1
|
Butryn A, Greiwe JF, Costa A. Unidirectional MCM translocation away from ORC drives origin licensing. Nat Commun 2025; 16:782. [PMID: 39824870 PMCID: PMC11748629 DOI: 10.1038/s41467-025-56143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown. Here, we used cryo-EM to characterise helicase loading with ATPase-dead Arginine Finger variants of the six MCM subunits. We report the structure of two MCM complexes with different DNA grips, stalled as they mature to loaded MCM. The Mcm2 Arginine Finger-variant stabilises DNA binding by Mcm2 away from ORC/Cdc6. The Arginine Finger-variant of the neighbouring Mcm5 subunit stabilises DNA engagement by Mcm5 downstream of the Mcm2 binding site. Cdc6 and Orc1 progressively disengage from ORC as MCM translocates along DNA. We observe that duplex DNA translocation by MCM involves a set of leading-strand contacts by the pre-sensor 1 ATPase hairpins and lagging-strand contacts by the helix-2-insert hairpins. Mutating any of the MCM residues involved impairs high-salt resistant DNA binding in vitro and double-hexamer formation assessed by electron microscopy. Thus, ATPase-powered duplex DNA translocation away from ORC underlies MCM loading.
Collapse
Affiliation(s)
- Agata Butryn
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park Milton Rd, Milton, Cambridge, CB4 0QA, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
3
|
Cupo RR, Rizo AN, Braun GA, Tse E, Chuang E, Gupta K, Southworth DR, Shorter J. Unique structural features govern the activity of a human mitochondrial AAA+ disaggregase, Skd3. Cell Rep 2022; 40:111408. [PMID: 36170828 PMCID: PMC9584538 DOI: 10.1016/j.celrep.2022.111408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022] Open
Abstract
The AAA+ protein, Skd3 (human CLPB), solubilizes proteins in the mitochondrial intermembrane space, which is critical for human health. Skd3 variants with defective protein-disaggregase activity cause severe congenital neutropenia (SCN) and 3-methylglutaconic aciduria type 7 (MGCA7). How Skd3 disaggregates proteins remains poorly understood. Here, we report a high-resolution structure of a Skd3-substrate complex. Skd3 adopts a spiral hexameric arrangement that engages substrate via pore-loop interactions in the nucleotide-binding domain (NBD). Substrate-bound Skd3 hexamers stack head-to-head via unique, adaptable ankyrin-repeat domain (ANK)-mediated interactions to form dodecamers. Deleting the ANK linker region reduces dodecamerization and disaggregase activity. We elucidate apomorphic features of the Skd3 NBD and C-terminal domain that regulate disaggregase activity. We also define how Skd3 subunits collaborate to disaggregate proteins. Importantly, SCN-linked subunits sharply inhibit disaggregase activity, whereas MGCA7-linked subunits do not. These advances illuminate Skd3 structure and mechanism, explain SCN and MGCA7 inheritance patterns, and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Ryan R Cupo
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandrea N Rizo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel A Braun
- Chemistry and Chemical Biology Graduate Program, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Yalala VR, Lynch AK, Mills KV. Conditional Alternative Protein Splicing Promoted by Inteins from Haloquadratum walsbyi. Biochemistry 2022; 61:294-302. [PMID: 35073064 PMCID: PMC8847336 DOI: 10.1021/acs.biochem.1c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein splicing is a post-translational process by which an intervening protein, or an intein, catalyzes its own excision from flanking polypeptides, or exteins, coupled to extein ligation. Four inteins interrupt the MCM helicase of the halophile Haloquadratum walsbyi, two of which are mini-inteins that lack a homing endonuclease. Both inteins can be overexpressed in Escherichia coli and purified as unspliced precursors; splicing can be induced in vitro by incubation with salt. However, one intein can splice in 0.5 M NaCl in vitro, whereas the other splices efficiently only in buffer containing over 2 M NaCl; the organism also requires high salt to grow, with the standard growth media containing over 3 M NaCl and about 0.75 M magnesium salts. Consistent with this difference in salt-dependent activity, an intein-containing precursor protein with both inteins promotes conditional alternative protein splicing (CAPS) to yield different spliced products dependent on the salt concentration. Native Trp fluorescence of the inteins suggests that the difference in activity may be due to partial unfolding of the inteins at lower salt concentrations. This differential salt sensitivity of intein activity may provide a useful mechanism for halophiles to respond to environmental changes.
Collapse
Affiliation(s)
- Vaishnavi R Yalala
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Abigeal K Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
5
|
Abstract
Ring-shaped hexameric helicases are essential motor proteins that separate duplex nucleic acid strands for DNA replication, recombination, and transcriptional regulation. Two evolutionarily distinct lineages of these enzymes, predicated on RecA and AAA+ ATPase folds, have been identified and characterized to date. Hexameric helicases couple NTP hydrolysis with conformational changes that move nucleic acid substrates through a central pore in the enzyme. How hexameric helicases productively engage client DNA or RNA segments and use successive rounds of NTPase activity to power translocation and unwinding have been longstanding questions in the field. Recent structural and biophysical findings are beginning to reveal commonalities in NTP hydrolysis and substrate translocation by diverse hexameric helicase families. Here, we review these molecular mechanisms and highlight aspects of their function that are yet to be understood.
Collapse
|
6
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
8
|
Bandyopadhyay A, Saxena AK. Structural and ATPase activity analysis of nucleotide binding domain of Rv3870 enzyme of M. tuberculosis ESX-1 system. Int J Biol Macromol 2021; 189:879-889. [PMID: 34428493 DOI: 10.1016/j.ijbiomac.2021.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
The EccC enzyme of ESX-1 system contains (i) a membrane bound Rv3870 with single ATPase domain and (ii) a cytoplasmic Rv3871 with two ATPase domains and involved in secretion of ESAT6/CFP10 factor out of the cell. In current study, we have structurally and biochemically characterized the ATPase domain (442-747 residues) of Rv3870 enzyme. The ΔRv3870 eluted as oligomer (~813 kDa) from Superdex 200 (16/60) column, as identified based on molecular mass standard and dynamics light scattering. The SAXS analysis yielded a tetrameric ring envelope of ΔRv3870, quite consistent to dynamic light scattering data. The ΔRv3870 exhibited ATPase activity having kinetic parameters, Km ~ 100 ± 40 μM, kcat ~ 1.81 ± 0.27 min-1 and Vmax ~ 54.41 μM/min/mg. ATPase activity using nine ΔRv3870 mutants showed 70-91% decrease in catalytic efficiency of the enzyme. ΔRv3870 binds Rv3871 with KD ~ 484.0 ± 10.3 nM and its catalytic efficiency is enhanced ~6.7-fold in presence of Rv3871. CD data revealed the high TM ~ 82.2 ± 0.5 °C for ΔRv3870 and enhanced in presence of ATP + Mg2+, as observed in dynamics simulation on ΔRv3870 hexameric models. Overall, our structural and biochemical studies on ΔRv3870 have explained the mechanism, which will contribute in development of antivirulence inhibitors against M. tuberculosis.
Collapse
Affiliation(s)
- Arkita Bandyopadhyay
- Rm-403/440, Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi-67, India
| | - Ajay K Saxena
- Rm-403/440, Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi-67, India.
| |
Collapse
|
9
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
10
|
Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Cell Rep 2020; 28:2673-2688.e8. [PMID: 31484077 PMCID: PMC6737378 DOI: 10.1016/j.celrep.2019.07.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding. Vertical DNA movement through the MCM ring requires rotation inside the pore Structural asymmetries in MCM-DNA are captured during ATPase-powered translocation Asymmetric rotation explains selective ATPase site requirements for translocation The fork-stabilization complex strengthens parental-DNA engagement by the MCM
Collapse
Affiliation(s)
- Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Nele Tamberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
11
|
Perera HM, Trakselis MA. Site-specific DNA Mapping of Protein Binding Orientation Using Azidophenacyl Bromide (APB). Bio Protoc 2020; 10:e3649. [PMID: 33659320 DOI: 10.21769/bioprotoc.3649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Accepted: 04/28/2020] [Indexed: 11/02/2022] Open
Abstract
The orientation of a DNA-binding protein bound on DNA is determinative in directing the assembly of other associated proteins in the complex for enzymatic action. As an example, in a replisome, the orientation of the DNA helicase at the replication fork directs the assembly of the other associated replisome proteins. We have recently determined the orientation of Saccharalobus solfataricus (Sso) Minichromosome maintenance (MCM) helicase at a DNA fork utilizing a site-specific DNA cleavage and mapping assay. Here, we describe a detailed protocol for site-specific DNA footprinting using 4-azidophenacyl bromide (APB). This method provides a straightforward, biochemical method to reveal the DNA binding orientation of SsoMCM helicase and can be applied to other DNA binding proteins.
Collapse
Affiliation(s)
- Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
12
|
Abstract
It is now well recognized that the information processing machineries of archaea are far more closely related to those of eukaryotes than to those of their prokaryotic cousins, the bacteria. Extensive studies have been performed on the structure and function of the archaeal DNA replication origins, the proteins that define them, and the macromolecular assemblies that drive DNA unwinding and nascent strand synthesis. The results from various archaeal organisms across the archaeal domain of life show surprising levels of diversity at many levels-ranging from cell cycle organization to chromosome ploidy to replication mode and nature of the replicative polymerases. In the following, we describe recent advances in the field, highlighting conserved features and lineage-specific innovations.
Collapse
Affiliation(s)
- Mark D Greci
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| | - Stephen D Bell
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA; .,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
13
|
Perera HM, Trakselis MA. Amidst multiple binding orientations on fork DNA, Saccharolobus MCM helicase proceeds N-first for unwinding. eLife 2019; 8:46096. [PMID: 31661075 PMCID: PMC6831031 DOI: 10.7554/elife.46096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
DNA replication requires that the duplex genomic DNA strands be separated; a function that is implemented by ring-shaped hexameric helicases in all Domains. Helicases are composed of two domains, an N- terminal DNA binding domain (NTD) and a C- terminal motor domain (CTD). Replication is controlled by loading of helicases at origins of replication, activation to preferentially encircle one strand, and then translocation to begin separation of the two strands. Using a combination of site-specific DNA footprinting, single-turnover unwinding assays, and unique fluorescence translocation monitoring, we have been able to quantify the binding distribution and the translocation orientation of Saccharolobus (formally Sulfolobus) solfataricus MCM on DNA. Our results show that both the DNA substrate and the C-terminal winged-helix (WH) domain influence the orientation but that translocation on DNA proceeds N-first.
Collapse
Affiliation(s)
- Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, United States
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, United States
| |
Collapse
|
14
|
Meagher M, Epling LB, Enemark EJ. DNA translocation mechanism of the MCM complex and implications for replication initiation. Nat Commun 2019; 10:3117. [PMID: 31308367 PMCID: PMC6629641 DOI: 10.1038/s41467-019-11074-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA translocation activity of the minichromosome maintenance (MCM) complex powers DNA strand separation of the replication forks of eukaryotes and archaea. Here we illustrate an atomic level mechanism for this activity with a crystal structure of an archaeal MCM hexamer bound to single-stranded DNA and nucleotide cofactors. Sequence conservation indicates this rotary mechanism is fully possible for all eukaryotes and archaea. The structure definitively demonstrates the ring orients during translocation with the N-terminal domain leading, indicating that the translocation activity could also provide the physical basis of replication initiation where a double-hexamer idly encircling double-stranded DNA transforms to single-hexamers that encircle only one strand. In this mechanism, each strand binds to the N-terminal tier of one hexamer and the AAA+ tier of the other hexamer such that one ring pulls on the other, aligning equivalent interfaces to enable each hexamer to pull its translocation strand outside of the opposing hexamer.
Collapse
Affiliation(s)
- Martin Meagher
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN, 38105, USA
| | - Leslie B Epling
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN, 38105, USA.,Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE, 19803, USA
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN, 38105, USA.
| |
Collapse
|
15
|
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. ACS NANO 2019; 13:6207-6223. [PMID: 31067030 PMCID: PMC6595433 DOI: 10.1021/acsnano.8b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
Collapse
Affiliation(s)
- Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
- E-mail:
| | - Dana Driver
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhengyi Zhao
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhen Zheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chun Chan
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Xiaolin Cheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
16
|
Goswami P, Abid Ali F, Douglas ME, Locke J, Purkiss A, Janska A, Eickhoff P, Early A, Nans A, Cheung AMC, Diffley JFX, Costa A. Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat Commun 2018; 9:5061. [PMID: 30498216 PMCID: PMC6265327 DOI: 10.1038/s41467-018-07417-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase. A key step is the recruitment of GINS that requires the leading-strand polymerase Pol epsilon, composed of Pol2, Dpb2, Dpb3, Dpb4. While a truncation of the catalytic N-terminal Pol2 supports cell division, Dpb2 and C-terminal Pol2 (C-Pol2) are essential for viability. Dpb2 and C-Pol2 are non-catalytic modules, shown or predicted to be related to an exonuclease and DNA polymerase, respectively. Here, we present the cryo-EM structure of the isolated C-Pol2/Dpb2 heterodimer, revealing that C-Pol2 contains a DNA polymerase fold. We also present the structure of CMG/C-Pol2/Dpb2 on a DNA fork, and find that polymerase binding changes both the helicase structure and fork-junction engagement. Inter-subunit contacts that keep the helicase-polymerase complex together explain several cellular phenotypes. At least some of these contacts are preserved during Pol epsilon-dependent CMG assembly on path to origin firing, as observed with DNA replication reconstituted in vitro. Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase, which requires the leading-strand polymerase Pol ɛ. Here the authors present a structural analysis of a CMG Pol ɛ on a DNA fork, providing insight on the steps leading productive helicase engagement to the DNA junction.
Collapse
Affiliation(s)
- Panchali Goswami
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Max E Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrew Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Agnieszka Janska
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Anne Early
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alan M C Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
17
|
Graham BW, Bougoulias ME, Dodge KL, Thaxton CT, Olaso D, Tao Y, Young NL, Marshall AG, Trakselis MA. Control of Hexamerization, Assembly, and Excluded Strand Specificity for the Sulfolobus solfataricus MCM Helicase. Biochemistry 2018; 57:5672-5682. [DOI: 10.1021/acs.biochem.8b00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian W. Graham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael E. Bougoulias
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Katie L. Dodge
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Carly T. Thaxton
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Danae Olaso
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Yeqing Tao
- Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, United States
| | - Alan G. Marshall
- Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
18
|
Dynamic tuneable G protein-coupled receptor monomer-dimer populations. Nat Commun 2018; 9:1710. [PMID: 29703992 PMCID: PMC5923235 DOI: 10.1038/s41467-018-03727-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane receptors, playing a key role in the regulation of processes as varied as neurotransmission and immune response. Evidence for GPCR oligomerisation has been accumulating that challenges the idea that GPCRs function solely as monomeric receptors; however, GPCR oligomerisation remains controversial primarily due to the difficulties in comparing evidence from very different types of structural and dynamic data. Using a combination of single-molecule and ensemble FRET, double electron–electron resonance spectroscopy, and simulations, we show that dimerisation of the GPCR neurotensin receptor 1 is regulated by receptor density and is dynamically tuneable over the physiological range. We propose a “rolling dimer” interface model in which multiple dimer conformations co-exist and interconvert. These findings unite previous seemingly conflicting observations, provide a compelling mechanism for regulating receptor signalling, and act as a guide for future physiological studies. Evidence suggests oligomerisation of G protein-coupled receptors in membranes, but this is controversial. Here, authors use single-molecule and ensemble FRET, and spectroscopy to show that the neurotensin receptor 1 forms multiple dimer conformations that interconvert - “rolling” interfaces.
Collapse
|
19
|
Douglas ME, Ali FA, Costa A, Diffley JF. The mechanism of eukaryotic CMG helicase activation. Nature 2018; 555:265-268. [PMID: 29489749 PMCID: PMC6847044 DOI: 10.1038/nature25787] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
The initiation of eukaryotic DNA replication occurs in two discrete stages: first, the minichromosome maintenance (MCM) complex assembles as a head-to-head double hexamer that encircles duplex replication origin DNA during G1 phase; then, 'firing factors' convert each double hexamer into two active Cdc45-MCM-GINS helicases (CMG) during S phase. This second stage requires separation of the two origin DNA strands and remodelling of the double hexamer so that each MCM hexamer encircles a single DNA strand. Here we show that the MCM complex, which hydrolyses ATP during double-hexamer formation, remains stably bound to ADP in the double hexamer. Firing factors trigger ADP release, and subsequent ATP binding promotes stable CMG assembly. CMG assembly is accompanied by initial DNA untwisting and separation of the double hexamer into two discrete but inactive CMG helicases. Mcm10, together with ATP hydrolysis, then triggers further DNA untwisting and helicase activation. After activation, the two CMG helicases translocate in an 'N terminus-first' direction, and in doing so pass each other within the origin; this requires that each helicase is bound entirely to single-stranded DNA. Our experiments elucidate the mechanism of eukaryotic replicative helicase activation, which we propose provides a fail-safe mechanism for bidirectional replisome establishment.
Collapse
Affiliation(s)
- Max E. Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| |
Collapse
|
20
|
Li H, O'Donnell ME. The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. Bioessays 2018; 40. [PMID: 29405332 DOI: 10.1002/bies.201700208] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Indexed: 01/12/2023]
Abstract
The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is "built" on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex DNA at origins in G1 phase, forming the Mcm2-7 "double hexamer." In a second step, in S phase Cdc45 and GINS are assembled onto each Mcm2-7 ring, hence producing two CMGs that ultimately form two replication forks that travel in opposite directions. Here, we review recent findings about CMG structure and function. The CMG unwinds the parental duplex and is also the organizing center of the replisome: it binds DNA polymerases and other factors. EM studies reveal a 20-subunit core replisome with the leading Pol ϵ and lagging Pol α-primase on opposite faces of CMG, forming a fundamentally asymmetric architecture. Structural studies of CMG at a replication fork reveal unexpected details of how CMG engages the DNA fork. The structures of CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process for formation of bidirectional replication forks at origins.
Collapse
Affiliation(s)
- Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Michael E O'Donnell
- Department of DNA Replication, Rockefeller University and HHMI, New York, NY 10065, USA
| |
Collapse
|
21
|
The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 2018; 25:122-130. [PMID: 29379175 DOI: 10.1038/s41594-018-0024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.
Collapse
|
22
|
Scherr MJ, Safaric B, Duderstadt KE. Noise in the Machine: Alternative Pathway Sampling is the Rule During DNA Replication. Bioessays 2017; 40. [PMID: 29282758 DOI: 10.1002/bies.201700159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Indexed: 11/07/2022]
Abstract
The astonishing efficiency and accuracy of DNA replication has long suggested that refined rules enforce a single highly reproducible sequence of molecular events during the process. This view was solidified by early demonstrations that DNA unwinding and synthesis are coupled within a stable molecular factory, known as the replisome, which consists of conserved components that each play unique and complementary roles. However, recent single-molecule observations of replisome dynamics have begun to challenge this view, revealing that replication may not be defined by a uniform sequence of events. Instead, multiple exchange pathways, pauses, and DNA loop types appear to dominate replisome function. These observations suggest we must rethink our fundamental assumptions and acknowledge that each replication cycle may involve sampling of alternative, sometimes parallel, pathways. Here, we review our current mechanistic understanding of DNA replication while highlighting findings that exemplify multi-pathway aspects of replisome function and considering the broader implications.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Safaric
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany.,Physik Department, Technische Universität München, Garching, Germany
| |
Collapse
|
23
|
Abid Ali F, Douglas ME, Locke J, Pye VE, Nans A, Diffley JFX, Costa A. Cryo-EM structure of a licensed DNA replication origin. Nat Commun 2017; 8:2241. [PMID: 29269875 PMCID: PMC5740162 DOI: 10.1038/s41467-017-02389-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/24/2017] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic origins of replication are licensed upon loading of the MCM helicase motor onto DNA. ATP hydrolysis by MCM is required for loading and the post-catalytic MCM is an inactive double hexamer that encircles duplex DNA. Origin firing depends on MCM engagement of Cdc45 and GINS to form the CMG holo-helicase. CMG assembly requires several steps including MCM phosphorylation by DDK. To understand origin activation, here we have determined the cryo-EM structures of DNA-bound MCM, either unmodified or phosphorylated, and visualize a phospho-dependent MCM element likely important for Cdc45 recruitment. MCM pore loops touch both the Watson and Crick strands, constraining duplex DNA in a bent configuration. By comparing our new MCM-DNA structure with the structure of CMG-DNA, we suggest how the conformational transition from the loaded, post-catalytic MCM to CMG might promote DNA untwisting and melting at the onset of replication.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Max E Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology of Cells and Viruses, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
24
|
Miller TC, Costa A. The architecture and function of the chromatin replication machinery. Curr Opin Struct Biol 2017; 47:9-16. [PMID: 28419835 DOI: 10.1016/j.sbi.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
Genomic DNA in eukaryotic cells is packaged into nucleosome arrays. During replication, nucleosomes need to be dismantled ahead of the advancing replication fork and reassembled on duplicated DNA. The architecture and function of the core replisome machinery is now beginning to be elucidated, with recent insights shaping our view on DNA replication processes. Simultaneously, breakthroughs in our mechanistic understanding of epigenetic inheritance allow us to build new models of how histone chaperones integrate with the replisome to reshuffle nucleosomes. The emerging picture indicates that the core eukaryotic DNA replication machinery has evolved elements that handle nucleosomes to facilitate chromatin duplication.
Collapse
Affiliation(s)
- Thomas Cr Miller
- Molecular Machines Laboratory, The Francis Crick Institute, 1 Midland Rd, NW11AT London, United Kingdom
| | - Alessandro Costa
- Molecular Machines Laboratory, The Francis Crick Institute, 1 Midland Rd, NW11AT London, United Kingdom.
| |
Collapse
|
25
|
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev 2017; 31:1073-1088. [PMID: 28717046 PMCID: PMC5538431 DOI: 10.1101/gad.298232.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Review, Riera et al. review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| | - Yasunori Noguchi
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sarah Schneider
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| |
Collapse
|
26
|
Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proc Natl Acad Sci U S A 2017; 114:E9529-E9538. [PMID: 29078375 PMCID: PMC5692578 DOI: 10.1073/pnas.1712537114] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During replication initiation, the core component of the helicase-the Mcm2-7 hexamer-is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide-oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2-Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.
Collapse
|
27
|
Carney SM, Gomathinayagam S, Leuba SH, Trakselis MA. Bacterial DnaB helicase interacts with the excluded strand to regulate unwinding. J Biol Chem 2017; 292:19001-19012. [PMID: 28939774 DOI: 10.1074/jbc.m117.814178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Replicative hexameric helicases are thought to unwind duplex DNA by steric exclusion (SE) where one DNA strand is encircled by the hexamer and the other is excluded from the central channel. However, interactions with the excluded strand on the exterior surface of hexameric helicases have also been shown to be important for DNA unwinding, giving rise to the steric exclusion and wrapping (SEW) model. For example, the archaeal Sulfolobus solfataricus minichromosome maintenance (SsoMCM) helicase has been shown to unwind DNA via a SEW mode to enhance unwinding efficiency. Using single-molecule FRET, we now show that the analogous Escherichia coli (Ec) DnaB helicase also interacts specifically with the excluded DNA strand during unwinding. Mutation of several conserved and positively charged residues on the exterior surface of EcDnaB resulted in increased interaction dynamics and states compared with wild type. Surprisingly, these mutations also increased the DNA unwinding rate, suggesting that electrostatic contacts with the excluded strand act as a regulator for unwinding activity. In support of this, experiments neutralizing the charge of the excluded strand with a morpholino substrate instead of DNA also dramatically increased the unwinding rate. Of note, although the stability of the excluded strand was nearly identical for EcDnaB and SsoMCM, these enzymes are from different superfamilies and unwind DNA with opposite polarities. These results support the SEW model of unwinding for EcDnaB that expands on the existing SE model of hexameric helicase unwinding to include contributions from the excluded strand to regulate the DNA unwinding rate.
Collapse
Affiliation(s)
- Sean M Carney
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Sanford H Leuba
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Michael A Trakselis
- From the Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, .,Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, and
| |
Collapse
|
28
|
Trakselis MA, Seidman MM, Brosh RM. Mechanistic insights into how CMG helicase facilitates replication past DNA roadblocks. DNA Repair (Amst) 2017; 55:76-82. [PMID: 28554039 DOI: 10.1016/j.dnarep.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 02/07/2023]
Abstract
Before leaving the house, it is a good idea to check for road closures that may affect the morning commute. Otherwise, one may encounter significant delays arriving at the destination. While this is commonly true, motorists may be able to consult a live interactive traffic map and pick an alternate route or detour to avoid being late. However, this is not the case if one needs to catch the train which follows a single track to the terminus; if something blocks the track, there is a delay. Such is the case for the DNA replisome responsible for copying the genetic information that provides the recipe of life. When the replication machinery encounters a DNA roadblock, the outcome can be devastating if the obstacle is not overcome in an efficient manner. Fortunately, the cell's DNA synthesis apparatus can bypass certain DNA obstructions, but the mechanism(s) are still poorly understood. Very recently, two papers from the O'Donnell lab, one structural (Georgescu et al., 2017 [1]) and the other biochemical (Langston and O'Donnell, 2017 [2]), have challenged the conventional thinking of how the replicative CMG helicase is arranged on DNA, unwinds double-stranded DNA, and handles barricades in its path. These new findings raise important questions in the search for mechanistic insights into how DNA is copied, particularly when the replication machinery encounters a roadblock.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States.
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| |
Collapse
|
29
|
Walters AD, Chong JPJ. Non-essential MCM-related proteins mediate a response to DNA damage in the archaeon Methanococcus maripaludis. MICROBIOLOGY-SGM 2017; 163:745-753. [PMID: 28516862 DOI: 10.1099/mic.0.000460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The single minichromosome maintenance (MCM) protein found in most archaea has been widely studied as a simplified model for the MCM complex that forms the catalytic core of the eukaryotic replicative helicase. Organisms of the order Methanococcales are unusual in possessing multiple MCM homologues. The Methanococcus maripaludis S2 genome encodes four MCM homologues, McmA-McmD. DNA helicase assays reveal that the unwinding activity of the three MCM-like proteins is highly variable despite sequence similarities and suggests additional motifs that influence MCM function are yet to be identified. While the gene encoding McmA could not be deleted, strains harbouring individual deletions of genes encoding each of the other MCMs display phenotypes consistent with these proteins modulating DNA damage responses. M. maripaludis S2 is the first archaeon in which MCM proteins have been shown to influence the DNA damage response.
Collapse
Affiliation(s)
- Alison D Walters
- Department of Biology (Area 5), University of York, Wentworth Way, Heslington, York, YO10 5DD, UK.,Present address: NIH/NIDDK, 8 Center Drive, Bethesda, 20892 MD, USA
| | - James P J Chong
- Department of Biology (Area 5), University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
30
|
Zhou JC, Janska A, Goswami P, Renault L, Abid Ali F, Kotecha A, Diffley JFX, Costa A. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proc Natl Acad Sci U S A 2017; 114:4141-4146. [PMID: 28373564 PMCID: PMC5402455 DOI: 10.1073/pnas.1700530114] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45-MCM-GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG-Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression.
Collapse
Affiliation(s)
- Jin Chuan Zhou
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Agnieszka Janska
- Chromosome Replication Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Panchali Goswami
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom;
| |
Collapse
|
31
|
Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication. Genes (Basel) 2017; 8:genes8040117. [PMID: 28383499 PMCID: PMC5406864 DOI: 10.3390/genes8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 01/30/2023] Open
Abstract
The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described.
Collapse
|
32
|
MCM5: a new actor in the link between DNA replication and Meier-Gorlin syndrome. Eur J Hum Genet 2017; 25:646-650. [PMID: 28198391 DOI: 10.1038/ejhg.2017.5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/08/2022] Open
Abstract
Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.
Collapse
|
33
|
Cannone G, Visentin S, Palud A, Henneke G, Spagnolo L. Structure of an octameric form of the minichromosome maintenance protein from the archaeon Pyrococcus abyssi. Sci Rep 2017; 7:42019. [PMID: 28176822 PMCID: PMC5296750 DOI: 10.1038/srep42019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cell division is a complex process that requires precise duplication of genetic material. Duplication is concerted by replisomes. The Minichromosome Maintenance (MCM) replicative helicase is a crucial component of replisomes. Eukaryotic and archaeal MCM proteins are highly conserved. In fact, archaeal MCMs are powerful tools for elucidating essential features of MCM function. However, while eukaryotic MCM2-7 is a heterocomplex made of different polypeptide chains, the MCM complexes of many Archaea form homohexamers from a single gene product. Moreover, some archaeal MCMs are polymorphic, and both hexameric and heptameric architectures have been reported for the same polypeptide. Here, we present the structure of the archaeal MCM helicase from Pyrococcus abyssi in its single octameric ring assembly. To our knowledge, this is the first report of a full-length octameric MCM helicase.
Collapse
Affiliation(s)
- Giuseppe Cannone
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- Centre for Science at extreme conditions, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3JR, UK
| | - Silvia Visentin
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- ISIS neutron source, Science and Technologies Research Council, Rutherford Appleton Laboratories, Harwell, OX11 0QX United Kingdom
| | - Adeline Palud
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Ghislaine Henneke
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
34
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
35
|
Origin DNA Melting-An Essential Process with Divergent Mechanisms. Genes (Basel) 2017; 8:genes8010026. [PMID: 28085061 PMCID: PMC5295021 DOI: 10.3390/genes8010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Origin DNA melting is an essential process in the various domains of life. The replication fork helicase unwinds DNA ahead of the replication fork, providing single-stranded DNA templates for the replicative polymerases. The replication fork helicase is a ring shaped-assembly that unwinds DNA by a steric exclusion mechanism in most DNA replication systems. While one strand of DNA passes through the central channel of the helicase ring, the second DNA strand is excluded from the central channel. Thus, the origin, or initiation site for DNA replication, must melt during the initiation of DNA replication to allow for the helicase to surround a single-DNA strand. While this process is largely understood for bacteria and eukaryotic viruses, less is known about how origin DNA is melted at eukaryotic cellular origins. This review describes the current state of knowledge of how genomic DNA is melted at a replication origin in bacteria and eukaryotes. We propose that although the process of origin melting is essential for the various domains of life, the mechanism for origin melting may be quite different among the different DNA replication initiation systems.
Collapse
|
36
|
The excluded DNA strand is SEW important for hexameric helicase unwinding. Methods 2016; 108:79-91. [DOI: 10.1016/j.ymeth.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/04/2023] Open
|
37
|
Fundamental Characteristics of AAA+ Protein Family Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:9294307. [PMID: 27703410 PMCID: PMC5039278 DOI: 10.1155/2016/9294307] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022]
Abstract
Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.
Collapse
|
38
|
Pellegrini L, Costa A. New Insights into the Mechanism of DNA Duplication by the Eukaryotic Replisome. Trends Biochem Sci 2016; 41:859-871. [PMID: 27555051 DOI: 10.1016/j.tibs.2016.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/26/2022]
Abstract
The DNA replication machinery, or replisome, is a macromolecular complex that combines DNA unwinding, priming and synthesis activities. In eukaryotic cells, the helicase and polymerases are multi-subunit, highly-dynamic assemblies whose structural characterization requires an integrated approach. Recent studies have combined single-particle electron cryo-microscopy and protein crystallography to gain insights into the mechanism of DNA duplication by the eukaryotic replisome. We review current understanding of how replication fork unwinding by the CMG helicase is coupled to leading-strand synthesis by polymerase (Pol) ɛ and lagging-strand priming by Pol α/primase, and discuss emerging principles of replisome organization.
Collapse
Affiliation(s)
- Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| |
Collapse
|
39
|
Abid Ali F, Costa A. The MCM Helicase Motor of the Eukaryotic Replisome. J Mol Biol 2016; 428:1822-32. [PMID: 26829220 DOI: 10.1016/j.jmb.2016.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, United Kingdom.
| |
Collapse
|
40
|
Graham BW, Tao Y, Dodge KL, Thaxton CT, Olaso D, Young NL, Marshall AG, Trakselis MA. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase. J Biol Chem 2016; 291:12467-12480. [PMID: 27044751 DOI: 10.1074/jbc.m116.719591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
The archaeal minichromosomal maintenance (MCM) helicase from Sulfolobus solfataricus (SsoMCM) is a model for understanding structural and mechanistic aspects of DNA unwinding. Although interactions of the encircled DNA strand within the central channel provide an accepted mode for translocation, interactions with the excluded strand on the exterior surface have mostly been ignored with regard to DNA unwinding. We have previously proposed an extension of the traditional steric exclusion model of unwinding to also include significant contributions with the excluded strand during unwinding, termed steric exclusion and wrapping (SEW). The SEW model hypothesizes that the displaced single strand tracks along paths on the exterior surface of hexameric helicases to protect single-stranded DNA (ssDNA) and stabilize the complex in a forward unwinding mode. Using hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance MS, we have probed the binding sites for ssDNA, using multiple substrates targeting both the encircled and excluded strand interactions. In each experiment, we have obtained >98.7% sequence coverage of SsoMCM from >650 peptides (5-30 residues in length) and are able to identify interacting residues on both the interior and exterior of SsoMCM. Based on identified contacts, positively charged residues within the external waist region were mutated and shown to generally lower DNA unwinding without negatively affecting the ATP hydrolysis. The combined data globally identify binding sites for ssDNA during SsoMCM unwinding as well as validating the importance of the SEW model for hexameric helicase unwinding.
Collapse
Affiliation(s)
- Brian W Graham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yeqing Tao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Katie L Dodge
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Carly T Thaxton
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Danae Olaso
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Nicolas L Young
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306; National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798.
| |
Collapse
|
41
|
Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 2016; 7:10708. [PMID: 26888060 PMCID: PMC4759635 DOI: 10.1038/ncomms10708] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Ludovic Renault
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
- National Institute for Biological Standards and Control, Microscopy and Imaging, Blanche Lane, South Mimms EN6 3QG, UK
| | - Julian Gannon
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Hailey L. Gahlon
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jin Chuan Zhou
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - David Rueda
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Alessandro Costa
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
42
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
43
|
Xia Y, Niu Y, Cui J, Fu Y, Chen XS, Lou H, Cao Q. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation. Front Microbiol 2015; 6:1247. [PMID: 26617586 PMCID: PMC4639711 DOI: 10.3389/fmicb.2015.01247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.
Collapse
Affiliation(s)
- Yisui Xia
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yang Fu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| |
Collapse
|
44
|
Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2-7 Helicase to Reveal Essential Features of Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:305497. [PMID: 26539061 PMCID: PMC4619765 DOI: 10.1155/2015/305497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
Abstract
In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring.
Collapse
|
45
|
Froelich CA, Nourse A, Enemark EJ. MCM ring hexamerization is a prerequisite for DNA-binding. Nucleic Acids Res 2015; 43:9553-63. [PMID: 26365238 PMCID: PMC4627082 DOI: 10.1093/nar/gkv914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022] Open
Abstract
The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings by showing that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in the hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.
Collapse
Affiliation(s)
- Clifford A Froelich
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| | - Amanda Nourse
- Molecular Interaction Analysis Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| |
Collapse
|
46
|
The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase. J Bacteriol 2015; 197:3409-20. [PMID: 26283767 DOI: 10.1128/jb.00496-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED GINS is a key component of the eukaryotic Cdc45-minichromosome maintenance (MCM)-GINS (CMG) complex, which unwinds duplex DNA at the moving replication fork. Archaeal GINS complexes have been shown to stimulate the helicase activity of their cognate MCM mainly by elevating its ATPase activity. Here, we report that GINS from the thermoacidophilic crenarchaeon Sulfolobus solfataricus (SsoGINS) is capable of DNA binding and binds preferentially to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA). Notably, SsoGINS binds more strongly to dsDNA with a 5' ssDNA tail than to dsDNA with a 3' tail and more strongly to an ssDNA fragment blocked at the 3' end than to one at the 5' end with a biotin-streptavidin (SA) complex, suggesting the ability of the protein complex to slide in a 5'-to-3' direction along ssDNA. DNA-bound SsoGINS enhances DNA binding by SsoMCM. Furthermore, SsoGINS increases the helicase activity of SsoMCM. However, the ATPase activity of SsoMCM is not affected by SsoGINS. Our results suggest that SsoGINS facilitates processive DNA unwinding by SsoMCM by enhancing the binding of the helicase to DNA. We propose that SsoGINS stabilizes the interaction of SsoMCM with the replication fork and moves along with the helicase as the fork progresses. IMPORTANCE GINS is a key component of the eukaryotic Cdc45-MCM-GINS complex, a molecular motor that drives the unwinding of DNA in front of the replication fork. Archaea also encode GINS, which interacts with MCM, the helicase. But how archaeal GINS serves its role remains to be understood. In this study, we show that GINS from the hyperthermophilic archaeon Sulfolobus solfataricus is able to bind to DNA and slide along ssDNA in a 5'-to-3' direction. Furthermore, Sulfolobus GINS enhances DNA binding by MCM, which slides along ssDNA in a 3'-to-5' direction. Taken together, these results suggest that Sulfolobus GINS may stabilize the interaction of MCM with the moving replication fork, facilitating processive DNA unwinding.
Collapse
|
47
|
Abstract
DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior β-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.
Collapse
|
48
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
49
|
Hesketh EL, Parker-Manuel RP, Chaban Y, Satti R, Coverley D, Orlova EV, Chong JPJ. DNA induces conformational changes in a recombinant human minichromosome maintenance complex. J Biol Chem 2015; 290:7973-9. [PMID: 25648893 PMCID: PMC4367295 DOI: 10.1074/jbc.m114.622738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/02/2015] [Indexed: 11/30/2022] Open
Abstract
ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombinant human MCM (hMCM) complex in Escherichia coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single-particle asymmetric EM reconstruction, we demonstrate that recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for biochemical reconstitution of the human replicative helicase.
Collapse
Affiliation(s)
- Emma L Hesketh
- From the Department of Biology, University of York, York YO10 5DD and
| | | | - Yuriy Chaban
- the Department of Crystallography, Birkbeck College London, London WC1E 7HX, United Kingdom
| | - Rabab Satti
- From the Department of Biology, University of York, York YO10 5DD and
| | - Dawn Coverley
- From the Department of Biology, University of York, York YO10 5DD and
| | - Elena V Orlova
- the Department of Crystallography, Birkbeck College London, London WC1E 7HX, United Kingdom
| | - James P J Chong
- From the Department of Biology, University of York, York YO10 5DD and
| |
Collapse
|
50
|
Wiedemann C, Szambowska A, Häfner S, Ohlenschläger O, Gührs KH, Görlach M. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex. Nucleic Acids Res 2015; 43:2958-67. [PMID: 25712103 PMCID: PMC4357721 DOI: 10.1093/nar/gkv120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Anna Szambowska
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany Laboratory of Molecular Biology IBB PAS, affiliated with University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Sabine Häfner
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Karl-Heinz Gührs
- Protein laboratory, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Matthias Görlach
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| |
Collapse
|