1
|
Rodionov AV, Gnutikov AA, Kotsinyan AR, Kotseruba VV, Nosov NN, Punina EO, Rayko MP, Tyupa NB, Kim ES. ITS1–5.8S rDNA–ITS2 sequence in 35S rRNA genes as marker for reconstruction of phylogeny of grasses (Poaceae family). ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079086417020062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Kiosze-Becker K, Ori A, Gerovac M, Heuer A, Nürenberg-Goloub E, Rashid UJ, Becker T, Beckmann R, Beck M, Tampé R. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nat Commun 2016; 7:13248. [PMID: 27824037 PMCID: PMC5105147 DOI: 10.1038/ncomms13248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 09/15/2016] [Indexed: 02/03/2023] Open
Abstract
Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final—or the first—step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix–loop–helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling. Ribosome recycling orchestrated by ABCE1 connects translation termination and mRNA surveillance mechanisms with re-initiation. Using a cross-linking and mass spectrometry approach, Kiosze-Becker et al. provide new information on the large conformational rearrangements that occur during ribosome recycling.
Collapse
Affiliation(s)
- Kristin Kiosze-Becker
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Alessandro Ori
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Milan Gerovac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - André Heuer
- Gene Center and Center for Integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Umar Jan Rashid
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Thomas Becker
- Gene Center and Center for Integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| |
Collapse
|
3
|
Pratte D, Singh U, Murat G, Kressler D. Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. PLoS One 2013; 8:e82741. [PMID: 24312670 PMCID: PMC3846774 DOI: 10.1371/journal.pone.0082741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these 'Mak5 cluster' factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation.
Collapse
Affiliation(s)
- Dagmar Pratte
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ujjwala Singh
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
4
|
Nürenberg E, Tampé R. Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem Sci 2012; 38:64-74. [PMID: 23266104 DOI: 10.1016/j.tibs.2012.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/29/2023]
Abstract
Ribosome recycling is the final - or first - step of the cyclic process of mRNA translation. In eukaryotes and archaea, dissociation of the two ribosomal subunits proceeds in a fundamentally different way than in bacteria. It requires the ABC-type ATPase ABCE1 [previously named RNase L inhibitor (Rli)1 or host protein (HP)68], but the reaction and its regulation remain enigmatic. Here, we focus on ribosome recycling in its physiological context, including translation termination and reinitiation. The regulation of this crucial event can only be described by a systems biology approach, involving a network of proteins modulating mRNA translation. The key role of ABCE1, and what is known about the structure and function of this versatile protein, is discussed.
Collapse
Affiliation(s)
- Elina Nürenberg
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany
| | | |
Collapse
|