year-old man with a 6-month history of orthostatic hypotension, parkinsonism, cerebellar ataxia, bradyphrenia, and memory impairment. Case 2 was a 65-year-old man who had a 5-year history of cerebellar ataxia, parkinsonism, and cognitive impairment, as well as a 7-year history of dream enactment behavior. Neither case had characteristic α-synuclein immunoreactive neuronal or glial inclusions typical of MSA. Instead, they had spongiform encephalopathy with neuronal loss and gliosis with prion protein-immunoreactive kuru-like plaques. Genetic analyses in case 1 had wild-type PRNP, whereas case 2 revealed a 4-octapeptide repeat insertion in PRNP. Conclusions Even when clinical features suggest MSA, CJD should also be considered if the progression is rapid or the disease course is atypical, such as the absence of autonomic dysfunction for an extended period.
Collapse
Affiliation(s)
| | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Brian S. Appleby
- National Prion Disease Pathology Surveillance CenterClevelandOhioUSA
- Departments of Neurology, Psychiatry, and PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Hiroaki Sekiya
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | |
Collapse
|
22
|
Mikami T, Kobayashi T, Hasebe D, Ohshima Y, Takahashi T, Shimohata T. Oral appliance therapy for obstructive sleep apnea in multiple system atrophy with floppy epiglottis: a case series of three patients. Sleep Breath 2023; 27:213-219. [PMID: 35352265 DOI: 10.1007/s11325-022-02607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE A recent study demonstrated that continuous positive airway pressure (CPAP) may exacerbate obstructive sleep apnea (OSA) in patients with multiple system atrophy (MSA) and a floppy epiglottis (FE) as the CPAP promotes downward displacement of the epiglottis into the laryngeal inlet. In this case series, we examined the effectiveness of an oral appliance (OA) for treating OSA in three patients with MSA and an FE. METHODS Patients with MSA were demonstrated to have an FE on fiberoptic laryngoscopy under sedation using intravenous propofol. The therapeutic intervention was fitting an OA. Polysomnography (PSG) was performed subsequently with the OA in place. RESULTS In three patients with MSA, some parameters used to assess the severity of OSA improved with an OA. Both apnea-hypopnea index (AHI) and arousal index (ArI) decreased while wearing the OA in two cases while in the third case, apnea index (AI) and cumulative time at peripheral oxygen saturation (SpO2) below 90% (CT90) decreased, but AHI and ArI increased. The only side effects were transient TMJ discomfort, masseter muscle pain, and tooth discomfort. CONCLUSION OA therapy using a two-piece type mandibular advancement device (MAD) may be a useful treatment intervention for patients with OSA who have MSA and FE.
Collapse
Affiliation(s)
- Toshihiko Mikami
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-Dori, Chuo-ku, Niigata, 951-8514, Japan.
- Department of Dentistry and Oral Surgery, Niigata Medical Center, Niigata, Japan.
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-Dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Daichi Hasebe
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-Dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuya Takahashi
- Department of Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
23
|
Role of Oligodendrocyte Lineage Cells in Multiple System Atrophy. Cells 2023; 12:cells12050739. [PMID: 36899876 PMCID: PMC10001068 DOI: 10.3390/cells12050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Multiple system atrophy (MSA) is a debilitating movement disorder with unknown etiology. Patients present characteristic parkinsonism and/or cerebellar dysfunction in the clinical phase, resulting from progressive deterioration in the nigrostriatal and olivopontocerebellar regions. MSA patients have a prodromal phase subsequent to the insidious onset of neuropathology. Therefore, understanding the early pathological events is important in determining the pathogenesis, which will assist with developing disease-modifying therapy. Although the definite diagnosis of MSA relies on the positive post-mortem finding of oligodendroglial inclusions composed of α-synuclein, only recently has MSA been verified as an oligodendrogliopathy with secondary neuronal degeneration. We review up-to-date knowledge of human oligodendrocyte lineage cells and their association with α-synuclein, and discuss the postulated mechanisms of how oligodendrogliopathy develops, oligodendrocyte progenitor cells as the potential origins of the toxic seeds of α-synuclein, and the possible networks through which oligodendrogliopathy induces neuronal loss. Our insights will shed new light on the research directions for future MSA studies.
Collapse
|
24
|
Oligodendrocytes Prune Axons Containing α-Synuclein Aggregates In Vivo: Lewy Neurites as Precursors of Glial Cytoplasmic Inclusions in Multiple System Atrophy? Biomolecules 2023; 13:biom13020269. [PMID: 36830639 PMCID: PMC9953613 DOI: 10.3390/biom13020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson's disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs). However, the origin of GCIs remains enigmatic: (i) mature OLs do not express α-Syn, precluding the seeding and the buildup of inclusions and (ii) the artificial overexpression of α-Syn in OLs of transgenic mice results in a burden of soluble phosphorylated α-Syn but fails to form α-Syn fibrils. In contrast, mass spectrometry of α-Syn fibrillar aggregates from MSA patients points to the neuronal origin of the proteins intimately associated with the fibrils within the GCIs. This suggests that GCIs are preassembled in neurons and only secondarily incorporated into OLs. Interestingly, we recently isolated a synthetic human α-Syn fibril strain (1B fibrils) capable of seeding a type of neuronal inclusion observed early and specifically during MSA. Our goal was thus to investigate whether the neuronal α-Syn pathology seeded by 1B fibrils could eventually be transmitted to OLs to form GCIs in vivo. After confirming that mature OLs did not express α-Syn to detectable levels in the adult mouse brain, a series of mice received unilateral intra-striatal injections of 1B fibrils. The resulting α-Syn pathology was visualized using phospho-S129 α-Syn immunoreactivity (pSyn). We found that even though 1B fibrils were injected unilaterally, many pSyn-positive neuronal somas were present in layer V of the contralateral perirhinal cortex after 6 weeks. This suggested a fast retrograde spread of the pathology along the axons of crossing cortico-striatal neurons. We thus scrutinized the posterior limb of the anterior commissure, i.e., the myelinated interhemispheric tract containing the axons of these neurons: we indeed observed numerous pSyn-positive linear Lewy Neurites oriented parallel to the commissural axis, corresponding to axonal segments filled with aggregated α-Syn, with no obvious signs of OL α-Syn pathology at this stage. After 6 months however, the commissural Lewy neurites were no longer parallel but fragmented, curled up, sometimes squeezed in-between two consecutive OLs in interfascicular strands, or even engulfed inside OL perikarya, thus forming GCIs. We conclude that the 1B fibril strain can rapidly induce an α-Syn pathology typical of MSA in mice, in which the appearance of GCIs results from the pruning of diseased axonal segments containing aggregated α-Syn.
Collapse
|
25
|
Bao W, Li P, Yang Y, Chen K, Liu J. Dynamic postural balance indices can help discriminate between patients with multiple system atrophy and Parkinson's disease. Front Neurol 2023; 13:1089439. [PMID: 36698891 PMCID: PMC9868697 DOI: 10.3389/fneur.2022.1089439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background Patients with Parkinson's disease (PD) and those with multiple system atrophy (MSA) show similar symptoms but have different clinical treatments. It will be helpful to discriminate between these two kinds of patients at an early or middle stage. The purpose of this study is to highlight the differences in posturographic characterization between patients with PD and those with MSA during quiet standing and perturbed standing. Methods A total of clinically diagnosed 42 patients with PD and 32 patients with MSA participated in the experiment. Patients were asked to first stand on a static balance force platform and then on a dynamic balance (medial-lateral rocker) force platform to measure the center of pressure (COP) trajectory during an eyes-open (EO) state. The posturographic parameters were obtained under the two standing conditions for statistical analysis. Results Four posturographic variables were calculated and analyzed, namely, the standard deviation of COP position (SD), sway path of COP position (SP), an elliptical area covering the 95% COP position trajectory (EA), sway path of COP position (SP), and integral area of the power spectral density at 0-0.5 Hz frequency band (PSD). Except for variable EA, the other three variables are all in the medial-lateral (ML) direction. In the static balance experiment, there were no significant differences between the four variables between patients with PD and those with MSA. However, in the dynamic balance experiment, the obtained four variables all presented significant differences between patients with PD and those with MSA. Conclusion The dynamic posturographic variables with significant differences between patients with PD and those with MSA imply that patients with MSA have worse postural control ability in the medial-lateral (ML) direction compared to patients with PD. The obtained dynamic indices may help supplemental clinical evaluation to discriminate between patients with MSA and those with PD.
Collapse
Affiliation(s)
- Wei Bao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Puyu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Kai Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China,*Correspondence: Kai Chen ✉
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Jun Liu ✉
| |
Collapse
|
26
|
Torre-Muruzabal T, Van der Perren A, Coens A, Gelders G, Janer AB, Camacho-Garcia S, Klingstedt T, Nilsson P, Stefanova N, Melki R, Baekelandt V, Peelaerts W. Host oligodendrogliopathy and α-synuclein strains dictate disease severity in multiple system atrophy. Brain 2023; 146:237-251. [PMID: 35170728 DOI: 10.1093/brain/awac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple system atrophy is a progressive neurodegenerative disease with prominent autonomic and motor features. During early stages, different subtypes of the disease are distinguished by their predominant parkinsonian or cerebellar symptoms, reflecting its heterogeneous nature. The pathognomonic feature of multiple system atrophy is the presence of α-synuclein (αSyn) protein deposits in oligodendroglial cells. αSyn can assemble in specific cellular or disease environments and form αSyn strains with unique structural features, but the ability of αSyn strains to propagate in oligodendrocytes remains elusive. Recently, it was shown that αSyn strains with related conformations exist in the brains of patients. Here, we investigated whether different αSyn strains can influence multiple system atrophy progression in a strain-dependent manner. To this aim, we injected two recombinant αSyn strains (fibrils and ribbons) in multiple system atrophy transgenic mice and found that they determined disease severity in multiple system atrophy via host-restricted and cell-specific pathology in vivo. αSyn strains significantly impact disease progression in a strain-dependent way via oligodendroglial, neurotoxic and immune-related mechanisms. Neurodegeneration and brain atrophy were accompanied by unique microglial and astroglial responses and the recruitment of central and peripheral immune cells. The differential activation of microglial cells correlated with the structural features of αSyn strains both in vitro and in vivo. Spectral analysis showed that ribbons propagated oligodendroglial inclusions that were structurally distinct from those of fibrils, with resemblance to oligodendroglial inclusions, in the brains of patients with multiple system atrophy. This study, therefore, shows that the multiple system atrophy phenotype is governed by both the nature of the αSyn strain and the host environment and that by injecting αSyn strains into an animal model of the disease, a more comprehensive phenotype can be established.
Collapse
Affiliation(s)
- Teresa Torre-Muruzabal
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Anke Van der Perren
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Audrey Coens
- Institut François Jacob (MIRCen), CEA, and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Géraldine Gelders
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Anna Barber Janer
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Sara Camacho-Garcia
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Peter Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronald Melki
- Institut François Jacob (MIRCen), CEA, and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Wouter Peelaerts
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| |
Collapse
|
27
|
Abstract
BACKGROUND Multiple system atrophy (MSA) is a rare Parkinson-plus syndrome with rapid progression and a high symptom burden. The experience of caregivers of people with MSA has not been closely examined. We therefore sought to document the impact of MSA on caregivers using a mixed methods approach. METHODS Patients and caregivers were recruited from a movement disorders program in Edmonton, Canada. Participants completed the following survey instruments based on their own or their loved one's symptoms: 36-Item Short-Form Health Survey (SF-36), Multiple System Atrophy health-related Quality of Life scale (MSA-QoL), and Hospital Anxiety and Depression Scale (HADS). Caregivers also completed the Zarit Burden Interview and HADS based on their own experience. Qualitative data were obtained through semi-structured interviews. RESULTS Nine people with MSA (PwMSA) (age range: 48-78 years) and 11 caregivers (49-76 years) participated. All completed surveys; 7 PwMSA and 10 caregivers were interviewed. Eight PwMSA had the parkinsonian type of MSA (MSA-P) and one a mixed type. Caregivers had on average mild-moderate caregiver burden and mild anxiety. Caregiver burden and anxiety were correlated. Qualitative subthemes under the caregiving theme included keeping the patient safe, caregivers' own health, and communication symptoms cause frustration. The rapid progression of illness was bewildering to caregivers and increased their workload. Public home care services were invaluable to caregivers' maintaining their loved ones at home. Caregivers were inventive in finding sources of hope and quality of life for their loved ones. CONCLUSION Publicly funded home care was essential for caregivers of PwMSA in this study. Caregiver support is needed to provide this unrecognized workforce with information and resources to face this challenging condition.
Collapse
|
28
|
Mavroeidi P, Arvanitaki F, Vetsi M, Becker S, Vlachakis D, Jensen PH, Stefanis L, Xilouri M. Autophagy mediates the clearance of oligodendroglial SNCA/alpha-synuclein and TPPP/p25A in multiple system atrophy models. Autophagy 2022; 18:2104-2133. [PMID: 35000546 PMCID: PMC9466620 DOI: 10.1080/15548627.2021.2016256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Accumulation of the neuronal protein SNCA/alpha-synuclein and of the oligodendroglial phosphoprotein TPPP/p25A within the glial cytoplasmic inclusions (GCIs) represents the key histophathological hallmark of multiple system atrophy (MSA). Even though the levels/distribution of both oligodendroglial SNCA and TPPP/p25A proteins are critical for disease pathogenesis, the proteolytic mechanisms involved in their turnover in health and disease remain poorly understood. Herein, by pharmacological and molecular modulation of the autophagy-lysosome pathway (ALP) and the proteasome we demonstrate that the endogenous oligodendroglial SNCA and TPPP/p25A are degraded mainly by the ALP in murine primary oligodendrocytes and oligodendroglial cell lines under basal conditions. We also identify a KFERQ-like motif in the TPPP/p25A sequence that enables its effective degradation via chaperone-mediated autophagy (CMA) in an in vitro system of rat brain lysosomes. Furthermore, in a MSA-like setting established by addition of human recombinant SNCA pre-formed fibrils (PFFs) as seeds of pathological SNCA, we thoroughly characterize the contribution of CMA and macroautophagy in particular, in the removal of the exogenously added and the seeded oligodendroglial SNCA pathological assemblies. We also show that PFF treatment impairs autophagic flux and that TPPP/p25A exerts an inhibitory effect on macroautophagy, while at the same time CMA is upregulated to remove the pathological SNCA species formed within oligodendrocytes. Finally, augmentation of CMA or macroautophagy accelerates the removal of the engendered pathological SNCA conformations further suggesting that autophagy targeting may represent a successful approach for the clearance of pathological SNCA and/or TPPP/p25A in the context of MSA.Abbreviations: 3MA: 3-methyladenine; ACTB: actin, beta; ALP: autophagy-lysosome pathway; ATG5: autophagy related 5; AR7: atypical retinoid 7; CMA: chaperone-mediated autophagy; CMV: cytomegalovirus; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; Epox: epoxomicin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCIs: glial cytoplasmic inclusions; GFP: green fluorescent protein; HMW: high molecular weight; h: hours; HSPA8/HSC70: heat shock protein 8; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mcherry: monomeric cherry; MFI: mean fluorescence intensity; mRFP: monomeric red fluorescent protein; MSA: multiple system atrophy; OLN: oligodendrocytes; OPCs: oligodendroglial progenitor cells; PBS: phosphate-buffered saline; PC12: pheochromocytoma cell line; PD: Parkinson disease; PFFs: pre-formed fibrils; PIs: protease inhibitors; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; Rap: rapamycin; RFP: red fluorescent protein; Scr: scrambled; SDS: sodium dodecyl sulfate; SE: standard error; siRNAs: small interfering RNAs; SNCA: synuclein, alpha; SQSTM1: sequestosome 1; TPPP: tubulin polymerization promoting protein; TUBA: tubulin, alpha; UPS: ubiquitin-proteasome system; WT: wild type.
Collapse
Affiliation(s)
- Panagiota Mavroeidi
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fedra Arvanitaki
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Vetsi
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dimitrios Vlachakis
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Leonidas Stefanis
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,1st Department of Neurology, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,CONTACT Maria Xilouri Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (Brfaa), 4 Soranou Efesiou Street, Athens11527, Greece
| |
Collapse
|
29
|
Li J, Mei S, Zhang X, Wang Y, Jia X, Liu J, Xu E, Mao W, Zhang Y. Case report: Combined therapy of bilateral subthalamic nucleus deep brain stimulation and spinal cord stimulation significantly improves motor function in a patient with multiple system atrophy with predominant parkinsonism. Front Neurosci 2022; 16:929273. [PMID: 35979336 PMCID: PMC9376352 DOI: 10.3389/fnins.2022.929273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple system atrophy with predominant parkinsonism (MSA-P) is a highly incapacitating disease with a short life expectancy and symptomatic therapy is still limited. In this report, we presented the case of a 65-year-old woman with a 3-year history of severe rigidity, bradykinesia, and gait dysfunction alongside severe freezing of gait diagnosed with MSA-P. She underwent combined therapy of bilateral subthalamic nucleus deep brain stimulation (DBS) and low-thoracic spinal cord stimulation (SCS). The double-blind evaluation of the Movement Disorder Society Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III and 7-m Timed Up and Go at follow-ups showed her cardinal parkinsonian symptoms benefit significantly from DBS stimulation, while the improvement of SCS was mainly embodied in lower-limb symptoms. The combined stimulation achieved a better improvement of motor function than either DBS or SCS stimulation alone. Most notably, the improvement of lower-limb symptoms was significantly enhanced by the combined stimulation.
Collapse
Affiliation(s)
- Jiping Li
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunpeng Wang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Jia
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinlong Liu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Erhe Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuqing Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Bagchi AD. Multiple System Atrophy. J Nurse Pract 2022. [DOI: 10.1016/j.nurpra.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Kühnel L, Raket LL, Åström DO, Berger A, Hansen IH, Krismer F, Wenning GK, Seppi K, Poewe W, Molinuevo J, the EMSA‐SG Natural History Study Investigators. Disease Progression in Multiple System Atrophy-Novel Modeling Framework and Predictive Factors. Mov Disord 2022; 37:1719-1727. [PMID: 35668573 PMCID: PMC9540561 DOI: 10.1002/mds.29077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a rare and aggressive neurodegenerative disease that typically leads to death 6 to 10 years after symptom onset. The rapid evolution renders it crucial to understand the general disease progression and factors affecting the disease course. OBJECTIVES The aims of this study were to develop a novel disease-progression model to estimate a population-level MSA progression trajectory and predict patient-specific continuous disease stages describing the degree of progress into the disease. METHODS The disease-progression model estimated a population-level progression trajectory of subscales of the Unified MSA Rating Scale and the Unified Parkinson's Disease Rating Scale using patients in the European MSA natural history study. The predicted disease continuum was validated via multiple analyses based on reported anchor points, and the effect of MSA subtype on the rate of disease progression was evaluated. RESULTS The predicted disease continuum spanned approximately 6 years, with an estimated average duration of 51 months for a patient with global disability score 0 to reach the highest level of 4. The predicted continuous disease stages were shown to be correlated with time of symptom onset and predictive of survival time. MSA motor subtype was found to significantly affect disease progression, with MSA-parkinsonian (MSA-P) type patients having an accelerated rate of progression. CONCLUSIONS The proposed modeling framework introduces a new method of analyzing and interpreting the progression of MSA. It can provide new insights and opportunities for investigating covariate effects on the rate of progression and provide well-founded predictions of patient-level future progressions. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Line Kühnel
- H. Lundbeck A/SCopenhagenDenmark
- Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Lau Raket
- H. Lundbeck A/SCopenhagenDenmark
- Clinical Memory Research Unit, Department of Clinical SciencesLund UniversityLundSweden
| | | | | | | | - Florian Krismer
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | | | - Klaus Seppi
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | - Werner Poewe
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | | | | |
Collapse
|
32
|
Kuo MC, Lu YC, Tai CH, Soong BW, Hu FC, Chen ML, Lin CH, Wu RM. COQ2 and SNCA polymorphisms interact with environmental factors to modulate the risk of multiple system atrophy and subtype disposition. Eur J Neurol 2022; 29:2956-2966. [PMID: 35748722 DOI: 10.1111/ene.15475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple system atrophy (MSA) has no definitive genetic or environmental (G-E) risk factors, and the integrated effect of these factors on MSA etiology remains unknown. OBJECTIVE To investigate the integrated effect of G-E factors associated with MSA and its subtypes, MSA-P and MSA-C. METHODS A consecutive case-control study was conducted in two medical centers, and the interactions between genotypes of five previously reported susceptible single nucleotide polymorphisms (SNPs; SNCA_rs3857059, SNCA_rs11931074, COQ2_rs148156462, EDN1_rs16872704, MAPT_rs9303521) and graded exposure (never, ever, current) of four environmental factors (smoking, alcohol, drinking well water, pesticide exposure) were analyzed by a stepwise logistic regression model. RESULTS A total of 207 MSA patients and 136 healthy controls (HCs) were enrolled. In addition to SNP COQ2_rs148156462 (TT), MSA risk was correlated with G-E interactions, including COQ2_rs148156462 (Tc) × pesticide non-exposure, COQ2_rs148156462 (TT) × current smokers, SNCA_rs11931074 (tt) × alcohol non-users, and SNCA_rs11931074 (GG) × well water non-drinkers (all p < 0.01), with an area under the receiver operating characteristic curve (AUC) of 0.804 (95% confidence interval (CI): 0.671-0.847). Modulated risk of MSA-C, with MSA-P as a control, correlated with COQ2_rs148156462 (TT) × alcohol non-drinkers, SNCA_rs11931074 (GG) × well-water ever-drinkers, SNCA_rs11931074 (Gt) × well-water never-drinkers, and SNCA_rs3857059 (gg) × pesticide non-exposure (all p < 0.05), with an AUC of 0.749 (95% CI: 0.683-0.815). CONCLUSIONS Certain COQ2 and SNCA SNPs interact with common environmental factors to modulate MSA etiology and subtype disposition. The mechanisms underlying the observed correlation between G-E interactions and MSA etiopathogenesis warrant further investigation.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Che Lu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Chang Hu
- Graduate Institute of Clinical Medicine and School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ling Chen
- College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Lin CR, Viswanathan A, Chen TX, Mitsumoto H, Vonsattel JP, Faust PL, Kuo S. Clinicopathological correlates of pyramidal signs in multiple system atrophy. Ann Clin Transl Neurol 2022; 9:988-994. [PMID: 35593123 PMCID: PMC9268870 DOI: 10.1002/acn3.51576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Pyramidal signs are common but often under-recognized in multiple system atrophy (MSA). The clinicopathological correlates of pyramidal signs in MSA are not well characterized. The present study aims to understand the role of pyramidal signs in MSA. METHODS We examined 40 autopsy-confirmed MSA cases in New York Brain Bank. The pyramidal signs were quantified by an established rating scale, summarized as the pyramidal score. We assessed whether pyramidal scores are associated with autonomic, parkinsonism, and cerebellar features and survival. We also examined whether the density of glial cytoplasmic inclusions (GCIs) in the motor cortex and its underlying white matter is associated with the pyramidal score. RESULTS MSA parkinsonian type cases have higher pyramidal scores compared to cerebellar type cases (p = 0.017). MSA cases with high pyramidal scores are more likely to have laryngeal stridor (OR = 4.89, p = 0.022), but less likely to have orthostatic hypotension (OR = 0.11, p = 0.006) and erectile dysfunction (OR = 0.05, p = 0.018). MSA cases with high pyramidal scores do not differ from those with low pyramidal scores in terms of bowel dysfunction, dry eyes and mouth, and survival. Finally, MSA cases with more GCIs in the motor cortex have higher pyramidal scores compared to those with few GCIs (p = 0.017). INTERPRETATION Pyramidal signs in MSA are associated with the parkinsonian subtype, laryngeal stridor, and certain autonomic dysfunction.
Collapse
Affiliation(s)
- Chi‐Ying R. Lin
- Department of NeurologyParkinson's Disease Center and Movement Disorders Clinic, Baylor College of MedicineHoustonTexasUSA
| | - Anisha Viswanathan
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tiffany X. Chen
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of Biomedical Engineering, Whiting School of EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hiroshi Mitsumoto
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Eleanor and Lou Gehrig ALS CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Jean P. Vonsattel
- Department of Pathology and Cell BiologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Phyllis L. Faust
- Department of Pathology and Cell BiologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
34
|
Ge Y, Zheng W, Li Y, Dou W, Ren S, Chen Z, Wang Z. Altered Brain Volume, Microstructure Metrics and Functional Connectivity Features in Multiple System Atrophy. Front Aging Neurosci 2022; 14:799251. [PMID: 35663568 PMCID: PMC9162384 DOI: 10.3389/fnagi.2022.799251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
In order to deeply understand the specific patterns of volume, microstructure, and functional changes in Multiple System Atrophy patients with cerebellar ataxia syndrome (MSA-c), we perform the current study by simultaneously applying structural (T1-weighted imaging), Diffusion tensor imaging (DTI), functional (BOLD fMRI) and extended Network-Based Statistics (extended-NBS) analysis. Twenty-nine MSA-c type patients and twenty-seven healthy controls (HCs) were involved in this study. First, we analyzed the whole brain changes of volume, microstructure, and functional connectivity (FC) in MSA-c patients. Then, we explored the correlations between significant multimodal MRI features and the total Unified Multiple System Atrophy Rating Scale (UMSARS) scores. Finally, we searched for sensitive imaging biomarkers for the diagnosis of MSA-c using support vector machine (SVM) classifier. Results showed significant grey matter atrophy in cerebellum and white matter microstructural abnormalities in cerebellum, left fusiform gyrus, right precentral gyrus and lingual gyrus. Extended-NBS analysis found two significant different connected components, featuring altered functional connectivity related to left and right cerebellar sub-regions, respectively. Moreover, the reduced fiber bundle counts at right Cerebellum_3 (Cbe3) and decreased fractional anisotropy (FA) values at bilateral Cbe9 were negatively associated with total UMSARS scores. Finally, the significant features at left Cbe9, Cbe1, and Cbe7b were found to be useful as sensitive biomarkers to differentiate MSA-c from HCs according to the SVM analysis. These findings advanced our understanding of the neural pathophysiological mechanisms of MSA from the perspective of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yujia Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
- *Correspondence: Weibei Dou,
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Zhigang Chen,
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
- Zhiqun Wang,
| |
Collapse
|
35
|
Ichise M, Sakoori K, Katayama KI, Morimura N, Yamada K, Ozawa H, Matsunaga H, Hatayama M, Aruga J. Leucine-Rich Repeats and Transmembrane Domain 2 Controls Protein Sorting in the Striatal Projection System and Its Deficiency Causes Disturbances in Motor Responses and Monoamine Dynamics. Front Mol Neurosci 2022; 15:856315. [PMID: 35615067 PMCID: PMC9126195 DOI: 10.3389/fnmol.2022.856315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The striatum is involved in action selection, and its disturbance can cause movement disorders. Here, we show that leucine-rich repeats and transmembrane domain 2 (Lrtm2) controls protein sorting in striatal projection systems, and its deficiency causes disturbances in monoamine dynamics and behavior. The Lrtm2 protein was broadly detected in the brain, but it was enhanced in the olfactory bulb and dorsal striatum. Immunostaining revealed a strong signal in striatal projection output, including GABAergic presynaptic boutons of the SNr. In subcellular fractionation, Lrtm2 was abundantly recovered in the synaptic plasma membrane fraction, synaptic vesicle fraction, and microsome fraction. Lrtm2 KO mice exhibited altered motor responses in both voluntary explorations and forced exercise. Dopamine metabolite content was decreased in the dorsal striatum and hypothalamus, and serotonin turnover increased in the dorsal striatum. The prefrontal cortex showed age-dependent changes in dopamine metabolites. The distribution of glutamate decarboxylase 67 (GAD67) protein and gamma-aminobutyric acid receptor type B receptor 1 (GABABR1) protein was altered in the dorsal striatum. In cultured neurons, wild-type Lrtm2 protein enhanced axon trafficking of GAD67-GFP and GABABR1-GFP whereas such activity was defective in sorting signal-abolished Lrtm2 mutant proteins. The topical expression of hemagglutinin-epitope-tag (HA)-Lrtm2 and a protein sorting signal abolished HA-Lrtm2 mutant differentially affected GABABR1 protein distribution in the dorsal striatum. These results suggest that Lrtm2 is an essential component of striatal projection neurons, contributing to a better understanding of striatal pathophysiology.
Collapse
Affiliation(s)
- Misato Ichise
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuto Sakoori
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Kei-ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Naoko Morimura
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Hiroki Ozawa
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Hatayama
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
- *Correspondence: Jun Aruga,
| |
Collapse
|
36
|
Pamies D, Wiersma D, Katt ME, Zhong L, Burtscher J, Harris G, Smirnova L, Searson PC, Hartung T, Hogberg HT. Human organotypic brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol Dis 2022; 169:105719. [PMID: 35398340 PMCID: PMC9298686 DOI: 10.1016/j.nbd.2022.105719] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is caused by an imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS). This imbalance plays an important role in brain aging and age-related neurodegenerative diseases. In the context of Parkinson’s disease (PD), the sensitivity of dopaminergic neurons in the substantia nigra pars compacta to oxidative stress is considered a key factor of PD pathogenesis. Here we study the effect of different oxidative stress-inducing compounds (6-OHDA, MPTP or MPP+) on the population of dopaminergic neurons in an iPSC-derived human brain 3D model (aka BrainSpheres). Treatment with 6-OHDA, MPTP or MPP+ at 4 weeks of differentiation disrupted the dopaminergic neuronal phenotype in BrainSpheres at (50, 5000, 1000 μM respectively). 6-OHDA increased ROS production and decreased mitochondrial function most efficiently. It further induced the greatest changes in gene expression and metabolites related to oxidative stress and mitochondrial dysfunction. Co-culturing BrainSpheres with an endothelial barrier using a transwell system allowed the assessment of differential penetration capacities of the tested compounds and the damage they caused in the dopaminergic neurons within the BrainSpheres In conclusion, treatment with compounds known to induce PD-like phenotypes in vivo caused molecular deficits and loss of dopaminergic neurons in the BrainSphere model. This approach therefore recapitulates common animal models of neurodegenerative processes in PD at similarly high doses. The relevance as tool for drug discovery is discussed.
Collapse
|
37
|
Chen CL, Kuo MC, Wu WC, Hsu YC, Wu RM, Tseng WYI. Advanced brain aging in multiple system atrophy compared to Parkinson's disease. Neuroimage Clin 2022; 34:102997. [PMID: 35397330 PMCID: PMC8987993 DOI: 10.1016/j.nicl.2022.102997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
Multiple system atrophy (MSA) and Parkinson's disease (PD) belong to alpha-synucleinopathy, but they have very different clinical courses and prognoses. An imaging biomarker that can differentiate between the two diseases early in the disease course is desirable for appropriate treatment. Neuroimaging-based brain age paradigm provides an individualized marker to differentiate aberrant brain aging patterns in neurodegenerative diseases. In this study, patients with MSA (N = 23), PD (N = 33), and healthy controls (N = 34; HC) were recruited. A deep learning approach was used to estimate brain-predicted age difference (PAD) of gray matter (GM) and white matter (WM) based on image features extracted from T1-weighted and diffusion-weighted magnetic resonance images, respectively. Spatial normative models of image features were utilized to quantify neuroanatomical impairments in patients, which were then used to estimate the contributions of image features to brain age measures. For PAD of GM (GM-PAD), patients with MSA had significantly older brain age (9.33 years) than those with PD (0.75 years; P = 0.002) and HC (-1.47 years; P < 0.001), and no significant difference was found between PD and HC (P = 1.000). For PAD of WM (WM-PAD), it was significantly greater in MSA (9.27 years) than that in PD (1.90 years; P = 0.037) and HC (-0.74 years; P < 0.001); there was no significant difference between PD and HC (P = 0.087). The most salient image features that contributed to PAD in MSA and PD were different. For GM, they were the orbitofrontal regions and the cuneus in MSA and PD, respectively, and for WM, they were the central corpus callosum and the uncinate fasciculus in MSA and PD, respectively. Our results demonstrated that MSA revealed significantly greater PAD than PD, which might be related to markedly different neuroanatomical contributions to brain aging. The image features with distinct contributions to brain aging might be of value in the differential diagnosis of MSA and PD.
Collapse
Affiliation(s)
- Chang-Le Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming-Che Kuo
- National Taiwan University Cancer Center, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan; Acroviz Inc., Taipei, Taiwan; Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Krismer F, Seppi K, Jönsson L, Åström DO, Berger AK, Simonsen J, Gordon MF, Wenning GK, Poewe W. Sensitivity to Change and Patient-Centricity of the Unified Multiple System Atrophy Rating Scale Items: A Data-Driven Analysis. Mov Disord 2022; 37:1425-1431. [PMID: 35332582 PMCID: PMC9543676 DOI: 10.1002/mds.28993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Unified Multiple System Atrophy Rating Scale (UMSARS) is a commonly used semiquantitative rating scale to assess symptoms and measure disease progression in multiple system atrophy (MSA). However, it is currently incompletely understood which UMSARS items are the most sensitive to change and most relevant to the patient. Objective The objective of this study was to assess sensitivity to change and patient‐centricity of single UMSARS items. Methods Data were taken from the European Multiple System Atrophy Study Group Natural History Study and the Rasagiline for Multiple System Atrophy trial. Sensitivity of change of an item of the UMSARS was assessed by calculation of a sensitivity‐to‐change ratio using its mean slope of progression divided by the standard deviation of the slope when modeling its progression over time. Patient‐centricity was assessed through correlation of UMSARS items with quality‐of‐life measures. Results Progression rates above the mean in at least one of the two studies examined here were seen for seven items of UMSARS I and 11 items of UMSARS II. These items related to key motor functions such as swallowing, speech, handwriting, cutting food, hygiene, and dressing or walking, whereas items related to autonomic dysfunction were generally less sensitive to change in either data set. More UMSARS I items were identified as patient‐centric compared with UMSARS II items, and items most strongly impacting patients' quality of life were those affecting verbal communication skills, personal hygiene, and walking. Conclusion The present results illustrate the potential to optimize the UMSARS to enhance sensitivity to change and patient centricity. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Linus Jönsson
- Section for Neurogeriatrics, Department for Neurobiology, Care and Society, Karolinska Institutet, Stockholm, Sweden.,H. Lundbeck A/S, Valby, Denmark
| | | | | | | | | | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
39
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
40
|
Spathopoulou A, Edenhofer F, Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Front Neurol 2022; 12:786835. [PMID: 35145469 PMCID: PMC8821105 DOI: 10.3389/fneur.2021.786835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterized by motor and non-motor symptoms. To date, no specific treatment to halt disease progression is available, only medication to alleviate symptoms can be prescribed. The main pathological hallmark of PD is the development of neuronal inclusions, positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites. However, the cause of the inclusion formation and the loss of neurons remain largely elusive. Various genetic determinants were reported to be involved in PD etiology, including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into pathophysiology of PD critically depend on appropriate models. However, conventional model organisms fall short to faithfully recapitulate some features of this complex disease and as a matter-of-fact access to physiological tissue is limiting. The development of disease models replicating PD that are close to human physiology and dynamic enough to analyze the underlying molecular mechanisms of disease initiation and progression, as well as the generation of new treatment options, is an important and overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived neural models, particularly from genetic PD-variants, developed into a promising strategy to investigate the molecular mechanisms regarding formation of inclusions and neurodegeneration. As these iPSC-derived neurons can be generated from accessible biopsied samples of PD patients, they carry pathological alterations and enable the possibility to analyze the differences compared to healthy neurons. This review focuses on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how iPSC models can be instrumental in identifying cellular targets, potentially leading to the development of new therapeutic treatments. We will outline the enormous potential, but also discuss the limitations of iPSC-based α-syn models.
Collapse
|
41
|
Therapeutic Application of rTMS in Atypical Parkinsonian Disorders. Behav Neurol 2022; 2021:3419907. [PMID: 34976231 PMCID: PMC8718319 DOI: 10.1155/2021/3419907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
The terms atypical parkinsonian disorders (APDs) and Parkinson plus syndromes are mainly used to describe the four major entities of sporadic neuronal multisystem degeneration: progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and dementia with Lewy bodies (LBD). APDs are characterized by a variety of symptoms and a lack of disease modifying therapies; their treatment thus remains mainly symptomatic. Brain stimulation via repetitive transcranial magnetic stimulation (rTMS) is a safe and noninvasive intervention using a magnetic coil, and it is considered an alternative therapy in various neuropsychiatric pathologies. In this paper, we review the available studies that investigate the efficacy of rTMS in the treatment of these APDs and Parkinson plus syndromes. Τhe majority of the studies have shown beneficial effects on motor and nonmotor symptoms, but research is still at a preliminary phase, with large, double-blind studies lacking in the literature.
Collapse
|
42
|
Gong D, Wang W, Yuan X, Yu H, Zhao M. Long-Term Clinical Efficacy of Human Umbilical Cord Blood Mononuclear Cell Transplantation by Lateral Atlanto-Occipital Space Puncture (Gong's Puncture) for the Treatment of Multiple System Atrophy. Cell Transplant 2022; 31:9636897221136553. [PMID: 36354017 DOI: 10.1177/09636897221136553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Multiple system atrophy (MSA) is a sporadic, progressive neurodegenerative disease characterized by autonomic nervous dysfunction with parkinsonism or cerebellar ataxia. Mesenchymal stem cell therapy or transplantation of human umbilical cord blood mononuclear cells (hUCB-MCs) may inhibit progression in MSA, but long-term studies are lacking. In addition, injection of stem cells via lateral atlanto-occipital space puncture (LASP, or Gong's puncture) may efficiently target areas of brain injury and avoid the disadvantages of other methods. This prospective study investigated the long-term clinical efficacy of transplantation of hUCB-MCs via LASP for the treatment of MSA. Seven patients with MSA who received hUCB-MC transplantation via LASP were followed for 3 to 5 years. Neurological function was evaluated before (baseline), at 3, 6, and 12 months, and annually after the first transplantation using the Unified MSA Rating Scale (UMSARS); a lower score indicated improvement. Adverse events were recorded. The best therapeutic effect was observed 3 to 6 months after the first hUCB-MC transplantation. The total UMSARS score at the timepoint of best effect (25.71 ± 11.87) was significantly lower than the score before treatment (42.57 ± 7.96; P = 0.001), but also significantly lower than at the end of follow-up (35.14 ± 18.21; P = 0.038). The UMSARS II score (findings on neurological examination) at the timepoint of best effect was significantly lower than before treatment (P = 0.001). There were no serious adverse events. In conclusion, transplantation of hUCB-MCs via LASP is a safe and effective treatment for MSA.
Collapse
Affiliation(s)
- Dianrong Gong
- Department of Neurology, Liaocheng People's Hospital, Liaocheng District, China
| | - Weifei Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng District, China
| | - Xiaoling Yuan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng District, China
| | - Haiyan Yu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng District, China
| | - Min Zhao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng District, China
| |
Collapse
|
43
|
Alpha-synuclein oligomers and small nerve fiber pathology in skin are potential biomarkers of Parkinson's disease. NPJ Parkinsons Dis 2021; 7:119. [PMID: 34930911 PMCID: PMC8688481 DOI: 10.1038/s41531-021-00262-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
The proximity ligation assay (PLA) is a specific and sensitive technique for the detection of αSyn oligomers (αSyn-PLA), early and toxic species implicated in the pathogenesis of PD. We aimed to evaluate by skin biopsy the diagnostic and prognostic capacity of αSyn-PLA and small nerve fiber reduction in PD in a longitudinal study. αSyn-PLA was performed in the ankle and cervical skin biopsies of PD (n = 30), atypical parkinsonisms (AP, n = 23) including multiple system atrophy (MSA, n = 12) and tauopathies (AP-Tau, n = 11), and healthy controls (HC, n = 22). Skin biopsy was also analyzed for phosphorylated αSyn (P-αSyn) and 5G4 (αSyn-5G4), a conformation-specific antibody to aggregated αSyn. Intraepidermal nerve fiber density (IENFD) was assessed as a measure of small fiber neuropathy. αSyn-PLA signal was more expressed in PD and MSA compared to controls and AP-Tau. αSyn-PLA showed the highest diagnostic accuracy (PD vs. HC sensitivity 80%, specificity 77%; PD vs. AP-Tau sensitivity 80%, specificity 82%), however, P-αSyn and 5G4, possible markers of later phases, performed better when considering the ankle site alone. A small fiber neuropathy was detected in PD and MSA. A progression of denervation not of pathological αSyn was detected at follow-up and a lower IENFD at baseline was associated with a greater cognitive and motor decline in PD. A skin biopsy-derived compound marker, resulting from a linear discrimination analysis model of αSyn-PLA, P-αSyn, αSyn-5G4, and IENFD, stratified patients with accuracy (77.8%), including the discrimination between PD and MSA (84.6%). In conclusion, the choice of pathological αSyn marker and anatomical site influences the diagnostic performance of skin biopsy and can help in understanding the temporal dynamics of αSyn spreading in the peripheral nervous system during the disease. Skin denervation, not pathological αSyn is a potential progression marker for PD.
Collapse
|
44
|
Malfertheiner K, Stefanova N, Heras-Garvin A. The Concept of α-Synuclein Strains and How Different Conformations May Explain Distinct Neurodegenerative Disorders. Front Neurol 2021; 12:737195. [PMID: 34675870 PMCID: PMC8523670 DOI: 10.3389/fneur.2021.737195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
In the past few years, an increasing amount of studies primarily based on experimental models have investigated the existence of distinct α-synuclein strains and their different pathological effects. This novel concept could shed light on the heterogeneous nature of α-synucleinopathies, a group of disorders that includes Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, which share as their key-molecular hallmark the abnormal aggregation of α-synuclein, a process that seems pivotal in disease pathogenesis according to experimental observations. However, the etiology of α-synucleinopathies and the initial events leading to the formation of α-synuclein aggregates remains elusive. Hence, the hypothesis that structurally distinct fibrillary assemblies of α-synuclein could have a causative role in the different disease phenotypes and explain, at least to some extent, their specific neurodegenerative, disease progression, and clinical presentation patterns is very appealing. Moreover, the presence of different α-synuclein strains might represent a potential biomarker for the diagnosis of these neurodegenerative disorders. In this regard, the recent use of super resolution techniques and protein aggregation assays has offered the possibility, on the one hand, to elucidate the conformation of α-synuclein pathogenic strains and, on the other hand, to cyclically amplify to detectable levels low amounts of α-synuclein strains in blood, cerebrospinal fluid and peripheral tissue from patients. Thus, the inclusion of these techniques could facilitate the differentiation between α-synucleinopathies, even at early stages, which is crucial for successful therapeutic intervention. This mini-review summarizes the current knowledge on α-synuclein strains and discusses its possible applications and potential benefits.
Collapse
Affiliation(s)
- Katja Malfertheiner
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Porto KJ, Hirano M, Mitsui J, Chikada A, Matsukawa T, Ishiura H, Toda T, Kusunoki S, Tsuji S. COQ2 V393A confers high risk susceptibility for multiple system atrophy in East Asian population. J Neurol Sci 2021; 429:117623. [PMID: 34455210 DOI: 10.1016/j.jns.2021.117623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
Multiple system atrophy (MSA) is a rare, late-onset, and devastating neurodegenerative disease characterized by autonomic failure, alongside with various combination of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. Since we first identified biallelic mutations in the COQ2 gene in two multiplex MSA families and further reported that heterozygous COQ2 V393A variant confers a susceptibility to sporadic MSA, the results of nearly a decade of investigating this association globally were quite remarkable. COQ2 V393A was virtually absent in the American and European populations but was shown to have varying associations with sporadic MSA in the East Asian populations. In our attempt to clarify the latter and provide a coherent regional conclusion, we conducted two independent case-control series which showed clear association of the V393A variant with sporadic MSA in the Japanese population. We then pooled the results with other studies from the East Asian population and conducted a meta-analysis which broadened and established the association regionally (pooled OR 2.12, 95% CI: 1.35-3.31, PI: 0.63-7.15, p = 0.0047). The subgroup analysis identified a strong association of V393A with MSA-C (pooled OR 2.57, 95% CI: 1.98-3.35; p = 2.56 × 10-12) but not with MSA-P (pooled OR 1.41, 95% CI: 0.88-2.26; p = 0.16). Our results highlighted the importance of investigating region-specific and pan-regional genetic variants that may potentially underlie the pathomechanisms of neurodegenerative diseases. COQ2 V393A variant remains a susceptibility variant rather than causative for MSA particularly, MSA-C subtype, in the East Asian population.
Collapse
Affiliation(s)
- Kristine Joyce Porto
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makito Hirano
- Department of Neurology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Ayaka Chikada
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, The University of Tokyo, Tokyo, Japan
| | | | | | - Tatsushi Toda
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; International University of Health and Welfare, Narita, Chiba, Japan.
| |
Collapse
|
46
|
Epigenetic and gene expression changes of neuronal cells from MSA patients are pronounced in enzymes for cell metabolism and calcium-regulated protein kinases. Acta Neuropathol 2021; 142:781-783. [PMID: 34370068 PMCID: PMC8423633 DOI: 10.1007/s00401-021-02357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
|
47
|
Jellinger KA, Wenning GK, Stefanova N. Is Multiple System Atrophy a Prion-like Disorder? Int J Mol Sci 2021; 22:10093. [PMID: 34576255 PMCID: PMC8472631 DOI: 10.3390/ijms221810093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive, fatal neurodegenerative disease of uncertain aetiology that belongs to the family of α-synucleinopathies. It clinically presents with parkinsonism, cerebellar, autonomic, and motor impairment in variable combinations. Pathological hallmarks are fibrillary α-synuclein (αSyn)-rich glial cytoplasmic inclusions (GCIs) mainly involving oligodendroglia and to a lesser extent neurons, inducing a multisystem neurodegeneration, glial activation, and widespread demyelinization. The neuronal αSyn pathology of MSA has molecular properties different from Lewy bodies in Parkinson's disease (PD), both of which could serve as a pool of αSyn (prion) seeds that could initiate and drive the pathogenesis of synucleinopathies. The molecular cascade leading to the "prion-like" transfer of "strains" of aggregated αSyn contributing to the progression of the disease is poorly understood, while some presented evidence that MSA is a prion disease. However, this hypothesis is difficult to reconcile with postmortem analysis of human brains and the fact that MSA-like pathology was induced by intracerebral inoculation of human MSA brain homogenates only in homozygous mutant 53T mice, without production of disease-specific GCIs, or with replication of MSA prions in primary astrocyte cultures from transgenic mice expressing human αSyn. Whereas recent intrastriatal injection of Lewy body-derived or synthetic human αSyn fibrils induced PD-like pathology including neuronal αSyn aggregates in macaques, no such transmission of αSyn pathology in non-human primates by MSA brain lysate has been reported until now. Given the similarities between αSyn and prions, there is a considerable debate whether they should be referred to as "prions", "prion-like", "prionoids", or something else. Here, the findings supporting the proposed nature of αSyn as a prion and its self-propagation through seeding as well as the transmissibility of neurodegenerative disorders are discussed. The proof of disease causation rests on the concordance of scientific evidence, none of which has provided convincing evidence for the classification of MSA as a prion disease or its human transmission until now.
Collapse
Affiliation(s)
| | - Gregor K. Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| |
Collapse
|
48
|
Abstract
A substantial number of neurological diseases lead to chronic impairment of activities of daily living (ADL) and physical or mental dependence. In Austria, homecare is provided mostly by female family members. Moreover, mainly female personnel, in the majority from southern and eastern European countries, contributes to care. Dependence and need for care vary between neurological diagnoses and accompanying diseases. Caregiver burden (CB) depends on patient- and caregiver-related and external factors, such as integrity of a family network, spatial resources, and socioeconomic factors. Depending on the neurological diagnosis, disease severity, and behavioral impairment and psychiatric symptoms, caregivers (CG) are at a significant risk of mental and somatic health problems because of limitations in personal needs, occupational and social obligations, financial burden, and restricted family life and leisure. Subjective and objective CB needs to be assessed in time and support should be provided on an individual basis. Recently, COVID-19 has caused additional multifactorial distress to dependent patients and informal and professional CG.
Collapse
Affiliation(s)
- Gerhard Ransmayr
- Department of Neurology II, MedCampus III, Kepler University Hospital, Johannes Kepler University, Medical Faculty, Krankenhausstraße 9, 4020, Linz, Austria.
| |
Collapse
|
49
|
Positive DAT-SCAN in SPG7: a case report mimicking possible MSA-C. BMC Neurol 2021; 21:328. [PMID: 34433436 PMCID: PMC8386044 DOI: 10.1186/s12883-021-02345-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Spastic Paraplegia type 7 (SPG7) is one of the most common autosomal recessive Hereditary Spastic Paraplegias (HSP); Spastic Paraplegias (SPGs) can present as hereditary ataxias. However, ataxia is frequently the symptom of presentation of many other hereditary/sporadic disorders, such as Multiple system atrophy type C (MSA-C), an α-synuclein sporadic neurodegenerative disorder, in which cerebellar ataxia is one of the main clinical features. Dopamine Transporter imaging (DAT-SCAN), associated with clinical features, can be a helpful tool in order to distinguish MSA-C from other causes of ataxia. Case-presentation We present the case of a 70-year-old man with gait difficulties over a period of 3 years and frequent backward/lateral falls. He also reported urinary urge incontinence, but no symptoms that are compatible with orthostatic hypotension. On neurological examination he showed ataxic gait, spasticity in the left lower limb and trunk and limb ataxia, especially on the left side. Mild hypokinesia was found in all 4 limbs, especially in the left foot. MRI revealed atrophy of the cerebellar hemispheres and vermis. DAT-SCAN imaging revealed bilateral nigro-striatal degeneration, which was compatible with a diagnosis of possible MSA-C. Considering the atypical disease course (the patient walked without any support after 3 years), we carried out a genetic investigation for Ataxia, and a mutation in SPG7 was found. Conclusions DAT-SCAN imaging, evaluated together with the clinical findings, can be useful for differentiating MSA from other possible causes of adult-onset Ataxia. Indeed, patients with MSA-C generally show a decreased uptake of dopamine transporters in DAT-SCAN imaging. Ours is the first case reported in the literature of a patient with SPG7 mutation with nigrostriatal degeneration and a clinical presentation of a possible MSA-C. Performing genetic investigations in patients with an atypical disease course is important to avoid MSA-mimicries. Identifying the correct diagnosis is important not only for prognostic reasons, but also for possible future genetic therapies.
Collapse
|
50
|
Cui B, Zheng W, Ren S, Chen Z, Wang Z. Differentiation of Cerebellum-Type and Parkinson-Type of Multiple System Atrophy by Using Multimodal MRI Parameters. Front Aging Neurosci 2021; 13:687649. [PMID: 34413766 PMCID: PMC8369927 DOI: 10.3389/fnagi.2021.687649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated the structural and functional changes in patients with multiple system atrophy (MSA). However, little is known about the different parameter changes of the most vulnerable regions in different types of MSA. In this study, we collected resting-state structure, perfusion, and patients with functional magnetic resonance imaging (fMRI) data of cerebellum-type of MSA (MSA-c) and Parkinson-type of MSA (MSA-p). First, by simultaneously using voxel-based morphology (VBM), arterial spin labeling (ASL), and amplitude of low-frequency fluctuation (ALFF), we analyzed the whole brain differences of structure, perfusion, and functional activation between patients with MSA-c and MSA-p. Second, we explored the relationships among structure, perfusion, function, and the clinical variables in patients with MSA. Finally, we extracted the MRI parameters of a specific region to separate the two groups and search for a sensitive imaging biomarker. As a result, compared with patients with MSA-p type, patients with MSA-c type showed decreased structure atrophy in several cerebella and vermis subregions, reduced perfusion in bilateral cerebellum_4_5 and vermis_4_5, and an decreased ALFF values in the right lingual gyrus (LG) and fusiform (FFG). Subsequent analyses revealed the close correlations among structure, perfusion, function, and clinical variables in both MSA-c and MSA-p. Finally, the receiver operating characteristic (ROC) analysis showed that the regional cerebral blood flow (rCBF) of bilateral cerebellum_4_5/vermis_4_5 could differentiate the two groups at a relatively high accuracy, yielding the sensitivity of 100%, specificity of 79.2%, and the area under the curve (AUC) value of 0.936. These findings have important implications for understanding the underlying neurobiology of different types of MSA and added the new evidence for the disrupted rCBF, structure, and function of MSA, which may provide the potential biomarker for accurately detecting different types of patients with MSA and new ideas for the treatment of different types of MSA in the future.
Collapse
Affiliation(s)
- Bin Cui
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Shan Ren
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Chen
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|