1
|
He Z, Wu N, Yao R, Tan H, Sun Y, Chen J, Xue L, Chen X, Yang S, Hurst LD, Wang L, Huang J. RID is required for both repeat-induced point mutation and nucleation of a novel transitional heterochromatic state for euchromatic repeats. Nucleic Acids Res 2025; 53:gkaf263. [PMID: 40183634 PMCID: PMC11969663 DOI: 10.1093/nar/gkaf263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
To maintain genome integrity, repeat sequences are subject to heterochromatin inactivation and, in Neurospora, repeat-induced point mutation (RIP). The initiating factors behind both are poorly understood. We resolve the paradoxical observation that newly introduced Repeat-Linker-Repeat (R-L-R) constructs require RID alone for RIP, while genomic repeats are RIPed in the absence of RID, showing that eu- and hetero- chromatic repeats are handled differently, the latter additionally requiring DIM-2. The differences between mechanisms associated with older and newer duplicates caution against extrapolation from mechanisms inferred from model experimental systems. Additionally, while chromatin status affects RIP, we also show that RID, when tethered with LexA, acts as a nucleation center for the transition from euchromatin to heterochromatin in an HDA-1 dependent fashion. Constitutive heterochromatin by contrast is largely HDA1 independent and depends on HDA-1 paralogs. RID is thus a dual function initiator of both RIP and the transition to heterochromatin.
Collapse
Affiliation(s)
- Zhen He
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Nannan Wu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruonan Yao
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huawei Tan
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yingying Sun
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jingxuan Chen
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lan Xue
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaonan Chen
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sihai Yang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Long Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Ju Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Ebot-Ojong F, Ferraro AR, Kaddar F, Hull-Crew C, Scadden AW, Klocko AD, Lewis ZA. Histone deacetylase-1 is required for epigenome stability in Neurospora crassa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633486. [PMID: 39896537 PMCID: PMC11785058 DOI: 10.1101/2025.01.17.633486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Polycomb group (PcG) proteins form chromatin modifying complexes that stably repress lineage- or context-specific genes in animals, plants, and some fungi. Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) to assemble repressive chromatin. In the model fungus Neurospora crassa, H3K27me3 deposition is controlled by the H3K36 methyltransferase ASH1 and components of constitutive heterochromatin including the H3K9me3-binding protein HETEROCHROMATIN PROTEIN 1 (HP1). Hypoacetylated histones are a defining feature of both constitutive heterochromatin and PcG-repressed chromatin, but how histone deacetylases (HDACs) contribute to normal H3K27me3 and transcriptional repression within PcG-repressed chromatin is poorly understood. We performed a genetic screen to identify HDACs required for repression of PRC2-methylated genes. In the absence of HISTONE DEACETYLASE-1 (HDA-1), PRC2-methylated genes were activated and H3K27me3 was depleted from typical PRC2-targeted regions. At constitutive heterochromatin, HDA-1 deficient cells displayed reduced H3K9me3, hyperacetylation, and aberrant enrichment of H3K27me3 and H3K36me3. CHROMODOMAIN PROTEIN-2 (CDP-2) is required to target HDA-1 to constitutive heterochromatin and was also required for normal H3K27me3 patterns. Patterns of aberrant H3K27me3 were distinct in isogenic Δhda-1 strains, suggesting that loss of HDA-1 causes stochastic or progressive epigenome dysfunction. To test this, we constructed a new Δhda-1 strain and performed a laboratory evolution experiment. Deletion of hda-1 led to progressive epigenome decay over hundreds of nuclear divisions. Together, our data indicate that HDA-1 is a critical regulator of epigenome stability in N. crassa.
Collapse
Affiliation(s)
- Felicia Ebot-Ojong
- Department of Microbiology, University of Georgia, Athens, GA, 30602 USA
| | - Aileen R. Ferraro
- Department of Microbiology, University of Georgia, Athens, GA, 30602 USA
| | - Farh Kaddar
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Clayton Hull-Crew
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Ashley W. Scadden
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Andrew D. Klocko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, GA, 30602 USA
| |
Collapse
|
3
|
Wang C, Tang Y, Zhang S, Li M, Li Q, Xiao M, Yang L, Wang Y. Histone MARylation regulates lipid metabolism in colorectal cancer by promoting IGFBP1 methylation. Exp Cell Res 2024; 443:114308. [PMID: 39490887 DOI: 10.1016/j.yexcr.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
In the global health community, colorectal cancer (CRC) is a major concern, with a high rate of incidence. Mono-ADP-ribosylation (MARylation) is a type of epigenetics and recognized as one of the causes of CRC development and progression. Although the modification level and target proteins in CRC remain unclear, it has been found that MARylation of arginine-117 of histone 3 (H3R117) promotes the proliferation, upregulates methylation of tumor suppressor gene, and is tightly associated with the metabolic processes in LoVo cells. Lipid metabolism disorder is involved in the development of CRC at the early stage. Our study revealed that MARylation of H3R117 of the LoVo cells modulated lipid metabolism, increased cholesterol synthesis, promoted lipid raft (LR) protein IGF-1R distribution, and inhibited cell apoptosis through IGFBP1. In addition, bioinformatics analyses revealed that IGFBP1 promoter was hypermethylated in CRC when compared to that in normal tissues. Moreover, H3R117 MARylation upregulated the methylation of IGFBP1 promoter through histone H3 citrullination (H3cit) by increasing the H3K9me2, heterochromatin protein1 (HP1), and DNA methyltransferase 1 (DNMT1) enrichment of IGFBP1 promoter. Accordingly, IGFBP1 may function as a tumor suppressor gene, while H3R117 MARylation may promote CRC development. Our study findings enrich the available data on epigenetics of CRC and provide a new idea and experimental basis for H3R117 MARylation as a target in CRC treatment.
Collapse
Affiliation(s)
- Chuanling Wang
- Department of Pathophysiology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yi Tang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China; Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - ShuXian Zhang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China; Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ming Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China; Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - QingShu Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China; Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ming Xiao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China; Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lian Yang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China; Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - YaLan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, PR China; Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
4
|
Saxena S, Dufossé L, Deshmukh SK, Chhipa H, Gupta MK. Endophytic Fungi: A Treasure Trove of Antifungal Metabolites. Microorganisms 2024; 12:1903. [PMID: 39338577 PMCID: PMC11433805 DOI: 10.3390/microorganisms12091903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Emerging and reemerging fungal infections are very common in nosocomial and non-nosocomial settings in people having poor immunogenic profiles either due to hematopoietic stem cell transplants or are using immunomodulators to treat chronic inflammatory disease or autoimmune disorders, undergoing cancer therapy or suffering from an immune weakening disease like HIV. The refractory behavior of opportunistic fungi has necessitated the discovery of unconventional antifungals. The emergence of black fungus infection during COVID-19 also triggered the antifungal discovery program. Natural products are one of the alternative sources of antifungals. Endophytic fungi reside and co-evolve within their host plants and, therefore, offer a unique bioresource of novel chemical scaffolds with an array of bioactivities. Hence, immense possibilities exist that these unique chemical scaffolds expressed by the endophytic fungi may play a crucial role in overcoming the burgeoning antimicrobial resistance. These chemical scaffolds so expressed by these endophytic fungi comprise an array of chemical classes beginning from cyclic peptides, sesquiterpenoids, phenols, anthraquinones, coumarins, etc. In this study, endophytic fungi reported in the last six years (2018-2023) have been explored to document the antifungal entities they produce. Approximately 244 antifungal metabolites have been documented in this period by different groups of fungi existing as endophytes. Various aspects of these antifungal metabolites, such as antifungal potential and their chemical structures, have been presented. Yet another unique aspect of this review is the exploration of volatile antifungal compounds produced by these endophytic fungi. Further strategies like epigenetic modifications by chemical as well as biological methods and OSMAC to induce the silent gene clusters have also been presented to generate unprecedented bioactive compounds from these endophytic fungi.
Collapse
Affiliation(s)
- Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (ChemBioPro Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France
| | - Sunil K. Deshmukh
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
- R&D Division, Greenvention Biotech Pvt. Ltd., Uruli Kanchan 412202, Maharashtra, India
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
5
|
Tian Y, Zhang C, Tian X, Zhang L, Yin T, Dang Y, Liu Y, Lou H, He Q. H3T11 phosphorylation by CKII is required for heterochromatin formation in Neurospora. Nucleic Acids Res 2024; 52:9536-9550. [PMID: 39106166 PMCID: PMC11381320 DOI: 10.1093/nar/gkae664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Heterochromatin is a key feature of eukaryotic genomes and is crucial for maintaining genomic stability. In fission yeast, heterochromatin nucleation is mainly mediated by DNA-binding proteins or the RNA interference (RNAi) pathway. In the filamentous fungus Neurospora crassa, however, the mechanism that causes the initiation of heterochromatin at the relics of repeat-induced point mutation is unknown and independent of the classical RNAi pathway. Here, we show that casein kinase II (CKII) and its kinase activity are required for heterochromatin formation at the well-defined 5-kb heterochromatin of the 5H-cat-3 region and transcriptional repression of its adjacent cat-3 gene. Similarly, mutation of the histone H3 phosphorylation site T11 also impairs heterochromatin formation at the same locus. The catalytic subunit CKA colocalizes with H3T11 phosphorylation (H3pT11) within the 5H-cat-3 domain and the deletion of cka results in a significant decrease in H3T11 phosphorylation. Furthermore, the loss of kinase activity of CKII results in a significant reduction of H3pT11, H3K9me3 (histone H3 lysine 9 trimethylation) and DNA methylation levels, suggesting that CKII regulates heterochromatin formation by promoting H3T11 phosphorylation. Together, our results establish that histone H3 phosphorylation by CKII is a critical event required for heterochromatin formation.
Collapse
Affiliation(s)
- Yuan Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Tong Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiqiang Lou
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. Proc Natl Acad Sci U S A 2023; 120:e2311249120. [PMID: 37963248 PMCID: PMC10666030 DOI: 10.1073/pnas.2311249120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain-like structures formed by heterochromatic region aggregation. However, insufficient data exist on how histone posttranslational modifications (PTMs), including acetylation, affect genome organization. In Neurospora, the HCHC complex [composed of the proteins HDA-1, CDP-2 (Chromodomain Protein-2), Heterochromatin Protein-1, and CHAP (CDP-2 and HDA-1 Associated Protein)] deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation, and alters the methylation of cytosines in DNA. Here, we assess whether the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and interchromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone PTMs genome-wide, as CDP-2 deletion increases heterochromatic H4K16 acetylation, yet smaller heterochromatic regions lose H3K9 trimethylation and gain interheterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Alayne S. Graybill
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Clayton Hull-Crew
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Tiffany J. Lundberg
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Nickolas M. Lande
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Andrew D. Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| |
Collapse
|
7
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547530. [PMID: 37461718 PMCID: PMC10349943 DOI: 10.1101/2023.07.03.547530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain (TAD)-like structures formed by heterochromatic region aggregation. However, insufficient data exists on how histone post-translational modifications, including acetylation, affect genome organization. In Neurospora, the HCHC complex (comprised of the proteins HDA-1, CDP-2, HP1, and CHAP) deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation and alters the methylation of cytosines in DNA. Here, we assess if the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and inter-chromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone post-translational modifications genome-wide: without CDP-2, heterochromatic H4K16 acetylation is increased, yet smaller heterochromatic regions lose H3K9 trimethylation and gain inter-heterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder, as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Alayne S. Graybill
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Tiffany J. Lundberg
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Nickolas M. Lande
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Andrew D. Klocko
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| |
Collapse
|
8
|
Bauer I, Sarikaya Bayram Ö, Bayram Ö. The use of immunoaffinity purification approaches coupled with LC-MS/MS offers a powerful strategy to identify protein complexes in filamentous fungi. Essays Biochem 2023; 67:877-892. [PMID: 37681641 DOI: 10.1042/ebc20220253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Fungi are a diverse group of organisms that can be both beneficial and harmful to mankind. They have advantages such as producing food processing enzymes and antibiotics, but they can also be pathogens and produce mycotoxins that contaminate food. Over the past two decades, there have been significant advancements in methods for studying fungal molecular biology. These advancements have led to important discoveries in fungal development, physiology, pathogenicity, biotechnology, and natural product research. Protein complexes and protein-protein interactions (PPIs) play crucial roles in fungal biology. Various methods, including yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC), are used to investigate PPIs. However, affinity-based PPI methods like co-immunoprecipitation (Co-IP) are highly preferred because they represent the natural conditions of PPIs. In recent years, the integration of liquid chromatography coupled with mass spectrometry (LC-MS/MS) has been used to analyse Co-IPs, leading to the discovery of important protein complexes in filamentous fungi. In this review, we discuss the tandem affinity purification (TAP) method and single affinity purification methods such as GFP, HA, FLAG, and MYC tag purifications. These techniques are used to identify PPIs and protein complexes in filamentous fungi. Additionally, we compare the efficiency, time requirements, and material usage of Sepharose™ and magnetic-based purification systems. Overall, the advancements in fungal molecular biology techniques have provided valuable insights into the complex interactions and functions of proteins in fungi. The methods discussed in this review offer powerful tools for studying fungal biology and will contribute to further discoveries in this field.
Collapse
Affiliation(s)
- Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
10
|
Nuclear Genome Sequence and Gene Expression of an Intracellular Fungal Endophyte Stimulating the Growth of Cranberry Plants. J Fungi (Basel) 2023; 9:jof9010126. [PMID: 36675947 PMCID: PMC9861600 DOI: 10.3390/jof9010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Ericaceae thrive in poor soil, which we postulate is facilitated by microbes living inside those plants. Here, we investigate the growth stimulation of the American cranberry (Vaccinium macrocarpon) by one of its fungal endosymbionts, EC4. We show that the symbiont resides inside the epidermal root cells of the host but extends into the rhizosphere via its hyphae. Morphological classification of this fungus is ambiguous, but phylogenetic inference based on 28S rRNA identifies EC4 as a Codinaeella species (Chaetosphaeriaceae, Sordariomycetes, Ascomycetes). We sequenced the genome and transcriptome of EC4, providing the first 'Omics' information of a Chaetosphaeriaceae fungus. The 55.3-Mbp nuclear genome contains 17,582 potential protein-coding genes, of which nearly 500 have the capacity to promote plant growth. For comparing gene sets involved in biofertilization, we annotated the published genome assembly of the plant-growth-promoting Trichoderma hamatum. The number of proteins involved in phosphate transport and solubilization is similar in the two fungi. In contrast, EC4 has ~50% more genes associated with ammonium, nitrate/nitrite transport, and phytohormone synthesis. The expression of 36 presumed plant-growth-promoting EC4 genes is stimulated when the fungus is in contact with the plant. Thus, Omics and in-plantae tests make EC4 a promising candidate for cranberry biofertilization on nutrient-poor soils.
Collapse
|
11
|
Fraser CJ, Whitehall SK. Heterochromatin in the fungal plant pathogen, Zymoseptoria tritici: Control of transposable elements, genome plasticity and virulence. Front Genet 2022; 13:1058741. [DOI: 10.3389/fgene.2022.1058741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin is a repressive chromatin state that plays key roles in the functional organisation of eukaryotic genomes. In fungal plant pathogens, effector genes that are required for host colonization tend to be associated with heterochromatic regions of the genome that are enriched with transposable elements. It has been proposed that the heterochromatin environment silences effector genes in the absence of host and dynamic chromatin remodelling facilitates their expression during infection. Here we discuss this model in the context of the key wheat pathogen, Zymoseptoria tritici. We cover progress in understanding the deposition and recognition of heterochromatic histone post translational modifications in Z. tritici and the role that heterochromatin plays in control of genome plasticity and virulence.
Collapse
|
12
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
13
|
Rodriguez S, Ward A, Reckard AT, Shtanko Y, Hull-Crew C, Klocko AD. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology. G3 (BETHESDA, MD.) 2022; 12:jkac053. [PMID: 35244156 PMCID: PMC9073679 DOI: 10.1093/g3journal/jkac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 01/17/2023]
Abstract
The eukaryotic genome must be precisely organized for its proper function, as genome topology impacts transcriptional regulation, cell division, replication, and repair, among other essential processes. Disruptions to human genome topology can lead to diseases, including cancer. The advent of chromosome conformation capture with high-throughput sequencing (Hi-C) to assess genome organization has revolutionized the study of nuclear genome topology; Hi-C has elucidated numerous genomic structures, including chromosomal territories, active/silent chromatin compartments, Topologically Associated Domains, and chromatin loops. While low-resolution heatmaps can provide important insights into chromosomal level contacts, high-resolution Hi-C datasets are required to reveal folding principles of individual genes. Of particular interest are high-resolution chromosome conformation datasets of organisms modeling the human genome. Here, we report the genome topology of the fungal model organism Neurospora crassa at a high resolution. Our composite Hi-C dataset, which merges 2 independent datasets generated with restriction enzymes that monitor euchromatin (DpnII) and heterochromatin (MseI), along with our DpnII/MseI double digest dataset, provide exquisite detail for both the conformation of entire chromosomes and the folding of chromatin at the resolution of individual genes. Within constitutive heterochromatin, we observe strong yet stochastic internal contacts, while euchromatin enriched with either activating or repressive histone post-translational modifications associates with constitutive heterochromatic regions, suggesting intercompartment contacts form to regulate transcription. Consistent with this, a strain with compromised heterochromatin experiences numerous changes in gene expression. Our high-resolution Neurospora Hi-C datasets are outstanding resources to the fungal community and provide valuable insights into higher organism genome topology.
Collapse
Affiliation(s)
- Sara Rodriguez
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Ashley Ward
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew T Reckard
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Yulia Shtanko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew D Klocko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
14
|
Bind S, Bind S, Sharma AK, Chaturvedi P. Epigenetic Modification: A Key Tool for Secondary Metabolite Production in Microorganisms. Front Microbiol 2022; 13:784109. [PMID: 35495688 PMCID: PMC9043899 DOI: 10.3389/fmicb.2022.784109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are stupendous source of secondary metabolites, having significant pharmaceutical and industrial importance. Genome mining has led to the detection of several cryptic metabolic pathways in the natural producer of secondary metabolites (SMs) such as actinobacteria and fungi. Production of these bioactive compounds in considerable amount is, however, somewhat challenging. This led to the search of using epigenetics as a key mechanism to alter the expression of genes that encode the SMs toward higher production in microorganisms. Epigenetics is defined as any heritable change without involving the changes in the underlying DNA sequences. Epigenetic modifications include chromatin remodeling by histone posttranslational modifications, DNA methylation, and RNA interference. Biosynthetic gene cluster for SMs remains in heterochromatin state in which the transcription of constitutive gene is regulated by epigenetic modification. Therefore, small-molecule epigenetic modifiers, which promote changes in the structure of chromatin, could control the expression of silent genes and may be rationally employed for discovery of novel bioactive compounds. This review article focuses on the types of epigenetic modifications and their impact on gene expression for enhancement of SM production in microorganisms.
Collapse
Affiliation(s)
- Sudha Bind
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Sandhya Bind
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - A K Sharma
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| |
Collapse
|
15
|
Yao Y, Wen Q, Zhang T, Yu C, Chan KM, Gan H. Advances in Approaches to Study Chromatin-Mediated Epigenetic Memory. ACS Synth Biol 2022; 11:16-25. [PMID: 34965084 DOI: 10.1021/acssynbio.1c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromatin structure contains critical epigenetic information in various forms, such as histone post-translational modifications (PTMs). The deposition of certain histone PTMs can remodel the chromatin structure, resulting in gene expression alteration. The epigenetic information carried by histone PTMs could be inherited by daughter cells to maintain the gene expression status. Recently, studies revealed that several conserved replisome proteins regulate the recycling of parental histones carrying epigenetic information in Saccharomyces cerevisiae. Hence, the proper recycling and deposition of parental histones onto newly synthesized DNA strands is presumed to be essential for epigenetic inheritance. Here, we first reviewed the fundamental mechanisms of epigenetic modification establishment and maintenance discovered within fungal models. Next, we discussed the functions of parental histone chaperones and the potential impacts of the parental histone recycling process on heterochromatin-mediated transcriptional silencing inheritance. Subsequently, we summarized novel synthetic biology approaches developed to analyze individual epigenetic components during epigenetic inheritance in fungal and mammalian systems. These newly emerged research paradigms enable us to dissect epigenetic systems in a bottom-up manner. Furthermore, we highlighted the approaches developed in this emerging field and discussed the potential applications of these engineered regulators to building synthetic epigenetic systems.
Collapse
Affiliation(s)
- Yuan Yao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianjun Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
16
|
Nai YS, Huang YC, Yen MR, Chen PY. Diversity of Fungal DNA Methyltransferases and Their Association With DNA Methylation Patterns. Front Microbiol 2021; 11:616922. [PMID: 33552027 PMCID: PMC7862722 DOI: 10.3389/fmicb.2020.616922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
DNA methyltransferases (DNMTs) are a group of proteins that catalyze DNA methylation by transferring a methyl group to DNA. The genetic variation in DNMTs results in differential DNA methylation patterns associated with various biological processes. In fungal species, DNMTs and their DNA methylation profiles were found to be very diverse and have gained many research interests. We reviewed fungal DNMTs in terms of their biological functions, protein domain structures, and their associated epigenetic regulations compared to those known in plant and animal systems. In addition, we summarized recent reports on potential RNA-directed DNA methylation (RdDM) related to DNMT5 in fungi. We surveyed up to 40 fungal species with published genome-wide DNA methylation profiles (methylomes) and presented the associations between the specific patterns of fungal DNA methylation and their DNMTs based on a phylogenetic tree of protein domain structures. For example, the main DNMTs in Basidiomycota, DNMT1 with RFD domain + DNMT5, contributing to CG methylation preference, were distinct from RID + Dim-2 in Ascomycota, resulting in a non-CG methylation preference. Lastly, we revealed that the dynamic methylation involved in fungal life stage changes was particularly low in mycelium and DNA methylation was preferentially located in transposable elements (TEs). This review comprehensively discussed fungal DNMTs and methylomes and their connection with fungal development and taxonomy to present the diverse usages of DNA methylation in fungal genomes.
Collapse
Affiliation(s)
- Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Bonner C, Sproule A, Rowland O, Overy D, Subramaniam R. DNA Methylation Is Responsive to the Environment and Regulates the Expression of Biosynthetic Gene Clusters, Metabolite Production, and Virulence in Fusarium graminearum. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:614633. [PMID: 37743878 PMCID: PMC10512235 DOI: 10.3389/ffunb.2020.614633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 09/26/2023]
Abstract
Histone modifications play a significant role in the regulation of biosynthetic gene clusters (BGCs) in the phytopathogen Fusarium graminearum, by contrast, epigenetic regulation by DNA methyltransferases (DNMTs) is less documented. In this study, we characterized two DNMTs (FgDIM-2 and FgRID) in F. graminearum, with homologies to "Deficient in methylation" (DIM-2) and "Repeat-induced point (RIP) deficient" (RID) from Neurospora. The loss of DNMTs resulted in not only a decrease in average methylation density in the nutrient-poor, compared to nutrient-rich conditions, but also differences in the genes expressed between the WT and the DNMT mutant strains, implicating the external environment as an important trigger in altering DNA methylation patterns. Consequently, we observed significant changes in the regulation of multiple BGCs and alterations in the pathogenicity of the fungus.
Collapse
Affiliation(s)
- Christopher Bonner
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Overy
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
18
|
Storck WK, Bicocca VT, Rountree MR, Honda S, Ormsby T, Selker EU. LSD1 prevents aberrant heterochromatin formation in Neurospora crassa. Nucleic Acids Res 2020; 48:10199-10210. [PMID: 32946564 PMCID: PMC7544195 DOI: 10.1093/nar/gkaa724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Heterochromatin is a specialized form of chromatin that restricts access to DNA and inhibits genetic processes, including transcription and recombination. In Neurospora crassa, constitutive heterochromatin is characterized by trimethylation of lysine 9 on histone H3, hypoacetylation of histones, and DNA methylation. We explored whether the conserved histone demethylase, lysine-specific demethylase 1 (LSD1), regulates heterochromatin in Neurospora, and if so, how. Though LSD1 is implicated in heterochromatin regulation, its function is inconsistent across different systems; orthologs of LSD1 have been shown to either promote or antagonize heterochromatin expansion by removing H3K4me or H3K9me respectively. We identify three members of the Neurospora LSD complex (LSDC): LSD1, PHF1, and BDP-1. Strains deficient for any of these proteins exhibit variable spreading of heterochromatin and establishment of new heterochromatin domains throughout the genome. Although establishment of H3K9me3 is typically independent of DNA methylation in Neurospora, instances of DNA methylation-dependent H3K9me3 have been found outside regions of canonical heterochromatin. Consistent with this, the hyper-H3K9me3 phenotype of Δlsd1 strains is dependent on the presence of DNA methylation, as well as HCHC-mediated histone deacetylation, suggesting that spreading is dependent on some feedback mechanism. Altogether, our results suggest LSD1 works in opposition to HCHC to maintain proper heterochromatin boundaries.
Collapse
Affiliation(s)
- William K Storck
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Vincent T Bicocca
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Michael R Rountree
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tereza Ormsby
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
19
|
Klocko AD, Summers CA, Glover ML, Parrish R, Storck WK, McNaught KJ, Moss ND, Gotting K, Stewart A, Morrison AM, Payne L, Hatakeyama S, Selker EU. Selection and Characterization of Mutants Defective in DNA Methylation in Neurospora crassa. Genetics 2020; 216:671-688. [PMID: 32873602 PMCID: PMC7648584 DOI: 10.1534/genetics.120.303471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, a prototypical epigenetic modification implicated in gene silencing, occurs in many eukaryotes and plays a significant role in the etiology of diseases such as cancer. The filamentous fungus Neurospora crassa places DNA methylation at regions of constitutive heterochromatin such as in centromeres and in other A:T-rich regions of the genome, but this modification is dispensable for normal growth and development. This and other features render N. crassa an excellent model to genetically dissect elements of the DNA methylation pathway. We implemented a forward genetic selection on a massive scale, utilizing two engineered antibiotic-resistance genes silenced by DNA methylation, to isolate mutants d efective i n m ethylation (dim). Hundreds of potential mutants were characterized, yielding a rich collection of informative alleles of 11 genes important for DNA methylation, most of which were already reported. In parallel, we characterized the pairwise interactions in nuclei of the DCDC, the only histone H3 lysine 9 methyltransferase complex in Neurospora, including those between the DIM-5 catalytic subunit and other complex members. We also dissected the N- and C-termini of the key protein DIM-7, required for DIM-5 histone methyltransferase localization and activation. Lastly, we identified two alleles of a novel gene, dim-10 - a homolog of Clr5 in Schizosaccharomyces pombe - that is not essential for DNA methylation, but is necessary for repression of the antibiotic-resistance genes used in the selection, which suggests that both DIM-10 and DNA methylation promote silencing of constitutive heterochromatin.
Collapse
Affiliation(s)
- Andrew D Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Calvin A Summers
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Marissa L Glover
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Robert Parrish
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - William K Storck
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Nicole D Moss
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kirsten Gotting
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Aurelian Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Ariel M Morrison
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Laurel Payne
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Shin Hatakeyama
- Laboratory of Genetics, Faculty of Science, Shimo-ohkubo 255, Saitama University, Sakura-ward, 338-8570, JAPAN
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
20
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
21
|
Ridenour JB, Möller M, Freitag M. Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes (Basel) 2020; 11:E638. [PMID: 32527036 PMCID: PMC7348808 DOI: 10.3390/genes11060638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genome integrity is essential to maintain cellular function and viability. Consequently, genome instability is frequently associated with dysfunction in cells and associated with plant, animal, and human diseases. One consequence of relaxed genome maintenance that may be less appreciated is an increased potential for rapid adaptation to changing environments in all organisms. Here, we discuss evidence for the control and function of facultative heterochromatin, which is delineated by methylation of histone H3 lysine 27 (H3K27me) in many fungi. Aside from its relatively well understood role in transcriptional repression, accumulating evidence suggests that H3K27 methylation has an important role in controlling the balance between maintenance and generation of novelty in fungal genomes. We present a working model for a minimal repressive network mediated by H3K27 methylation in fungi and outline challenges for future research.
Collapse
Affiliation(s)
| | | | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR 97331, USA; (J.B.R.); (M.M.)
| |
Collapse
|
22
|
A Light-Inducible Strain for Genome-Wide Histone Turnover Profiling in Neurospora crassa. Genetics 2020; 215:569-578. [PMID: 32357961 DOI: 10.1534/genetics.120.303217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/30/2020] [Indexed: 01/14/2023] Open
Abstract
In chromatin, nucleosomes are composed of ∼146 bp of DNA wrapped around a histone octamer, and are highly dynamic structures subject to remodeling and exchange. Histone turnover has previously been implicated in various processes including the regulation of chromatin accessibility, segregation of chromatin domains, and dilution of histone marks. Histones in different chromatin environments may turnover at different rates, possibly with functional consequences. Neurospora crassa sports a chromatin environment that is more similar to that of higher eukaryotes than yeasts, which have been utilized in the past to explore histone exchange. We constructed a simple light-inducible system to profile histone exchange in N. crassa on a 3xFLAG-tagged histone H3 under the control of the rapidly inducible vvd promoter. After induction with blue light, incorporation of tagged H3 into chromatin occurred within 20 min. Previous studies of histone turnover involved considerably longer incubation periods and relied on a potentially disruptive change of medium for induction. We used this reporter to explore replication-independent histone turnover at genes and examine changes in histone turnover at heterochromatin domains in different heterochromatin mutant strains. In euchromatin, H3-3xFLAG patterns were almost indistinguishable from that observed in wild-type in all mutant backgrounds tested, suggesting that loss of heterochromatin machinery has little effect on histone turnover in euchromatin. However, turnover at heterochromatin domains increased with loss of trimethylation of lysine 9 of histone H3 or HP1, but did not depend on DNA methylation. Our reporter strain provides a simple yet powerful tool to assess histone exchange across multiple chromatin contexts.
Collapse
|
23
|
van Wyk S, Wingfield BD, De Vos L, van der Merwe NA, Santana QC, Steenkamp ET. Repeat-Induced Point Mutations Drive Divergence between Fusarium circinatum and Its Close Relatives. Pathogens 2019; 8:pathogens8040298. [PMID: 31847413 PMCID: PMC6963459 DOI: 10.3390/pathogens8040298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023] Open
Abstract
The Repeat-Induced Point (RIP) mutation pathway is a fungal-specific genome defense mechanism that counteracts the deleterious effects of transposable elements. This pathway permanently mutates its target sequences by introducing cytosine to thymine transitions. We investigated the genome-wide occurrence of RIP in the pitch canker pathogen, Fusarium circinatum, and its close relatives in the Fusarium fujikuroi species complex (FFSC). Our results showed that the examined fungi all exhibited hallmarks of RIP, but that they differed in terms of the extent to which their genomes were affected by this pathway. RIP mutations constituted a large proportion of all the FFSC genomes, including both core and dispensable chromosomes, although the latter were generally more extensively affected by RIP. Large RIP-affected genomic regions were also much more gene sparse than the rest of the genome. Our data further showed that RIP-directed sequence diversification increased the variability between homologous regions of related species, and that RIP-affected regions can interfere with homologous recombination during meiosis, thereby contributing to post-mating segregation distortion. Taken together, these findings suggest that RIP can drive the independent divergence of chromosomes, alter chromosome architecture, and contribute to the divergence among F. circinatum and other members of this economically important group of fungi.
Collapse
|
24
|
Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 2019; 125:71-83. [DOI: 10.1016/j.fgb.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
|
25
|
Nucleosome Positioning by an Evolutionarily Conserved Chromatin Remodeler Prevents Aberrant DNA Methylation in Neurospora. Genetics 2018; 211:563-578. [PMID: 30554169 DOI: 10.1534/genetics.118.301711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
In the filamentous fungus Neurospora crassa, constitutive heterochromatin is marked by tri-methylation of histone H3 lysine 9 (H3K9me3) and DNA methylation. We identified mutations in the Neurospora defective in methylation-1 (dim-1) gene that cause defects in cytosine methylation and implicate a putative AAA-ATPase chromatin remodeler. Although it was well-established that chromatin remodelers can affect transcription by influencing DNA accessibility with nucleosomes, little was known about the role of remodelers on chromatin that is normally not transcribed, including regions of constitutive heterochromatin. We found that dim-1 mutants display both reduced DNA methylation in heterochromatic regions as well as increased DNA methylation and H3K9me3 in some intergenic regions associated with highly expressed genes. Deletion of dim-1 leads to atypically spaced nucleosomes throughout the genome and numerous changes in gene expression. DIM-1 localizes to both heterochromatin and intergenic regions that become hyper-methylated in dim-1 strains. Our findings indicate that DIM-1 normally positions nucleosomes in both heterochromatin and euchromatin and that the standard arrangement and density of nucleosomes is required for the proper function of heterochromatin machinery.
Collapse
|
26
|
Borgognone A, Castanera R, Morselli M, López-Varas L, Rubbi L, Pisabarro AG, Pellegrini M, Ramírez L. Transposon-associated epigenetic silencing during Pleurotus ostreatus life cycle. DNA Res 2018; 25:451-464. [PMID: 29893819 PMCID: PMC6191308 DOI: 10.1093/dnares/dsy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Transposable elements constitute an important fraction of eukaryotic genomes. Given their mutagenic potential, host-genomes have evolved epigenetic defense mechanisms to limit their expansion. In fungi, epigenetic modifications have been widely studied in ascomycetes, although we lack a global picture of the epigenetic landscape in basidiomycetes. In this study, we analysed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity and suggest that 21 nt small RNAs play a key role in transposon silencing. Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Remarkably, we found that nucleus-specific methylation levels varied in dikaryotic strains sharing identical genetic complement but different subculture conditions. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes. This study provides an integrated picture of epigenetic defense mechanisms leading to the transcriptional silencing of transposons and surrounding genes in basidiomycetes. Moreover, our findings suggest that transcriptional but not methylation reprogramming triggers fruitbody development in P. ostreatus.
Collapse
Affiliation(s)
- Alessandra Borgognone
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Raúl Castanera
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
- Institute for Genomics and Proteomics, UCLA-U.S. Department of Energy (DOE), University of California, Los Angeles, USA
| | - Leticia López-Varas
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
| | - Antonio G Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
- Institute for Genomics and Proteomics, UCLA-U.S. Department of Energy (DOE), University of California, Los Angeles, USA
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| |
Collapse
|
27
|
Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E9598-E9607. [PMID: 29078403 DOI: 10.1073/pnas.1715049114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Functionally different chromatin domains display distinct chemical marks. Constitutive heterochromatin is commonly associated with trimethylation of lysine 9 on histone H3 (H3K9me3), hypoacetylated histones, and DNA methylation, but the contributions of and interplay among these features are not fully understood. To dissect the establishment of heterochromatin, we investigated the relationships among these features using an in vivo tethering system in Neurospora crassa Artificial recruitment of the H3K9 methyltransferase DIM-5 (defective in methylation-5) induced H3K9me3 and DNA methylation at a normally active, euchromatic locus but did not bypass the requirement of DIM-7, previously implicated in the localization of DIM-5, indicating additional DIM-7 functionality. Tethered heterochromatin protein 1 (HP1) induced H3K9me3, DNA methylation, and gene silencing. The induced heterochromatin required histone deacetylase 1 (HDA-1), with an intact catalytic domain, but HDA-1 was not essential for de novo heterochromatin formation at native heterochromatic regions. Silencing did not require H3K9me3 or DNA methylation. However, DNA methylation contributed to establishment of H3K9me3 induced by tethered HP1. Our analyses also revealed evidence of regulatory mechanisms, dependent on HDA-1 and DIM-5, to control the localization and catalytic activity of the DNA methyltransferase DIM-2. Our study clarifies the interrelationships among canonical aspects of heterochromatin and supports a central role of HDA-1-mediated histone deacetylation in heterochromatin spreading and gene silencing.
Collapse
|
28
|
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
29
|
Epigenetic Control of Phenotypic Plasticity in the Filamentous Fungus Neurospora crassa. G3-GENES GENOMES GENETICS 2016; 6:4009-4022. [PMID: 27694114 PMCID: PMC5144970 DOI: 10.1534/g3.116.033860] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is a ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how epigenetic mechanisms affect phenotypic plasticity in the filamentous fungus Neurospora crassa. By measuring reaction norms of strains that are deficient in one of several key physiological processes, we show that epigenetic mechanisms play a role in homeostasis and phenotypic plasticity of the fungus across a range of controlled environments. In general, effects on plasticity are specific to an environment and mechanism, indicating that epigenetic regulation is context dependent and is not governed by general plasticity genes. Specifically, we found that, in Neurospora, histone methylation at H3K36 affected plastic response to high temperatures, H3K4 methylation affected plastic response to pH, but H3K27 methylation had no effect. Similarly, DNA methylation had only a small effect in response to sucrose. Histone deacetylation mainly decreased reaction norm elevation, as did genes involved in histone demethylation and acetylation. In contrast, the RNA interference pathway was involved in plastic responses to multiple environments.
Collapse
|
30
|
Normal chromosome conformation depends on subtelomeric facultative heterochromatin in Neurospora crassa. Proc Natl Acad Sci U S A 2016; 113:15048-15053. [PMID: 27856763 DOI: 10.1073/pnas.1615546113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-throughput chromosome conformation capture (Hi-C) analyses revealed that the 3D structure of the Neurospora crassa genome is dominated by intra- and interchromosomal links between regions of heterochromatin, especially constitutive heterochromatin. Elimination of trimethylation of lysine 9 on histone H3 (H3K9me3) or its binding partner Heterochromatin Protein 1 (HP1)-both prominent features of constitutive heterochromatin-have little effect on the Hi-C pattern. It remained possible that di- or trimethylation of lysine 27 on histone H3 (H3K27me2/3), which becomes localized in regions of constitutive heterochromatin when H3K9me3 or HP1 are lost, plays a critical role in the 3D structure of the genome. We found that H3K27me2/3, catalyzed by the Polycomb Repressive Complex 2 (PRC2) member SET-7 (SET domain protein-7), does indeed play a prominent role in the Hi-C pattern of WT, but that its presence in regions normally occupied by H3K9me3 is not responsible for maintenance of the genome architecture when H3K9me3 is lost. The Hi-C pattern of a mutant defective in the PRC2 member N. crassa p55 (NPF), which is predominantly required for subtelomeric H3K27me2/3, was equivalent to that of the set-7 deletion strain, suggesting that subtelomeric facultative heterochromatin is paramount for normal chromosome conformation. Both PRC2 mutants showed decreased heterochromatin-heterochromatin contacts and increased euchromatin-heterochromatin contacts. Cytological observations suggested elimination of H3K27me2/3 leads to partial displacement of telomere clusters from the nuclear periphery. Transcriptional profiling of Δdim-5, Δset-7, Δset-7; Δdim-5, and Δnpf strains detailed anticipated changes in gene expression but did not support the idea that global changes in genome architecture, per se, led to altered transcription.
Collapse
|
31
|
Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci U S A 2016; 113:E6135-E6144. [PMID: 27681634 DOI: 10.1073/pnas.1614279113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1-associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation.
Collapse
|
32
|
Zhang X, Liu X, Zhao Y, Cheng J, Xie J, Fu Y, Jiang D, Chen T. Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea. Front Microbiol 2016; 7:1289. [PMID: 27597848 PMCID: PMC4992730 DOI: 10.3389/fmicb.2016.01289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/31/2022] Open
Abstract
Histone methylation is widely present in animals, plants and fungi, and the methylation modification of histone H3 has important biological functions. Methylation of Lys9 of histone H3 (H3K9) has been proven to regulate chromatin structure, gene silencing, transcriptional activation, plant metabolism, and other processes. In this work, we investigated the functions of a H3K9 methyltransferase gene BcDIM5 in Botrytis cinerea, which contains a PreSET domain, a SET domain and a PostSET domain. Characterization of BcDIM5 knockout transformants showed that the hyphal growth rate and production of conidiophores and sclerotia were significantly reduced, while complementary transformation of BcDIM5 could restore the phenotypes to the levels of wild type. Pathogenicity assays revealed that BcDIM5 was essential for full virulence of B. cinerea. BcDIM5 knockout transformants exhibited decreased virulence, down-regulated expression of some pathogenic genes and drastically decreased H3K9 trimethylation level. However, knockout transformants of other two genes heterochromatin protein 1 (HP1) BcHP1 and DNA methyltransferase (DIM2) BcDIM2 did not exhibit significant change in the growth phenotype and virulence compared with the wild type. Our results indicate that H3K9 methyltransferase BcDIM5 is required for H3K9 trimethylation to regulate the development and virulence of B. cinerea.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xinqiang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
33
|
Abstract
Histone H1 variants, known as linker histones, are essential chromatin components in higher eukaryotes, yet compared to the core histones relatively little is known about their in vivo functions. The filamentous fungus Neurospora crassa encodes a single H1 protein that is not essential for viability. To investigate the role of N. crassa H1, we constructed a functional FLAG-tagged H1 fusion protein and performed genomic and molecular analyses. Cell fractionation experiments showed that H1-3XFLAG is a chromatin binding protein. Chromatin-immunoprecipitation combined with sequencing (ChIP-seq) revealed that H1-3XFLAG is globally enriched throughout the genome with a subtle preference for promoters of expressed genes. In mammals, the stoichiometry of H1 impacts nucleosome repeat length. To determine if H1 impacts nucleosome occupancy or nucleosome positioning in N. crassa, we performed micrococcal nuclease digestion in the wild-type and the ΔhH1 strain followed by sequencing (MNase-seq). Deletion of hH1 did not significantly impact nucleosome positioning or nucleosome occupancy. Analysis of DNA methylation by whole-genome bisulfite sequencing (MethylC-seq) revealed a modest but global increase in DNA methylation in the ΔhH1 mutant. Together, these data suggest that H1 acts as a nonspecific chromatin binding protein that can limit accessibility of the DNA methylation machinery in N. crassa.
Collapse
|
34
|
Galazka JM, Klocko AD, Uesaka M, Honda S, Selker EU, Freitag M. Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Res 2016; 26:1069-80. [PMID: 27260477 PMCID: PMC4971769 DOI: 10.1101/gr.203182.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
Eukaryotic genomes are organized into chromatin domains with three-dimensional arrangements that presumably result from interactions between the chromatin constituents—proteins, DNA, and RNA—within the physical constraints of the nucleus. We used chromosome conformation capture (3C) followed by high-throughput sequencing (Hi-C) with wild-type and mutant strains of Neurospora crassa to gain insight into the role of heterochromatin in the organization and function of the genome. We tested the role of three proteins thought to be important for establishment of heterochromatin, namely, the histone H3 lysine 9 methyltransferase DIM-5, Heterochromatin Protein 1 (HP1), which specifically binds to the product of DIM-5 (trimethylated H3 lysine 9 [H3K9me3]), and DIM-3 (importin alpha), which is involved in DIM-5 localization. The average genome configuration of the wild-type strain revealed strong intra- and inter-chromosomal associations between both constitutive and facultative heterochromatic domains, with the strongest interactions among the centromeres, subtelomeres, and interspersed heterochromatin. Surprisingly, loss of either H3K9me3 or HP1 had only mild effects on heterochromatin compaction, whereas dim-3 caused more drastic changes, specifically decreasing interactions between constitutive heterochromatic domains. Thus, associations between heterochromatic regions are a major component of the chromosome conformation in Neurospora, but two widely studied key heterochromatin proteins are not necessary, implying that undefined protein factors play key roles in maintaining overall chromosome organization.
Collapse
Affiliation(s)
- Jonathan M Galazka
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Andrew D Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Miki Uesaka
- Department of Biochemistry and Bioinformative Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinji Honda
- Department of Biochemistry and Bioinformative Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
35
|
Jamieson K, Wiles ET, McNaught KJ, Sidoli S, Leggett N, Shao Y, Garcia BA, Selker EU. Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Res 2015; 26:97-107. [PMID: 26537359 PMCID: PMC4691754 DOI: 10.1101/gr.194555.115] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/04/2015] [Indexed: 12/25/2022]
Abstract
Methylated lysine 27 on histone H3 (H3K27me) marks repressed “facultative heterochromatin,” including developmentally regulated genes in plants and animals. The mechanisms responsible for localization of H3K27me are largely unknown, perhaps in part because of the complexity of epigenetic regulatory networks. We used a relatively simple model organism bearing both facultative and constitutive heterochromatin, Neurospora crassa, to explore possible interactions between elements of heterochromatin. In higher eukaryotes, reductions of H3K9me3 and DNA methylation in constitutive heterochromatin have been variously reported to cause redistribution of H3K27me3. In Neurospora, we found that elimination of any member of the DCDC H3K9 methylation complex caused massive changes in the distribution of H3K27me; regions of facultative heterochromatin lost H3K27me3, while regions that are normally marked by H3K9me3 became methylated at H3K27. Elimination of DNA methylation had no obvious effect on the distribution of H3K27me. Elimination of HP1, which “reads” H3K9me3, also caused major changes in the distribution of H3K27me, indicating that HP1 is important for normal localization of facultative heterochromatin. Because loss of HP1 caused redistribution of H3K27me2/3, but not H3K9me3, these normally nonoverlapping marks became superimposed. Indeed, mass spectrometry revealed substantial cohabitation of H3K9me3 and H3K27me2 on H3 molecules from an hpo strain. Loss of H3K27me machinery (e.g., the methyltransferase SET-7) did not impact constitutive heterochromatin but partially rescued the slow growth of the DCDC mutants, suggesting that the poor growth of these mutants is partly attributable to ectopic H3K27me. Altogether, our findings with Neurospora clarify interactions of facultative and constitutive heterochromatin in eukaryotes.
Collapse
Affiliation(s)
- Kirsty Jamieson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Elizabeth T Wiles
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics and the Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA
| | - Neena Leggett
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Yanchun Shao
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and the Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| |
Collapse
|
36
|
Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proc Natl Acad Sci U S A 2015; 112:E6339-48. [PMID: 26578794 DOI: 10.1073/pnas.1511377112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress.
Collapse
|
37
|
Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM, Freitag M, Stukenbrock EH. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics Chromatin 2015; 8:41. [PMID: 26430472 PMCID: PMC4589918 DOI: 10.1186/s13072-015-0033-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Supernumerary chromosomes have been found in many organisms. In fungi, these "accessory" or "dispensable" chromosomes are present at different frequencies in populations and are usually characterized by higher repetitive DNA content and lower gene density when compared to the core chromosomes. In the reference strain of the wheat pathogen, Zymoseptoria tritici, eight discrete accessory chromosomes have been found. So far, no functional role has been assigned to these chromosomes; however, they have existed as separate entities in the karyotypes of Zymoseptoria species over evolutionary time. In this study, we addressed what-if anything-distinguishes the chromatin of accessory chromosomes from core chromosomes. We used chromatin immunoprecipitation combined with high-throughput sequencing ("ChIP-seq") of DNA associated with the centromere-specific histone H3, CENP-A (CenH3), to identify centromeric DNA, and ChIP-seq with antibodies against dimethylated H3K4, trimethylated H3K9 and trimethylated H3K27 to determine the relative distribution and proportion of euchromatin, obligate and facultative heterochromatin, respectively. RESULTS Centromeres of the eight accessory chromosomes have the same sequence composition and structure as centromeres of the 13 core chromosomes and they are of similar length. Unlike those of most other fungi, Z. tritici centromeres are not composed entirely of repetitive DNA; some centromeres contain only unique DNA sequences, and bona fide expressed genes are located in regions enriched with CenH3. By fluorescence microscopy, we showed that centromeres of Z. tritici do not cluster into a single chromocenter during interphase. We found dramatically higher enrichment of H3K9me3 and H3K27me3 on the accessory chromosomes, consistent with the twofold higher proportion of repetitive DNA and poorly transcribed genes. In contrast, no single histone modification tested here correlated with the distribution of centromeric nucleosomes. CONCLUSIONS All centromeres are similar in length and composed of a mixture of unique and repeat DNA, and most contain actively transcribed genes. Centromeres, subtelomeric regions or telomere repeat length cannot account for the differences in transfer fidelity between core and accessory chromosomes, but accessory chromosomes are greatly enriched in nucleosomes with H3K27 trimethylation. Genes on accessory chromosomes appear to be silenced by trimethylation of H3K9 and H3K27.
Collapse
Affiliation(s)
- Klaas Schotanus
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Jessica L Soyer
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, Thiverval-Grignon, 78850 France ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Lanelle R Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA
| | - Jonathan Grandaubert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA
| | - Eva H Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
38
|
Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 2015; 16:519-32. [PMID: 26296162 PMCID: PMC4672940 DOI: 10.1038/nrm4043] [Citation(s) in RCA: 648] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk.
Collapse
Affiliation(s)
- Jiamu Du
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Lianna M Johnson
- Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Steven E Jacobsen
- Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
39
|
Aghcheh RK, Kubicek CP. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol 2015; 99:6167-81. [PMID: 26115753 DOI: 10.1007/s00253-015-6763-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Filamentous fungi are today a major source of industrial biotechnology for the production of primary and secondary metabolites, as well as enzymes and recombinant proteins. All of them have undergone extensive improvement strain programs, initially by classical mutagenesis and later on by genetic manipulation. Thereby, strategies to overcome rate-limiting or yield-reducing reactions included manipulating the expression of individual genes, their regulatory genes, and also their function. Yet, research of the last decade clearly showed that cells can also undergo heritable changes in gene expression that do not involve changes in the underlying DNA sequences (=epigenetics). This involves three levels of regulation: (i) DNA methylation, (ii) chromatin remodeling by histone modification, and (iii) RNA interference. The demonstration of the occurrence of these processes in fungal model organisms such as Aspergillus nidulans and Neurospora crassa has stimulated its recent investigation as a tool for strain improvement in industrially used fungi. This review describes the progress that has thereby been obtained.
Collapse
Affiliation(s)
- Razieh Karimi Aghcheh
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166-5, 1060, Vienna, Austria,
| | | |
Collapse
|
40
|
Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Fungal Genet Biol 2015; 79:63-70. [PMID: 25857259 DOI: 10.1016/j.fgb.2015.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 02/05/2023]
Abstract
The presence or absence of specific transcription factors, chromatin remodeling machineries, chromatin modification enzymes, post-translational histone modifications and histone variants all play crucial roles in the regulation of pathogenicity genes. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) provides an important tool to study genome-wide protein-DNA interactions to help understand gene regulation in the context of native chromatin. ChIP-seq is a convenient in vivo technique to identify, map and characterize occupancy of specific DNA fragments with proteins against which specific antibodies exist or which can be epitope-tagged in vivo. We optimized existing ChIP protocols for use in the wheat pathogen Zymoseptoria tritici and closely related sister species. Here, we provide a detailed method, underscoring which aspects of the technique are organism-specific. Library preparation for Illumina sequencing is described, as this is currently the most widely used ChIP-seq method. One approach for the analysis and visualization of representative sequence is described; improved tools for these analyses are constantly being developed. Using ChIP-seq with antibodies against H3K4me2, which is considered a mark for euchromatin or H3K9me3 and H3K27me3, which are considered marks for heterochromatin, the overall distribution of euchromatin and heterochromatin in the genome of Z. tritici can be determined. Our ChIP-seq protocol was also successfully applied to Z. tritici strains with high levels of melanization or aberrant colony morphology, and to different species of the genus (Z. ardabiliae and Z. pseudotritici), suggesting that our technique is robust. The methods described here provide a powerful framework to study new aspects of chromatin biology and gene regulation in this prominent wheat pathogen.
Collapse
|
41
|
Klocko AD, Rountree MR, Grisafi PL, Hays SM, Adhvaryu KK, Selker EU. Neurospora importin α is required for normal heterochromatic formation and DNA methylation. PLoS Genet 2015; 11:e1005083. [PMID: 25793375 PMCID: PMC4368784 DOI: 10.1371/journal.pgen.1005083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022] Open
Abstract
Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify and characterize a gene important for DCDC function, dim-3 (defective in methylation-3), which encodes the nuclear import chaperone NUP-6 (Importin α). The critical mutation in dim-3 results in a substitution in an ARM repeat of NUP-6 and causes a substantial loss of H3K9me3 and DNA methylation. Surprisingly, nuclear transport of all known proteins involved in histone and DNA methylation, as well as a canonical transport substrate, appear normal in dim-3 strains. Interactions between DCDC members also appear normal, but the nup-6dim-3 allele causes the DCDC members DIM-5 and DIM-7 to mislocalize from heterochromatin and NUP-6dim-3 itself is mislocalized from the nuclear envelope, at least in conidia. GCN-5, a member of the SAGA histone acetyltransferase complex, also shows altered localization in dim-3, raising the possibility that NUP-6 is necessary to localize multiple chromatin complexes following nucleocytoplasmic transport. The epigenetic information contained in chromatin is essential for development of higher organisms, and if misregulated, can lead to the unregulated growth associated with human cancers. Chromatin is typically classified into two basic types: gene-rich 'euchromatin', and gene-poor heterochromatin, which is also rich in repeated DNA and 'repressive chromatin marks'. As in humans and eukaryotes generally, heterochromatin in Neurospora crassa is decorated with DNA methylation and histone H3 lysine 9 (H3K9) methylation, but unlike the case in mammals, loss of these epigenetic marks does not compromise viability. In Neurospora, the DCDC, a five-member Cul4-based protein complex, trimethylates H3K9. Little information is available on the regulation of DCDC or similar complexes in other organisms. Using forward genetics, we identified a novel role for Importin α (NUP-6) for the function of DCDC. Although NUP-6 typically functions in nucleocytoplasmic transport, the dim-3 strain, which contains an altered nup-6 gene that reduces DNA methylation and H3K9me3, shows normal nuclear transport of the heterochromatin machinery and a canonical transport substrate. Two DCDC members are mislocalized from heterochromatin in the dim-3 mutant, signifying that NUP-6 may be important for targeting key proteins to incipient heterochromatic DNA. The euchromatic complex SAGA has increased euchromatin localization in dim-3, suggesting that NUP-6 may localize multiple chromatin complexes to sub-nuclear genomic targets.
Collapse
Affiliation(s)
- Andrew D. Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Michael R. Rountree
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Paula L. Grisafi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Shan M. Hays
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Keyur K. Adhvaryu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
42
|
Heterochromatin controls γH2A localization in Neurospora crassa. EUKARYOTIC CELL 2014; 13:990-1000. [PMID: 24879124 DOI: 10.1128/ec.00117-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In response to genotoxic stress, ATR and ATM kinases phosphorylate H2A in fungi and H2AX in animals on a C-terminal serine. The resulting modified histone, called γH2A, recruits chromatin-binding proteins that stabilize stalled replication forks or promote DNA double-strand-break repair. To identify genomic loci that might be prone to replication fork stalling or DNA breakage in Neurospora crassa, we performed chromatin immunoprecipitation (ChIP) of γH2A followed by next-generation sequencing (ChIP-seq). γH2A-containing nucleosomes are enriched in Neurospora heterochromatin domains. These domains are comprised of A·T-rich repetitive DNA sequences associated with histone H3 methylated at lysine-9 (H3K9me), the H3K9me-binding protein heterochromatin protein 1 (HP1), and DNA cytosine methylation. H3K9 methylation, catalyzed by DIM-5, is required for normal γH2A localization. In contrast, γH2A is not required for H3K9 methylation or DNA methylation. Normal γH2A localization also depends on HP1 and a histone deacetylase, HDA-1, but is independent of the DNA methyltransferase DIM-2. γH2A is globally induced in dim-5 mutants under normal growth conditions, suggesting that the DNA damage response is activated in these mutants in the absence of exogenous DNA damage. Together, these data suggest that heterochromatin formation is essential for normal DNA replication or repair.
Collapse
|
43
|
Eissenberg JC, Elgin SCR. HP1a: a structural chromosomal protein regulating transcription. Trends Genet 2014; 30:103-10. [PMID: 24555990 DOI: 10.1016/j.tig.2014.01.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 01/16/2023]
Abstract
Heterochromatin protein 1 (HP1a in Drosophila) is a conserved eukaryotic chromosomal protein that is prominently associated with pericentric heterochromatin and mediates the concomitant gene silencing. Mechanistic studies implicate HP1 family proteins as 'hub proteins,' able to interact with a variety of chromosomal proteins through the chromo-shadow domain (CSD), as well as to recognize key histone modification sites [primarily histone H3 di/trimethyl Lys9 (H3K9me2/3)] through the chromodomain (CD). Consequently, HP1 has many important roles in chromatin architecture and impacts both gene expression and gene silencing, utilizing a variety of mechanisms. Clearly, HP1 function is altered by context, and potentially by post-translational modifications (PTMs). Here, we report on recent ideas as to how this versatile protein accomplishes its diverse functions.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, 1100 South Grand Boulevard, St Louis, MO 63104, USA
| | - Sarah C R Elgin
- Department of Biology, Washington University in St. Louis, Campus Box 1037, One Brookings Drive, St Louis, MO 63130-4899, USA.
| |
Collapse
|
44
|
Azzaz AM, Vitalini MW, Thomas AS, Price JP, Blacketer MJ, Cryderman DE, Zirbel LN, Woodcock CL, Elcock AH, Wallrath LL, Shogren-Knaak MA. Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J Biol Chem 2014; 289:6850-6861. [PMID: 24415761 DOI: 10.1074/jbc.m113.512137] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HP1(Hsα)-containing heterochromatin is located near centric regions of chromosomes and regulates DNA-mediated processes such as DNA repair and transcription. The higher-order structure of heterochromatin contributes to this regulation, yet the structure of heterochromatin is not well understood. We took a multidisciplinary approach to determine how HP1(Hsα)-nucleosome interactions contribute to the structure of heterochromatin. We show that HP1(Hsα) preferentially binds histone H3K9Me3-containing nucleosomal arrays in favor of non-methylated nucleosomal arrays and that nonspecific DNA interactions and pre-existing chromatin compaction promote binding. The chromo and chromo shadow domains of HP1(Hsα) play an essential role in HP1(Hsα)-nucleosome interactions, whereas the hinge region appears to have a less significant role. Electron microscopy of HP1(Hsα)-associated nucleosomal arrays showed that HP1(Hsα) caused nucleosome associations within an array, facilitating chromatin condensation. Differential sedimentation of HP1(Hsα)-associated nucleosomal arrays showed that HP1(Hsα) promotes interactions between arrays. These strand-to-strand interactions are supported by in vivo studies where tethering the Drosophila homologue HP1a to specific sites promotes interactions with distant chromosomal sites. Our findings demonstrate that HP1(Hsα)-nucleosome interactions cause chromatin condensation, a process that regulates many chromosome events.
Collapse
Affiliation(s)
- Abdelhamid M Azzaz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | | | - Andrew S Thomas
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Jason P Price
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Melissa J Blacketer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Diane E Cryderman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Luka N Zirbel
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | | | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Lori L Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241.
| | - Michael A Shogren-Knaak
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
45
|
Manning J, Mitchell B, Appadurai DA, Shakya A, Pierce LJ, Wang H, Nganga V, Swanson PC, May JM, Tantin D, Spangrude GJ. Vitamin C promotes maturation of T-cells. Antioxid Redox Signal 2013; 19:2054-67. [PMID: 23249337 PMCID: PMC3869442 DOI: 10.1089/ars.2012.4988] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Vitamin C (ascorbic acid) is thought to enhance immune function, but the mechanisms involved are obscure. We utilized an in vitro model of T-cell maturation to evaluate the role of ascorbic acid in lymphocyte development. RESULTS Ascorbic acid was essential for the developmental progression of mouse bone marrow-derived progenitor cells to functional T-lymphocytes in vitro and also played a role in vivo. Ascorbate-mediated enhancement of T-cell development was lymphoid cell-intrinsic and independent of T-cell receptor (TCR) rearrangement. Analysis of TCR rearrangements demonstrated that ascorbic acid enhanced the selection of functional TCRαβ after the stage of β-selection. Genes encoding the coreceptor CD8 as well as the kinase ZAP70 were upregulated by ascorbic acid. Pharmacologic inhibition of methylation marks on DNA and histones enhanced ascorbate-mediated differentiation, suggesting an epigenetic mechanism of Cd8 gene regulation via active demethylation by ascorbate-dependent Fe(2+) and 2-oxoglutarate-dependent dioxygenases. INNOVATION We speculate that one aspect of gene regulation mediated by ascorbate occurs at the level of chromatin demethylation, mediated by Jumonji C (JmjC) domain enzymes that are known to be reliant upon ascorbate as a cofactor. JmjC domain enzymes are also known to regulate transcription factor activity. These two mechanisms are likely to play key roles in the modulation of immune development and function by ascorbic acid. CONCLUSION Our results provide strong experimental evidence supporting a role for ascorbic acid in T-cell maturation as well as insight into the mechanism of ascorbate-mediated enhancement of immune function.
Collapse
Affiliation(s)
- Jared Manning
- 1 Division of Hematology, Department of Medicine, University of Utah , Salt Lake City, Utah
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Global gene expression and focused knockout analysis reveals genes associated with fungal fruiting body development in Neurospora crassa. EUKARYOTIC CELL 2013; 13:154-69. [PMID: 24243796 DOI: 10.1128/ec.00248-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungi can serve as highly tractable models for understanding genetic basis of sexual development in multicellular organisms. Applying a reverse-genetic approach to advance such a model, we used random and multitargeted primers to assay gene expression across perithecial development in Neurospora crassa. We found that functionally unclassified proteins accounted for most upregulated genes, whereas downregulated genes were enriched for diverse functions. Moreover, genes associated with developmental traits exhibited stage-specific peaks of expression. Expression increased significantly across sexual development for mating type gene mat a-1 and for mat A-1 specific pheromone precursor ccg-4. In addition, expression of a gene encoding a protein similar to zinc finger, stc1, was highly upregulated early in perithecial development, and a strain with a knockout of this gene exhibited arrest at the same developmental stage. A similar expression pattern was observed for genes in RNA silencing and signaling pathways, and strains with knockouts of these genes were also arrested at stages of perithecial development that paralleled their peak in expression. The observed stage specificity allowed us to correlate expression upregulation and developmental progression and to identify regulators of sexual development. Bayesian networks inferred from our expression data revealed previously known and new putative interactions between RNA silencing genes and pathways. Overall, our analysis provides a fine-scale transcriptomic landscape and novel inferences regarding the control of the multistage development process of sexual crossing and fruiting body development in N. crassa.
Collapse
|
47
|
Aramayo R, Selker EU. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 2013; 5:a017921. [PMID: 24086046 DOI: 10.1101/cshperspect.a017921] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The filamentous fungus Neurospora crassa has provided a rich source of knowledge on epigenetic phenomena that would have been difficult or impossible to gain from other systems. Neurospora sports features found in higher eukaryotes but absent in both budding and fission yeast, including DNA methylation and H3K27 methylation, and also has distinct RNA interference (RNAi)-based silencing mechanisms operating in mitotic and meiotic cells. This has provided an unexpected wealth of information on gene silencing systems. One silencing mechanism, named repeat-induced point mutation (RIP), has both epigenetic and genetic aspects and provided the first example of a homology-based genome defense system. A second silencing mechanism, named quelling, is an RNAi-based mechanism that results in silencing of transgenes and their native homologs. A third, named meiotic silencing, is also RNAi-based but is distinct from quelling in its time of action, targets, and apparent purpose.
Collapse
Affiliation(s)
- Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | | |
Collapse
|
48
|
Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis 2013; 4:e621. [PMID: 23640463 PMCID: PMC3674355 DOI: 10.1038/cddis.2013.146] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the recruitment of fibroblasts to areas of injury is critical for wound healing, their subsequent apoptosis is necessary in order to prevent excessive scarring. Fibroproliferative diseases, such as pulmonary fibrosis, are often characterized by fibroblast resistance to apoptosis, but the mechanism(s) for this resistance remains elusive. Here, we employed a murine model of pulmonary fibrosis and cells from patients with idiopathic pulmonary fibrosis (IPF) to explore epigenetic mechanisms that may be responsible for the decreased expression of Fas, a cell surface death receptor whose expression has been observed to be decreased in pulmonary fibrosis. Murine pulmonary fibrosis was elicited by intratracheal injection of bleomycin. Fibroblasts cultured from bleomycin-treated mice exhibited decreased Fas expression and resistance to Fas-mediated apoptosis compared with cells from saline-treated control mice. Although there were no differences in DNA methylation, the Fas promoter in fibroblasts from bleomycin-treated mice exhibited decreased histone acetylation and increased histone 3 lysine 9 trimethylation (H3K9Me3). This was associated with increased histone deacetylase (HDAC)-2 and HDAC4 expression. Treatment with HDAC inhibitors increased Fas expression and restored susceptibility to Fas-mediated apoptosis. Fibroblasts from patients with IPF likewise exhibited decreased histone acetylation and increased H3K9Me3 at the Fas promoter and increased their expression of Fas in the presence of an HDAC inhibitor. These findings demonstrate the critical role of histone modifications in the development of fibroblast resistance to apoptosis in both a murine model and in patients with pulmonary fibrosis and suggest novel approaches to therapy for progressive fibroproliferative disorders.
Collapse
|
49
|
Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M. Centromeres of filamentous fungi. Chromosome Res 2012; 20:635-56. [PMID: 22752455 DOI: 10.1007/s10577-012-9290-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years, the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived "point centromeres" of the budding yeast Saccharomyces cerevisiae and its close relatives are counter-examples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared among various groups of organisms. For that reason, it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes, and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use.
Collapse
Affiliation(s)
- Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | | | | | |
Collapse
|
50
|
Wallrath LL, Elgin SCR. Enforcing silencing: dynamic HP1 complexes in Neurospora. Nat Struct Mol Biol 2012; 19:465-7. [PMID: 22551706 DOI: 10.1038/nsmb.2291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Analysis of the Neurospora crassa chromodomain protein CDP-2, a component of a newly characterized HP1-containing complex, reveals a second gene-silencing mechanism and provides insights into the dynamic nature of chromatin domains that possess shared components.
Collapse
Affiliation(s)
- Lori L Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|