1
|
Wang Y, Wang Z, Liu T, Gong S, Zhang W. Effects of flanking regions on HDV cotranscriptional folding kinetics. RNA (NEW YORK, N.Y.) 2018; 24:1229-1240. [PMID: 29954950 PMCID: PMC6097654 DOI: 10.1261/rna.065961.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 05/20/2023]
Abstract
Hepatitis delta virus (HDV) ribozyme performs the self-cleavage activity through folding to a double pseudoknot structure. The folding of functional RNA structures is often coupled with the transcription process. In this work, we developed a new approach for predicting the cotranscriptional folding kinetics of RNA secondary structures with pseudoknots. We theoretically studied the cotranscriptional folding behavior of the 99-nucleotide (nt) HDV sequence, two upstream flanking sequences, and one downstream flanking sequence. During transcription, the 99-nt HDV can effectively avoid the trap intermediates and quickly fold to the cleavage-active state. It is different from its refolding kinetics, which folds into an intermediate trap state. For all the sequences, the ribozyme regions (from 1 to 73) all fold to the same structure during transcription. However, the existence of the 30-nt upstream flanking sequence can inhibit the ribozyme region folding into the active native state through forming an alternative helix Alt1 with the segments 70-90. The longer upstream flanking sequence of 54 nt itself forms a stable hairpin structure, which sequesters the formation of the Alt1 helix and leads to rapid formation of the cleavage-active structure. Although the 55-nt downstream flanking sequence could invade the already folded active structure during transcription by forming a more stable helix with the ribozyme region, the slow transition rate could keep the structure in the cleavage-active structure to perform the activity.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Taigang Liu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Sha Gong
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
2
|
Sengupta A, Sung HL, Nesbitt DJ. Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2016; 120:10615-10627. [PMID: 27718572 DOI: 10.1021/acs.jpcb.6b05840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In light of the current models for an early RNA-based universe, the potential influence of simple amino acids on tertiary folding of ribozymal RNA into biochemically competent structures is speculated to be of significant evolutionary importance. In the present work, the folding-unfolding kinetics of a ubiquitous tertiary interaction motif, the GAAA tetraloop-tetraloop receptor (TL-TLR), is investigated by single-molecule fluorescence resonance energy transfer spectroscopy in the presence of natural amino acids both with (e.g., lysine, arginine) and without (e.g., glycine) protonated side chain residues. By way of control, we also investigate the effects of a special amino acid (e.g., proline) and amino acid mimetic (e.g., betaine) that contain secondary or quaternary amine groups rather than a primary amine group. This combination permits systematic study of amino acid induced (or amino acid like) RNA folding dynamics as a function of side chain complexity, pKa, charge state, and amine group content. Most importantly, each of the naturally occurring amino acids is found to destabilize the TL-TLR tertiary folding equilibrium, the kinetic origin of which is dominated by a decrease in the folding rate constant (kdock), also affected by a strongly amino acid selective increase in the unfolding rate constant (kundock). To further elucidate the underlying thermodynamics, single-molecule equilibrium constants (Keq) for TL-TLR folding have been probed as a function of temperature, which reveal an amino acid dependent decrease in both overall exothermicity (ΔΔH° > 0) and entropic cost (-TΔΔS° < 0) for the overall folding process. Temperature-dependent studies on the folding/unfolding kinetic rate constants reveal analogous amino acid specific changes in both enthalpy (ΔΔH⧧) and entropy (ΔΔS⧧) for accessing the transition state barrier. The maximum destabilization of the TL-TLR tertiary interaction is observed for arginine, which is consistent with early studies of arginine and guanidine ion-inhibited self-splicing kinetics for the full Tetrahymena ribozyme [ Yarus , M. ; Christian , E. L. Nature 1989 , 342 , 349 - 350 ; Yarus , M. Science 1988 , 240 , 1751 - 1758 ].
Collapse
Affiliation(s)
- Abhigyan Sengupta
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Mustoe AM, Al-Hashimi HM, Brooks CL. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme. Nucleic Acids Res 2015; 44:402-12. [PMID: 26481360 PMCID: PMC4705646 DOI: 10.1093/nar/gkv1055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/03/2015] [Indexed: 12/20/2022] Open
Abstract
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles L Brooks
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Applications of Magnetic Resonance to Biology. METHODS OF BIOCHEMICAL ANALYSIS 2015; 55:315-330. [PMID: 26173317 DOI: 10.1002/9781118859148.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
5
|
Gleitsman KR, Herschlag DH. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction. RNA (NEW YORK, N.Y.) 2014; 20:1732-1746. [PMID: 25246656 PMCID: PMC4201826 DOI: 10.1261/rna.044362.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/15/2014] [Indexed: 06/01/2023]
Abstract
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5'-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5'-exon intermediate in self splicing to remain bound subsequent to 5'-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs.
Collapse
Affiliation(s)
- Kristin R Gleitsman
- Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
| | - Daniel H Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
| |
Collapse
|
6
|
Mitchell D, Russell R. Folding pathways of the Tetrahymena ribozyme. J Mol Biol 2014; 426:2300-12. [PMID: 24747051 DOI: 10.1016/j.jmb.2014.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/01/2023]
Abstract
Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min(-1), while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min(-1)). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the "choice" is enforced by energy barriers that grow larger as folding progresses.
Collapse
Affiliation(s)
- David Mitchell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Chen J, Gong S, Wang Y, Zhang W. Kinetic partitioning mechanism of HDV ribozyme folding. J Chem Phys 2014; 140:025102. [DOI: 10.1063/1.4861037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
8
|
Chen C, Mitra S, Jonikas M, Martin J, Brenowitz M, Laederach A. Understanding the role of three-dimensional topology in determining the folding intermediates of group I introns. Biophys J 2013; 104:1326-37. [PMID: 23528092 DOI: 10.1016/j.bpj.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/28/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022] Open
Abstract
Many RNA molecules exert their biological function only after folding to unique three-dimensional structures. For long, noncoding RNA molecules, the complexity of finding the native topology can be a major impediment to correct folding to the biologically active structure. An RNA molecule may fold to a near-native structure but not be able to continue to the correct structure due to a topological barrier such as crossed strands or incorrectly stacked helices. Achieving the native conformation thus requires unfolding and refolding, resulting in a long-lived intermediate. We investigate the role of topology in the folding of two phylogenetically related catalytic group I introns, the Twort and Azoarcus group I ribozymes. The kinetic models describing the Mg(2+)-mediated folding of these ribozymes were previously determined by time-resolved hydroxyl (∙OH) radical footprinting. Two intermediates formed by parallel intermediates were resolved for each RNA. These data and analytical ultracentrifugation compaction analyses are used herein to constrain coarse-grained models of these folding intermediates as we investigate the role of nonnative topology in dictating the lifetime of the intermediates. Starting from an ensemble of unfolded conformations, we folded the RNA molecules by progressively adding native constraints to subdomains of the RNA defined by the ∙OH time-progress curves to simulate folding through the different kinetic pathways. We find that nonnative topologies (arrangement of helices) occur frequently in the folding simulations despite using only native constraints to drive the reaction, and that the initial conformation, rather than the folding pathway, is the major determinant of whether the RNA adopts nonnative topology during folding. From these analyses we conclude that biases in the initial conformation likely determine the relative flux through parallel RNA folding pathways.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
9
|
Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson SA. Cooperative tertiary interaction network guides RNA folding. Cell 2012; 149:348-57. [PMID: 22500801 DOI: 10.1016/j.cell.2012.01.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 01/06/2023]
Abstract
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.
Collapse
Affiliation(s)
- Reza Behrouzi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Many RNAs do not directly code proteins but are nonetheless indispensable to cellular function. These strands fold into intricate three-dimensional shapes that are essential structures in protein synthesis, splicing, and many other processes of gene regulation and expression. A variety of biophysical and biochemical methods are now showing, in real time, how ribosomal subunits and other ribonucleoprotein complexes assemble from their molecular components. Footprinting methods are particularly useful for studying the folding of long RNAs: they provide quantitative information about the conformational state of each residue and require little material. Data from footprinting complement the global information available from small-angle X-ray scattering or cryo-electron microscopy, as well as the dynamic information derived from single-molecule Förster resonance energy transfer (FRET) and NMR methods. In this Account, I discuss how we have used hydroxyl radical footprinting and other experimental methods to study pathways of RNA folding and 30S ribosome assembly. Hydroxyl radical footprinting probes the solvent accessibility of the RNA backbone at each residue in as little as 10 ms, providing detailed views of RNA folding pathways in real time. In conjunction with other methods such as solution scattering and single-molecule FRET, time-resolved footprinting of ribozymes showed that stable domains of RNA tertiary structure fold in less than 1 s. However, the free energy landscapes for RNA folding are rugged, and individual molecules kinetically partition into folding pathways that lead through metastable intermediates, stalling the folding or assembly process. Time-resolved footprinting was used to follow the formation of tertiary structure and protein interactions in the 16S ribosomal RNA (rRNA) during the assembly of 30S ribosomes. As previously observed in much simpler ribozymes, assembly occurs in stages, with individual molecules taking different routes to the final complex. Interactions occur concurrently in all domains of the 16S rRNA, and multistage protection of binding sites of individual proteins suggests that initial encounter complexes between the rRNA and ribosomal proteins are remodeled during assembly. Equilibrium footprinting experiments showed that one primary binding protein was sufficient to stabilize the tertiary structure of the entire 16S 5'-domain. The rich detail available from the footprinting data showed that the secondary assembly protein S16 suppresses non-native structures in the 16S 5'-domain. In doing so, S16 enables a conformational switch distant from its own binding site, which may play a role in establishing interactions with other domains of the 30S subunit. Together, the footprinting results show how protein-induced changes in RNA structure are communicated over long distances, ensuring cooperative assembly of even very large RNA-protein complexes such as the ribosome.
Collapse
Affiliation(s)
- Sarah A. Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Abstract
Many non-coding RNAs fold into complex three-dimensional structures, yet the self-assembly of RNA structure is hampered by mispairing, weak tertiary interactions, electrostatic barriers, and the frequent requirement that the 5' and 3' ends of the transcript interact. This rugged free energy landscape for RNA folding means that some RNA molecules in a population rapidly form their native structure, while many others become kinetically trapped in misfolded conformations. Transient binding of RNA chaperone proteins destabilize misfolded intermediates and lower the transition states between conformations, producing a smoother landscape that increases the rate of folding and the probability that a molecule will find the native structure. DEAD-box proteins couple the chemical potential of ATP hydrolysis with repetitive cycles of RNA binding and release, expanding the range of conditions under which they can refold RNA structures.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Abstract
Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
13
|
Kinetic cooperativity in Escherichia coli 30S ribosomal subunit reconstitution reveals additional complexity in the assembly landscape. Proc Natl Acad Sci U S A 2010; 107:5417-22. [PMID: 20207951 DOI: 10.1073/pnas.0912007107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Escherichia coli 30S ribosomal subunit self-assembles in vitro in a hierarchical manner, with the RNA binding by proteins enabled by the prior binding of others under equilibrium conditions. Early 16S rRNA binding proteins also bind faster than late-binding proteins, but the specific causes for the slow binding of late proteins remain unclear. Previously, a pulse-chase monitored by quantitative mass spectrometry method was developed for monitoring 30S subunit assembly kinetics, and here a modified experimental scheme was used to probe kinetic cooperativity by including a step where subsets of ribosomal proteins bind and initiate assembly prior to the pulse-chase kinetics. In this work, 30S ribosomal subunit kinetic reconstitution experiments revealed that thermodynamic dependency does not always correlate with kinetic cooperativity. Some folding transitions that cause subsequent protein binding to be more energetically favorable do not result in faster protein binding. Although 3(') domain primary protein S7 is required for RNA binding by both proteins S9 and S19, prior binding of S7 accelerates the binding of S9, but not S19, indicating there is an additional mechanistic step required for S19 to bind. Such data on kinetic cooperativity and the presence of multiphasic assembly kinetics reveal complexity in the assembly landscape that was previously hidden.
Collapse
|
14
|
Abstract
As RNAs fold to functional structures, they traverse complex energy landscapes that include many partially folded and misfolded intermediates. For structured RNAs that possess catalytic activity, this activity can provide a powerful means of monitoring folding that is complementary to biophysical approaches. RNA catalysis can be used to track accumulation of the native RNA specifically and quantitatively, readily distinguishing the native structure from intermediates that resemble it and may not be differentiated by other approaches. Here, we outline how to design and interpret experiments using catalytic activity to monitor RNA folding, and we summarize adaptations of the method that have been used to probe aspects of folding well beyond determination of the folding rates.
Collapse
Affiliation(s)
- Yaqi Wan
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texasat Austin, Austin, Texas, USA
| | | | | |
Collapse
|
15
|
Kashiwagi N, Furuta H, Ikawa Y. Primitive templated catalysis of a peptide ligation by self-folding RNAs. Nucleic Acids Res 2009; 37:2574-83. [PMID: 19264804 PMCID: PMC2677871 DOI: 10.1093/nar/gkp111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA–polypeptide complexes (RNPs), which play various roles in extant biological systems, have been suggested to have been important in the early stages of the molecular evolution of life. At a certain developmental stage of ancient RNPs, their RNA and polypeptide components have been proposed to evolve in a reciprocal manner to establish highly elaborate structures and functions. We have constructed a simple model system, from which a cooperative evolution system of RNA and polypeptide components could be developed. Based on the observation that several RNAs modestly accelerated the chemical ligation of the two basic peptides. We have designed an RNA molecule possessing two peptide binding sites that capture the two peptides. This designed RNA can also accelerate the peptide ligation. The resulting ligated peptide, which has two RNA-binding sites, can in turn function as a trans-acting factor that enhances the endonuclease activity catalyzed by the designed RNA.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
16
|
Manosas M, Junier I, Ritort F. Force-induced misfolding in RNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:061925. [PMID: 19256886 DOI: 10.1103/physreve.78.061925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Indexed: 05/27/2023]
Abstract
RNA folding is a kinetic process governed by the competition of a large number of structures stabilized by the transient formation of base pairs that may induce complex folding pathways and the formation of misfolded structures. Despite its importance in modern biophysics, the current understanding of RNA folding kinetics is limited by the complex interplay between the weak base pair interactions that stabilize the native structure and the disordering effect of thermal forces. The possibility of mechanically pulling individual molecules offers a new perspective to understand the folding of nucleic acids. Here we investigate the folding and misfolding mechanism in RNA secondary structures pulled by mechanical forces. We introduce a model based on the identification of the minimal set of structures that reproduce the patterns of force-extension curves obtained in single molecule experiments. The model requires only two fitting parameters: the attempt frequency at the level of individual base pairs and a parameter associated to a free-energy correction that accounts for the configurational entropy of an exponentially large number of neglected secondary structures. We apply the model to interpret results recently obtained in pulling experiments in the three-helix junction S15 RNA molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where force favors the formation of a stable non-native hairpin. The model reproduces the pattern of unfolding and refolding force-extension curves, the distribution of breakage forces, and the misfolding probability obtained in the experiments.
Collapse
Affiliation(s)
- M Manosas
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | | | | |
Collapse
|
17
|
Abstract
This review compares the folding behavior of proteins and RNAs. Topics covered include the role of topology in the determination of folding rates, major folding events including collapse, properties of denatured states, pathway heterogeneity, and the influence of the mode of initiation on the folding pathway.
Collapse
Affiliation(s)
- Tobin R Sosnick
- University of Chicago, 929 East 57th Street, GCIS W107E, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Chance MR, Brenowitz M, Sullivan M, Sclavi B, Maleknia SD, Ralston C. A new method for examining the dynamics of macromolecules: Time-resolved synchrotron x-ray “footprinting”. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/08940889808260960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Abstract
Ribonuclease P is among the first ribozymes discovered, and is the only ubiquitously occurring ribozyme besides the ribosome. The bacterial RNase P RNA is catalytically active without its protein subunit and has been studied for over two decades as a model system for RNA catalysis, structure and folding. This review focuses on the thermodynamic, kinetic and structural frameworks derived from the folding studies of bacterial RNase P RNA.
Collapse
|
20
|
Lease RA, Adilakshmi T, Heilman-Miller S, Woodson SA. Communication between RNA folding domains revealed by folding of circularly permuted ribozymes. J Mol Biol 2007; 373:197-210. [PMID: 17765924 PMCID: PMC2175375 DOI: 10.1016/j.jmb.2007.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.
Collapse
Affiliation(s)
| | | | | | - Sarah A. Woodson
- *Corresponding author: , tel: (410) 516-2015, fax: (410) 516-4118
| |
Collapse
|
21
|
Mohanty U, Spasic A, Kim HD, Chu S. Ion atmosphere of three-way junction nucleic acid. J Phys Chem B 2007; 109:21369-74. [PMID: 16853772 DOI: 10.1021/jp050005o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ion atmosphere of three-armed symmetric Y-shaped and asymmetric y-shaped A-RNA junctions in aqueous solution containing multivalent ions is described within the framework of a polyelectrolyte model. The fraction of "screening counterions" per polyion charge that shield the residual unneutralized charges from interacting with one another and the condensed counterions per polyion charge as a function of sodium and magnesium ion concentrations are determined. The predictions for the slope of log(k(o)/k(f)) as a function of Na+ and Mg2+ concentration, where k(o) and k(f) are the opening and folding rates of the three-helix junction molecule, respectively, are compared with experimental data (Kim et al. Proc. Nat. Acad. Sci. U.S.A. 2002, 96, 9077-9082).
Collapse
Affiliation(s)
- Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | |
Collapse
|
22
|
Jackson SA, Koduvayur S, Woodson SA. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. RNA (NEW YORK, N.Y.) 2006; 12:2149-59. [PMID: 17135489 PMCID: PMC1664722 DOI: 10.1261/rna.184206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stable RNAs must form specific three-dimensional structures, yet many RNAs become kinetically trapped in misfolded conformations. To understand the factors that control the accuracy of RNA folding in the cell, the self-splicing activity of the Tetrahymena group I intron was compared in different genetic contexts in budding yeast. The extent of splicing was 98% when the intron was placed in its natural rDNA context, but only 3% when the intron was expressed in an exogenous pre-mRNA. Further experiments showed that the probability of forming the active intron structure depends on local sequence context and transcription by Pol I. Pre-rRNAs decayed at similar rates, whether the intron was wild type or inactivated by an internal deletion, suggesting that most of the unreacted pre-rRNA is incompetent to splice. Northern blots and complementation assays showed that mutations that destabilize the intron tertiary structure inhibited self-splicing and processing of internal transcribed spacer 2. The data are consistent with partitioning of pre-rRNAs into active and inactive populations. The misfolded RNAs are sequestered and degraded without refolding to a significant extent. Thus, the initial fidelity of folding can dictate the intracellular fate of transcripts containing this group I intron.
Collapse
Affiliation(s)
- Scott A Jackson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
23
|
Koculi E, Thirumalai D, Woodson SA. Counterion charge density determines the position and plasticity of RNA folding transition states. J Mol Biol 2006; 359:446-54. [PMID: 16626736 DOI: 10.1016/j.jmb.2006.03.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 03/04/2006] [Accepted: 03/15/2006] [Indexed: 11/30/2022]
Abstract
The self-assembly of RNA structure depends on the interactions of counterions with the RNA and with each other. Comparison of various polyamines showed that the tertiary structure of the Tetrahymena ribozyme is more stable when the counterions are small and highly charged. By monitoring the folding kinetics of the ribozyme as a function of polyamine concentration, we now find that the charge density of the counterions determines the positions of the folding transition states. The transition state ensemble (TSE) between U and N moves away from the native state as the counterion valence and charge density increase, as predicted by the Hammond postulate. The TSE is broader and less structured when the RNA is refolded in polyamines rather than Mg2+. That the charge density of the counterions determines the plasticity of the TSE demonstrates the importance of interactions among condensed counterions for the self-assembly of RNA structures. We propose that the major barrier to RNA folding is dominated by entropy changes when counterion charge density is low and enthalpy differences when it is high.
Collapse
Affiliation(s)
- Eda Koculi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
24
|
Laederach A, Shcherbakova I, Liang MP, Brenowitz M, Altman RB. Local kinetic measures of macromolecular structure reveal partitioning among multiple parallel pathways from the earliest steps in the folding of a large RNA molecule. J Mol Biol 2006; 358:1179-90. [PMID: 16574145 PMCID: PMC2621361 DOI: 10.1016/j.jmb.2006.02.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
At the heart of the RNA folding problem is the number, structures, and relationships among the intermediates that populate the folding pathways of most large RNA molecules. Unique insight into the structural dynamics of these intermediates can be gleaned from the time-dependent changes in local probes of macromolecular conformation (e.g. reports on individual nucleotide solvent accessibility offered by hydroxyl radical (()OH) footprinting). Local measures distributed around a macromolecule individually illuminate the ensemble of separate changes that constitute a folding reaction. Folding pathway reconstruction from a multitude of these individual measures is daunting due to the combinatorial explosion of possible kinetic models as the number of independent local measures increases. Fortunately, clustering of time progress curves sufficiently reduces the dimensionality of the data so as to make reconstruction computationally tractable. The most likely folding topology and intermediates can then be identified by exhaustively enumerating all possible kinetic models on a super-computer grid. The folding pathways and measures of the relative flux through them were determined for Mg(2+) and Na(+)-mediated folding of the Tetrahymena thermophila group I intron using this combined experimental and computational approach. The flux during Mg(2+)-mediated folding is divided among numerous parallel pathways. In contrast, the flux during the Na(+)-mediated reaction is predominantly restricted through three pathways, one of which is without detectable passage through intermediates. Under both conditions, the folding reaction is highly parallel with no single pathway accounting for more than 50% of the molecular flux. This suggests that RNA folding is non-sequential under a variety of different experimental conditions even at the earliest stages of folding. This study provides a template for the systematic analysis of the time-evolution of RNA structure from ensembles of local measures that will illuminate the chemical and physical characteristics of each step in the process. The applicability of this analysis approach to other macromolecules is discussed.
Collapse
Affiliation(s)
- Alain Laederach
- Department of Genetics, Stanford University, 300 Pasteur Dr. Stanford, Ca. 94305
| | - Inna Shcherbakova
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Mike P. Liang
- Department of Genetics, Stanford University, 300 Pasteur Dr. Stanford, Ca. 94305
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
- to whom correspondence may be addressed, Tel: (650) 725−3394 Fax: (650) 725−3863, e-mail: and Tel: (718) 430−3179 Fax: (718) 430−8565,
| | - Russ B. Altman
- Department of Genetics, Stanford University, 300 Pasteur Dr. Stanford, Ca. 94305
- to whom correspondence may be addressed, Tel: (650) 725−3394 Fax: (650) 725−3863, e-mail: and Tel: (718) 430−3179 Fax: (718) 430−8565,
| |
Collapse
|
25
|
Guo F, Gooding AR, Cech TR. Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme. RNA (NEW YORK, N.Y.) 2006; 12:387-95. [PMID: 16431981 PMCID: PMC1383578 DOI: 10.1261/rna.2198206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although general mechanisms of RNA folding and catalysis have been elucidated, little is known about how ribozymes achieve structural stability at high temperature. A previous in vitro evolution experiment identified a small number of mutations that significantly increase the thermostability of the tertiary structure of the Tetrahymena ribozyme. Because we also determined the crystal structure of this thermostable ribozyme, we have for the first time the opportunity to compare the structural interactions and thermodynamic contributions of individual nucleotides in a ribozyme. We investigated the contribution of five mutations to thermostability by using temperature gradient gel electrophoresis. Unlike the case with several well-studied proteins, the effects of individual mutations on thermostability of this RNA were highly context dependent. The three most important mutations for thermostability were actually destabilizing in the wild-type background. A269G and A304G contributed to stability only when present as a pair, consistent with their proximity in the ribozyme structure. In an evolutionary context, this work supports and extends the idea that one advantage of protein enzyme systems over an RNA world is the ability of proteins to accumulate stabilizing single-site mutations, whereas RNA may often require much rarer double mutations to improve the stability of both its tertiary and secondary structures.
Collapse
Affiliation(s)
- Feng Guo
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | |
Collapse
|
26
|
Woodson SA. Structure and assembly of group I introns. Curr Opin Struct Biol 2005; 15:324-30. [PMID: 15922592 DOI: 10.1016/j.sbi.2005.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/21/2005] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
Self-splicing group I introns have served as a model for RNA catalysis and folding for over two decades. New three-dimensional structures now bring the details into view. Revelations include an unanticipated turn in the RNA backbone around the guanosine-binding pocket. Two metal ions in the active site coordinate the substrate and phosphates from all three helical domains.
Collapse
Affiliation(s)
- Sarah A Woodson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
27
|
Shcherbakova I, Gupta S, Chance MR, Brenowitz M. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J Mol Biol 2004; 342:1431-42. [PMID: 15364572 DOI: 10.1016/j.jmb.2004.07.092] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 11/23/2022]
Abstract
The time-course of monovalent cation-induced folding of the L-21 Sca1 Tetrahymena thermophila ribozyme and a selected mutant was quantitatively followed using synchrotron X-ray (.OH) footprinting. Initiating folding by increasing the concentration of either Na+ or K+ to 1.5M from an initial condition of approximately 0.008 M Na+ at 42 degrees C resulted in the complete formation of tertiary contacts within the P5abc subdomain and between the peripheral helices within the dead time of our measurements (k>50 s(-1)). These results contrast with folding rates of 2-0.2 s(-1) previously observed for formation of these contacts in 10mM Mg2+ from the same initial condition. Thus, the initial formation of native tertiary contacts is inhibited by divalent but not monovalent cations. The native contacts within the catalytic core form without a detectable burst phase at rates of 0.4-1.0 s(-1) in a manner reminiscent of the Mg2+-dependent folding behavior, although tenfold faster. The tertiary interactions stabilizing the catalytic core interaction with P4-P6 and P2.1, as well as one of the protections internal for the P4-P6 domain, display progress curves with appreciable burst amplitudes and a phase comparable in rate to that of the catalytic core. That the slow folding of the ribozyme's core is a consequence of the alt-P3 secondary structure is shown by the 100% burst phase amplitudes that are observed for folding of the U273A mutant ribozyme within which the native secondary structure (P3) is strengthened. Thus, formation of a misfolded intermediate(s) resulting from the alt-P3 secondary structure is independent of ion valency while the rate at which the respective intermediates are resolved is sensitive to ion valency. The overall portrait painted by these results is that ion valency differentially affects steps in the folding process and that folding in monovalent ion alone for the U273A mutant Tetrahymena ribozyme is fast and direct.
Collapse
Affiliation(s)
- Inna Shcherbakova
- Department of Biochemistry and Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
28
|
Koduvayur SP, Woodson SA. Intracellular folding of the Tetrahymena group I intron depends on exon sequence and promoter choice. RNA (NEW YORK, N.Y.) 2004; 10:1526-32. [PMID: 15337845 PMCID: PMC1370639 DOI: 10.1261/rna.7880404] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Tetrahymena group I intron splices 20 to 50 times faster in Tetrahymena than in vitro, implying that the intron rapidly adopts its active conformation in the cell. The importance of cotranscriptional folding and the contribution of the rRNA exons to the stability of the active pre-RNA structure were investigated by comparing the activity of minimal pre-RNAs expressed in Escherichia coli. Pre-RNAs containing exons derived from E. coli 23 S rRNA were three to four times more active than the wild-type Tetrahymena pre-RNA. E. coli transcripts of the chimeric E. coli pre-RNA were two to eight times more active than were T7 transcripts. However, the effect of cotranscriptional folding depends on exon sequences. Unexpectedly, the unspliced pre-RNA decays more slowly than predicted from the rate of splicing. This observation is best explained by partitioning of transcripts into active and inactive pools. We propose that the active pool splices within a few seconds, whereas the inactive pool is degraded without appreciable splicing.
Collapse
Affiliation(s)
- Sujatha P Koduvayur
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| | | |
Collapse
|
29
|
Xayaphoummine A, Bucher T, Thalmann F, Isambert H. Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc Natl Acad Sci U S A 2003; 100:15310-5. [PMID: 14676318 PMCID: PMC307563 DOI: 10.1073/pnas.2536430100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Indexed: 11/18/2022] Open
Abstract
Ab initio RNA secondary structure predictions have long dismissed helices interior to loops, so-called pseudoknots, despite their structural importance. Here we report that many pseudoknots can be predicted through long-time-scale RNA-folding simulations, which follow the stochastic closing and opening of individual RNA helices. The numerical efficacy of these stochastic simulations relies on an O(n2) clustering algorithm that computes time averages over a continuously updated set of n reference structures. Applying this exact stochastic clustering approach, we typically obtain a 5- to 100-fold simulation speed-up for RNA sequences up to 400 bases, while the effective acceleration can be as high as 105-fold for short, multistable molecules (
Collapse
Affiliation(s)
- A Xayaphoummine
- Laboratoire de Dynamique des Fluides Complexes, Centre National de la Recherche Scientifique-Université Louis Pasteur, Institut de Physique, 3 Rue de l'Université, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
30
|
Abstract
Divalent metal ions are required for splicing of group I introns, but their role in maintaining the structure of the active site is still under investigation. Ribonuclease and hydroxyl radical footprinting of a small group I intron from Azoarcus pre-tRNA(Ile) showed that tertiary interactions between helical domains are stable in a variety of cations. Only Mg(2+), however, induced a conformational change in the intron core that correlates with self-splicing activity. Three metal ion binding sites in the catalytic core were identified by Tb(III)-dependent cleavage. Two of these are near bound substrates in a three-dimensional model of the ribozyme. A third metal ion site is near an A minor motif in P3. In the pre-tRNA, Tb(3+) cleavage was redirected to the 5' and 3' splice sites, consistent with metal-dependent activation of splice site phosphodiesters. The results show that many counterions induce global folding, but organization of the group I active site is specifically linked to Mg(2+) binding at a few sites.
Collapse
Affiliation(s)
- Prashanth Rangan
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-4118, USA
| | | |
Collapse
|
31
|
Uchida T, Takamoto K, He Q, Chance MR, Brenowitz M. Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme. J Mol Biol 2003; 328:463-78. [PMID: 12691754 DOI: 10.1016/s0022-2836(03)00247-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synchrotron hydroxyl radical (*OH) footprinting is a technique that monitors the local changes in solvent accessibility of the RNA backbone on milliseconds to minutes time-scales. The Mg(2+)-dependent folding of the L-21 Sca 1 Tetrahymena thermophila ribozyme has been followed using this technique at an elevated concentration of monovalent ion (200 mM NaCl) and as a function of the initial annealing conditions and substrate. Previous studies conducted at low concentrations of monovalent ion displayed sequential folding of the P4-P6 domain, the peripheral helices and the catalytic core, with each protection displaying monophasic kinetics. For ribozyme annealed in buffer containing 200 mM NaCl and folded by the addition of 10 mM MgCl(2), multiple kinetic phases are observed for *OH protections throughout the ribozyme. The independently folding P4-P6 domain is the first to fold with its protections displaying 50-90% burst phase amplitudes. That the folding of P4-P6 within the ribozyme does not display the 100% burst phase of isolated P4-P6 at 200 mM NaCl shows that interactions with the remainder of the ribozyme impede this domain's folding. In addition, *OH protections constituting each side of a tertiary contact are not coincident in some cases, consistent with the formation of transient non-native interactions. While the peripheral contacts and triple helical scaffold exhibit substantial burst phases, the slowest protection to appear is J8/7 in the catalytic core, which displays a minimal burst amplitude and whose formation is coincident with the recovery of catalytic activity. The number of kinetic phases as well as their amplitudes and rates are different when the ribozyme is annealed in low-salt buffer and folded by the concomitant addition of monovalent and divalent cations. Annealed substrate changes the partitioning of the ribozyme among the multiple folding populations. These results provide a map of the early steps in the ribozyme's folding landscape and the degree to which the preferred pathways are dependent upon the initial reaction conditions.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
32
|
Ikawa Y, Yoshimura T, Hara H, Shiraishi H, Inoue T. Two conserved structural components, A-rich bulge and P4 XJ6/7 base-triples, in activating the group I ribozymes. Genes Cells 2002; 7:1205-15. [PMID: 12485161 DOI: 10.1046/j.1365-2443.2002.00601.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The A-rich bulge of the group I intron ribozyme, a highly conserved structural element in its P5 peripheral region, plays a significant role in activating the ribozyme. The bulge has been known to interact with the P4 stem forming P4 XJ6/7 base-triples in the conserved core. The base-triples by themselves have also been identified as a distinctive element responsible for enhancing the activity of the ribozyme. RESULTS A weakly active variant of the Tetrahymena ribozyme lacking the P5 extension was dramatically activated by the addition of an A-rich bulge at the peripheral region, or by replacement of the original P4 XJ6/7 base-triples in the core structure with more stabilized isosteric ones. Biochemical analyses showed that the two methods of activation affect the ribozyme differently. CONCLUSIONS The long-range interaction between the A-rich bulge and P4 or additionally stabilized P4 XJ6/7 base-triples can contribute dramatically to activation of the Tetrahymena ribozyme. Both improve the kcat value, which represents the rate of the limiting step of the ribozyme reaction when its binding site is saturated with GTP. However, the bulge or the modified base-triples gave a moderate reduction or considerable increase, respectively, to the Km(GTP) value.
Collapse
Affiliation(s)
- Yoshiya Ikawa
- Graduate School of Biostudies, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
33
|
Waldsich C, Grossberger R, Schroeder R. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev 2002; 16:2300-12. [PMID: 12208852 PMCID: PMC186668 DOI: 10.1101/gad.231302] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Efficient splicing of the td group I intron in vivo is dependent on the ribosome. In the absence of translation, the pre-mRNA is trapped in nonnative-splicing-incompetent conformations. Alternatively, folding of the pre-mRNA can be promoted by the RNA chaperone StpA or by the group I intron-specific splicing factor Cyt-18. To understand the mechanism of action of RNA chaperones, we probed the impact of StpA on the structure of the td intron in vivo. Our data suggest that StpA loosens tertiary interactions. The most prominent structural change was the opening of the base triples, which are involved in the correct orientation of the two major intron core domains. In line with the destabilizing activity of StpA, splicing of mutant introns with a reduced structural stability is sensitive to StpA. In contrast, Cyt-18 strengthens tertiary contacts, thereby rescuing splicing of structurally compromised td mutants in vivo. Our data provide direct evidence for protein-induced conformational changes within catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the overall compactness of the td intron in vivo.
Collapse
Affiliation(s)
- Christina Waldsich
- Institute of Microbiology and Genetics, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | |
Collapse
|
34
|
Abstract
Many biologically active RNAs show a switch in their secondary structure, which is accompanied by changes in their function. Such changes in secondary structure often require trans-acting factors, e.g. RNA chaperones. However, several biologically active RNAs do not require trans-acting factors for this structural switch, which is therefore indicated here as a "self-induced switch". These self-induced structural switches have several characteristics in common. They all start from a metastable structure, which is maintained for some time allowing or blocking a particular function of the RNA. Hereafter, a structural element becomes available, e.g. during transcription, triggering a rapid transition into a stable conformation, which again is accompanied by either a gain or loss of function. A further common element of this type of switches is the involvement of a branch migration or strand displacement reaction, which lowers the energy barrier of the reaction sufficiently to allow rapid refolding. Here, we review a number of these self-induced switches in RNA secondary structure as proposed for several systems. A general model for this type of switches is presented, showing its importance in the biology of functionally active RNAs.
Collapse
Affiliation(s)
- Jord H A Nagel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
35
|
Ohki Y, Ikawa Y, Shiraishi H, Inoue T. Mispaired P3 region in the hierarchical folding pathway of the Tetrahymena ribozyme. Genes Cells 2002; 7:851-60. [PMID: 12167162 DOI: 10.1046/j.1365-2443.2002.00567.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Tetrahymena group I ribozyme folds into a complex three-dimensional structure for performing catalytic reactions. The catalysis depends on its catalytic core consisting of two helical domains, P4-P6 and P3-P7, connected by single stranded regions. In the folding process, most of this ribozyme folds in a hierarchical manner in which a kinetically stable intermediate determines the overall folding rate. RESULTS Although the nature of this intermediate has not yet been elucidated, a mispaired P3 stem (alt-P3) appears a likely candidate. To examine the effects of the alt-P3 structure on the kinetic and thermodynamic properties of the active structure of the ribozyme or its P3-P7 domain formation, we prepared and analysed variant ribozymes in which relative stabilities of the original P3 and alt-P3 structure were altered systematically. CONCLUSION The results indicate that the alt-P3 structure is not the major rate-limiting factor in the folding process.
Collapse
Affiliation(s)
- Yasushi Ohki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
36
|
Nagel JHA, Gultyaev AP, Oistämö KJ, Gerdes K, Pleij CWA. A pH-jump approach for investigating secondary structure refolding kinetics in RNA. Nucleic Acids Res 2002; 30:e63. [PMID: 12087188 PMCID: PMC117070 DOI: 10.1093/nar/gnf057] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been shown that premature translation of the plasmid-mediated toxin in hok/sok of plasmid R1 and pnd/pndB of plasmid R483 is prevented during transcription of the hok and pnd mRNAs by the formation of metastable hairpins at the 5'-end of the mRNA. Here, an experimental approach is presented, which allows the accurate measurement of the refolding kinetics of the 5'-end RNA fragments in vitro without chemically modifying the RNA. The method is based on acid denaturation followed by a pH-jump to neutral pH as a novel way to trap kinetically favoured RNA secondary structures, allowing the measurement of a wide range of biologically relevant refolding rates, with or without the use of standard stopped-flow equipment. The refolding rates from the metastable to the stable conformation in both the hok74 and pnd58 5'-end RNA fragments were determined by using UV absorbance changes corresponding to the structural rearrangements. The measured energy barriers showed that the refolding path does not need complete unfolding of the metastable structures before the formation of the final structures. Two alternative models of such a pathway are discussed.
Collapse
Affiliation(s)
- J H A Nagel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Fang XW, Thiyagarajan P, Sosnick TR, Pan T. The rate-limiting step in the folding of a large ribozyme without kinetic traps. Proc Natl Acad Sci U S A 2002; 99:8518-23. [PMID: 12084911 PMCID: PMC124294 DOI: 10.1073/pnas.142288399] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in RNA folding is the nature of the rate-limiting step. Folding of large RNAs often is trapped by the need to undo misfolded structures, which precludes the study of the other, potentially more interesting aspects in the rate-limiting step, such as conformational search, metal ion binding, and the role of productive intermediates. The catalytic domain of the Bacillus subtilis RNase P RNA folds without a kinetic trap, thereby providing an ideal system to elucidate these steps. We analyzed the folding kinetics by using fluorescence and absorbance spectroscopies, catalytic activity, and synchrotron small-angle x-ray scattering. Folding begins with the rapid formation of early intermediates wherein the majority of conformational search occurs, followed by the slower formation of subsequent intermediates. Before the rate-limiting step, more than 98% of the total structure has formed. The rate-limiting step is a small-scale structural rearrangement involving prebound metal ions.
Collapse
Affiliation(s)
- X-W Fang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
38
|
Oe Y, Ikawa Y, Shiraishi H, Inoue T. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme. Biochem Biophys Res Commun 2002; 291:1225-31. [PMID: 11883948 DOI: 10.1006/bbrc.2002.6609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The highly conserved P3-P7 domain of the Group I intron ribozymes is known to contain essential elements, such as the binding site for the cofactor guanosine, required for conducting the splicing reaction. We investigated the domain of the Tetrahymena intron ribozyme and its variants in order to clarify the relationship between its stability and function. We found that the destabilization of the P3-P7 domain facilitates the active structure formation at high magnesium ion concentrations where the formation is retarded for the wild type. The destabilized domain also increases K(GTP)(m) although this can be compensated by increasing the concentration of Mg(2+), indicating that the stable domain is required for establishing a tight guanosine binding site. The results suggest that the stability of the domain affects the rate-limiting step in the RNA folding pathway and also regulates the efficiency of the splicing reaction.
Collapse
Affiliation(s)
- Yoshihiko Oe
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
We describe a conceptual framework for understanding the way large RNA molecules fold based on the notion that their free-energy landscape is rugged. A key prediction of our theory is that RNA folding can be described by the kinetic partitioning mechanism (KPM). According to KPM a small fraction of molecules folds rapidly to the native state whereas the remaining fraction is kinetically trapped in a low free-energy non-native state. This model provides a unified description of the way RNA and proteins fold. Single-molecule experiments on Tetrahymena ribozyme, which directly validate our theory, are analyzed using KPM. We also describe the earliest events that occur on microsecond time scales in RNA folding. These must involve collapse of RNA molecules that are mediated by counterion-condensation. Estimates of time scales for the initial events in RNA folding are provided for the Tetrahymena ribozyme.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | | | |
Collapse
|
40
|
Oe Y, Ikawa Y, Shiraishi H, Inoue T. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction. Biochem Biophys Res Commun 2001; 284:948-54. [PMID: 11409885 DOI: 10.1006/bbrc.2001.5072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P7 is highly conserved in Group I self-splicing intron ribozymes. This region is known to coordinate metal ions and bind a cofactor guanosine required for the self-splicing. To further investigate the fundamental role of the corresponding region in the Tetrahymena ribozyme, we attempted to identify minimal requirements for the base-paired region excluding the guanosine binding site. We discovered that a variety of sequences are eligible and its derivatives possessing extra nucleotide(s) can still conduct the first step of splicing, indicating that no particular base-pairing is essential in this region for conducting the reaction in vitro. The results provide two hypotheses for the fundamental role of this region: (i) if the region contains element(s) that are strictly required in the catalysis, they are not necessarily tightly fixed in the ribozyme and (ii) if not, its fundamental role may simply be to coordinate neighboring regions that are directly involved in the catalysis.
Collapse
Affiliation(s)
- Y Oe
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
41
|
Russell R, Herschlag D. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway. J Mol Biol 2001; 308:839-51. [PMID: 11352576 DOI: 10.1006/jmbi.2001.4751] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large, structured RNAs traverse folding landscapes in which intermediates and long-lived misfolded states are common. To obtain a comprehensive description of the folding landscape for a structured RNA, it is necessary to understand the connections between productive folding pathways and pathways to these misfolded states. The Tetrahymena group I ribozyme partitions between folding to the native state and to a long-lived misfolded conformation. Here, we show that the observed rate constant for commitment to fold to the native or misfolded states is 1.9 min(-1) (37 degrees C, 10 mM Mg(2+)), the same within error as the rate constant for overall folding to the native state. Thus, the commitment to alternative folding pathways is made late in the folding process, concomitant with or after the rate-limiting step for overall folding. The ribozyme forms much of its tertiary structure significantly faster than it reaches this commitment point and the tertiary structure is expected to be stable, suggesting that the commitment to fold along pathways to the native or misfolded states is made from a partially structured intermediate. These results allow the misfolded conformation to be incorporated into a folding framework that reconciles previous data and gives quantitative information about the energetic topology of the folding landscape for this RNA.
Collapse
Affiliation(s)
- R Russell
- Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
42
|
Abstract
Large RNAs often have rugged folding energy landscapes that result in severe misfolding and slow folding kinetics. Several interdependent parameters that contribute to misfolding are now well understood and examples of large RNAs and ribonucleoproteins that avoid kinetic traps have been reported. These advances have facilitated the exploration of fundamental RNA folding processes that were previously inaccessible.
Collapse
Affiliation(s)
- D K Treiber
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
43
|
Ohki Y, Ikawa Y, Shiraishi H, Inoue T. A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure. FEBS Lett 2001; 493:95-100. [PMID: 11287003 DOI: 10.1016/s0014-5793(01)02279-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Tetrahymena group I ribozyme requires a hierarchical folding process to form its correct three-dimensional structure. Ribozyme activity depends on the catalytic core consisting of two domains, P4-P6 and P3-P7, connected by a triple-helical scaffold. The folding proceeds in the following order: (i) fast folding of the P4-P6 domain, (ii) slow folding of the P3-P7 domain, and (iii) structure rearrangement to form the active ribozyme structure. The third step is believed to directly determine the conformation of the active catalytic domain, but as yet the precise mechanisms remain to be elucidated. To investigate the folding kinetics of this step, we analyzed mutant ribozymes having base substitution(s) in the triple-helical scaffold and found that disruption of the scaffold at A105G results in modest slowing of the P3-P7 folding (1.9-fold) and acceleration of step (iii) by 5.9-fold. These results suggest that disruption or destabilization of the scaffold is a normal component in the formation process of the active structure of the wild type ribozyme.
Collapse
Affiliation(s)
- Y Ohki
- Graduate School of Biostudies, Kyoto University, 606-8502, Kyoto, Japan
| | | | | | | |
Collapse
|
44
|
Treiber DK, Williamson JR. Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction. J Mol Biol 2001; 305:11-21. [PMID: 11114243 DOI: 10.1006/jmbi.2000.4253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The free energy landscape for the folding of large, multidomain RNAs is rugged, and kinetically trapped, misfolded intermediates are a hallmark of RNA folding reactions. Here, we examine the role of a native loop-receptor interaction in determining the ruggedness of the energy landscape for folding of the Tetrahymena ribozyme. We demonstrate a progressive smoothing of the energy landscape for ribozyme folding as the strength of the loop-receptor interaction is reduced. Remarkably, with the most severe mutation, global folding is more rapid than for the wild-type ribozyme and proceeds in a concerted fashion without the accumulation of long-lived kinetic intermediates. The results demonstrate that a complex interplay between native tertiary interactions, divalent ion concentration, and non-native secondary structure determines the ruggedness of the energy landscape. Furthermore, the results suggest that kinetic folding transitions involving large regions of highly structured RNAs can proceed in a concerted fashion, in the absence of significant stable, preorganized tertiary structure.
Collapse
Affiliation(s)
- D K Treiber
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology MB33, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | |
Collapse
|
45
|
Treiber DK, Williamson JR. Kinetic oligonucleotide hybridization for monitoring kinetic folding of large RNAs. Methods Enzymol 2000; 317:330-53. [PMID: 10829289 DOI: 10.1016/s0076-6879(00)17023-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- D K Treiber
- Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
46
|
Abstract
Divalent cations, like magnesium, are crucial for the structural integrity and biological activity of RNA. In this article, we present a picture of how magnesium stabilizes a particular folded form of RNA. The overall stabilization of RNA by Mg2+ is given by the free energy of transferring RNA from a reference univalent salt solution to a mixed salt solution. This term has favorable energetic contributions from two distinct modes of binding: diffuse binding and site binding. In diffuse binding, fully hydrated Mg ions interact with the RNA via nonspecific long-range electrostatic interactions. In site binding, dehydrated Mg2+ interacts with anionic ligands specifically arranged by the RNA fold to act as coordinating ligands for the mental ion. Each of these modes has a strong coulombic contribution to binding; however, site binding is also characterized by substantial changes in ion solvation and other nonelectrostatic contributions. We will show how these energetic differences can be exploited to experimentally distinguish between these two classes of ions using analyses of binding polynomials. We survey a number of specific systems in which Mg(2+)-RNA interactions have been studied. In well-characterized systems such as certain tRNAs and some rRNA fragments these studies show that site-bound ions can play an important role in RNA stability. However, the crucial role of diffusely bound ions is also evident. We emphasize that diffuse binding can only be described rigorously by a model that accounts for long-range electrostatic forces. To fully understand the role of magnesium ions in RNA stability, theoretical models describing electrostatic forces in systems with complicated structures must be developed.
Collapse
Affiliation(s)
- V K Misra
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
47
|
Abstract
Endowing nucleic acid catalysts with allosteric properties provides new prospects for RNA and DNA as controllable therapeutic agents or as sensors of their cognate effector compounds. The ability to engineer RNA catalysts that are allosterically regulated by effector binding has been propelled by the union of modular rational design principles and powerful combinatorial strategies.
Collapse
Affiliation(s)
- G A Soukup
- Department of Molecular, Cellular and Development Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
48
|
Maltseva T, Földesi A, Chattopadhyaya J. The identification of the A-type RNA helices in a 55mer RNA by selective incorporation of deuterium-labelled nucleotide residues (Uppsala NMR-window concept). JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2000; 42:153-78. [PMID: 10737221 DOI: 10.1016/s0165-022x(99)00057-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 55-nt long RNA, modelling a three-way junction, with non-uniformly incorporated deuterated nucleotides has been synthesised in a pure form. The NMR-window part in this partially deuterated 55mer RNA consists of natural non-enriched nucleotide blocks at the three-way junction (shown in a square box in Fig. 2), whereas all other nucleotides of the rest of the molecule are partially deuterated (> 97 atom% 2H at C2', C3', C5', C5, and approximately 50 atom% 2H at C4'). The secondary structure of this 55mer RNA was determined by 2D 1H NOESY spectroscopy in D2O or in 10% D2O-H2O mixture. The use of deuterated building blocks in the specific region of the 55mer RNA allowed us to identify two distinct A-type RNA helices in a straightforward manner by observing connectivities of H1' with the basepaired imino and the aromatic H2 of all adenosine nucleotides as the first step for the determination of its tertiary structure in a cost- and time-effective manner without employing any 13C/15N labelling. These two decameric helices involve 40 nucleotides, for which all non-exchangeable H1', H6, H2, H8 and H5 protons (all 40 H1', all 40 H6 or H8 aromatics, all seven H2 of adenine nucleotide and all four non-deuterated H5 of cytosines) as well as all 16 exchangeable imino protons (with the exception of four terminal basepairs) and 16 amino protons of cytosines have been assigned. Since all aromatic-H2', H3' as well as H5'/5'' crosspeaks from partially deuterated residues have been eliminated from the NMR spectra, the observation of natural nucleotide residues in the NMR window part has essentially been simplified. It has been found that the crosspeaks from the natural nucleotides located at the three-way junction in the NMR-window part show different degrees of line-broadening, thereby indicating that the various nucleotide residues have very different mobilities with respect to themselves as well as compared to other nucleotides in the helices. The assignment of H2' and H3' in the NMR-window part has been made based on NOESY and DQF-COSY crosspeaks. It is noteworthy that, even in this preliminary study, it has been possible to identify 10 H2' out of total 14 and 9 H3' out of 14. The data show that expanded AU containing a tract of 55mer RNA does not self-organise into a tight third helix, as the two decameric A-type helices, across the three-way junction which is evident from the absence of any additional imino protons, except those that already have been assigned for the two decameric helices.
Collapse
Affiliation(s)
- T Maltseva
- Department of Bioorganic Chemistry, Biomedical Center, University of Uppsala, Sweden
| | | | | |
Collapse
|
49
|
Pan J, Deras ML, Woodson SA. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA. J Mol Biol 2000; 296:133-44. [PMID: 10656822 DOI: 10.1006/jmbi.1999.3439] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folding of the Tetrahymena ribozyme under physiological conditions in vitro is limited by slow conversion of long-lived intermediates to the active structure. These intermediates arise because the most stable domain of the ribozyme folds 10-50 times more rapidly than the core region containing helix P3. Native gel electrophoresis and time-resolved X-ray-dependent hydroxyl radical cleavage revealed that mutations that weaken peripheral interactions between domains accelerated folding fivefold, while a point mutation that stabilizes P3 enabled 80 % of the mutant RNA to reach the native conformation within 30 seconds at 22 degrees C. The P3 mutation increased the folding rate of the catalytic core as much as 50-fold, so that both domains of the ribozyme were formed at approximately the same rate. The results show that the ribozyme folds rapidly without significantly populating metastable intermediates when native interactions in the ribozyme core are stabilized relative to peripheral structural elements.
Collapse
Affiliation(s)
- J Pan
- Department of Chemistry and Biochemistry, University of Maryland, MD 20904-2021, USA
| | | | | |
Collapse
|
50
|
Ralston CY, Sclavi B, Brenowitz M, Sullivan M, Chance MR. The Early Folding Intermediates of theTetrahymenaRibozyme are Kinetically Trapped. J Biomol Struct Dyn 2000; 17 Suppl 1:195-200. [DOI: 10.1080/07391102.2000.10506621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|