1
|
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24065977. [PMID: 36983051 PMCID: PMC10051459 DOI: 10.3390/ijms24065977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common type of diabetic neuropathy, rendering a slowly progressive, symmetrical, and length-dependent dying-back axonopathy with preferential sensory involvement. Although the pathogenesis of DPN is complex, this review emphasizes the concept that hyperglycemia and metabolic stressors directly target sensory neurons in the dorsal root ganglia (DRG), leading to distal axonal degeneration. In this context, we discuss the role for DRG-targeting gene delivery, specifically oligonucleotide therapeutics for DPN. Molecules including insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1 that impact neurotrophic signal transduction (for example, phosphatidylinositol-3 kinase/phosphorylated protein kinase B [PI3/pAkt] signaling) and other cellular networks may promote regeneration. Regenerative strategies may be essential in maintaining axon integrity during ongoing degeneration in diabetes mellitus (DM). We discuss specific new findings that relate to sensory neuron function in DM associated with abnormal dynamics of nuclear bodies such as Cajal bodies and nuclear speckles in which mRNA transcription and post-transcriptional processing occur. Manipulating noncoding RNAs such as microRNA and long-noncoding RNA (specifically MALAT1) that regulate gene expression through post-transcriptional modification are interesting avenues to consider in supporting neurons during DM. Finally, we present therapeutic possibilities around the use of a novel DNA/RNA heteroduplex oligonucleotide that provides more efficient gene knockdown in DRG than the single-stranded antisense oligonucleotide.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo 158-0095, Japan
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Douglas W. Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute and The Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-780-248-1928; Fax: +1-780-248-1807
| |
Collapse
|
2
|
Abulfaraj AA, Alhoraibi HM, Mariappan K, Bigeard J, Zhang H, Almeida-Trapp M, Artyukh O, Abdulhakim F, Parween S, Pflieger D, Blilou I, Hirt H, Rayapuram N. Analysis of the Arabidopsis coilin mutant reveals a positive role of AtCOILIN in plant immunity. PLANT PHYSIOLOGY 2022; 190:745-761. [PMID: 35674377 PMCID: PMC9434284 DOI: 10.1093/plphys/kiac280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.
Collapse
Affiliation(s)
- Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Kiruthiga Mariappan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jean Bigeard
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, Université de Paris, Orsay 91405, France
| | - Huoming Zhang
- Corelabs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Marilia Almeida-Trapp
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Olga Artyukh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Fatimah Abdulhakim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sabiha Parween
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Delphine Pflieger
- Universite Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Ikram Blilou
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | | | | |
Collapse
|
3
|
Förthmann B, van Bergeijk J, Lee YW, Lübben V, Schill Y, Brinkmann H, Ratzka A, Stachowiak MK, Hebert M, Grothe C, Claus P. Regulation of neuronal differentiation by proteins associated with nuclear bodies. PLoS One 2013; 8:e82871. [PMID: 24358231 PMCID: PMC3866168 DOI: 10.1371/journal.pone.0082871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022] Open
Abstract
Nuclear bodies are large sub-nuclear structures composed of RNA and protein molecules. The Survival of Motor Neuron (SMN) protein localizes to Cajal bodies (CBs) and nuclear gems. Diminished cellular concentration of SMN is associated with the neurodegenerative disease Spinal Muscular Atrophy (SMA). How nuclear body architecture and its structural components influence neuronal differentiation remains elusive. In this study, we analyzed the effects of SMN and two of its interaction partners in cellular models of neuronal differentiation. The nuclear 23 kDa isoform of Fibroblast Growth Factor - 2 (FGF-2(23)) is one of these interacting proteins - and was previously observed to influence nuclear bodies by destabilizing nuclear gems and mobilizing SMN from Cajal bodies (CBs). Here we demonstrate that FGF-2(23) blocks SMN-promoted neurite outgrowth, and also show that SMN disrupts FGF-2(23)-dependent transcription. Our results indicate that FGF-2(23) and SMN form an inactive complex that interferes with neuronal differentiation by mutually antagonizing nuclear functions. Coilin is another nuclear SMN binding partner and a marker protein for Cajal bodies (CBs). In addition, coilin is essential for CB function in maturation of small nuclear ribonucleoprotein particles (snRNPs). The role of coilin outside of Cajal bodies and its putative impacts in tissue differentiation are poorly defined. The present study shows that protein levels of nucleoplasmic coilin outside of CBs decrease during neuronal differentiation. Overexpression of coilin has an inhibitory effect on neurite outgrowth. Furthermore, we find that nucleoplasmic coilin inhibits neurite outgrowth independent of SMN binding revealing a new function for coilin in neuronal differentiation.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Yu-Wei Lee
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Verena Lübben
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Yvonne Schill
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Michael Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
4
|
Berezhna SY, Supekova L, Sever MJ, Schultz PG, Deniz AA. Dual regulation of hepatitis C viral RNA by cellular RNAi requires partitioning of Ago2 to lipid droplets and P-bodies. RNA (NEW YORK, N.Y.) 2011; 17:1831-45. [PMID: 21868483 PMCID: PMC3185916 DOI: 10.1261/rna.2523911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.
Collapse
Affiliation(s)
- Svitlana Yu. Berezhna
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Lubica Supekova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Mary J. Sever
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ashok A. Deniz
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Corresponding author.E-mail .
| |
Collapse
|