1
|
Gallop MR, Vieira RFL, Matsuzaki ET, Mower PD, Liou W, Smart FE, Roberts S, Evason KJ, Holland WL, Chaix A. Long-term ketogenic diet causes hyperlipidemia, liver dysfunction, and glucose intolerance from impaired insulin trafficking and secretion in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599117. [PMID: 38948738 PMCID: PMC11212871 DOI: 10.1101/2024.06.14.599117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A ketogenic diet (KD) is a very low-carbohydrate, very high-fat diet proposed to treat obesity and type 2 diabetes. While KD grows in popularity, its effects on metabolic health are understudied. Here we show that, in male and female mice, while KD protects against weight gain and induces weight loss, over long-term, mice develop hyperlipidemia, hepatic steatosis, and severe glucose intolerance. Unlike high fat diet-fed mice, KD mice are not insulin resistant and have low levels of insulin. Hyperglycemic clamp and ex vivo GSIS revealed cell-autonomous and whole-body impairments in insulin secretion. Major ER/Golgi stress and disrupted ER-Golgi protein trafficking was indicated by transcriptomic profiling of KD islets and confirmed by electron micrographs showing a dilated Golgi network likely responsible for impaired insulin granule trafficking and secretion. Overall, our results suggest long-term KD leads to multiple aberrations of metabolic parameters that caution its systematic use as a health promoting dietary intervention.
Collapse
|
2
|
Charlot A, Bringolf A, Debrut L, Mallard J, Charles AL, Crouchet E, Duteil D, Geny B, Zoll J. Changes in Macronutrients during Dieting Lead to Weight Cycling and Metabolic Complications in Mouse Model. Nutrients 2024; 16:646. [PMID: 38474774 DOI: 10.3390/nu16050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Weight cycling is a major challenge in obesity management. Caloric restriction is known to promote this phenomenon, but the impact of macronutrient changes during dieting remains unclear. This study aimed to determine the role of macronutrient changes in weight maintenance without caloric restriction by alternating between two hypercaloric diets: a high-carbohydrate, high-fat Western diet (WD) and a low-carbohydrate, high-fat diet (LCHDF). Obesity was induced in 8-week-old C57BL/6 male mice by 10 weeks of WD feeding. Then, the mice were subjected to 12 weeks of LCHFD interspersed with WD (I-WD), 3 periods of 2-week LCHFD followed by 2 periods of 3-week WD, or 12 weeks of continuous WD (C-WD). C-WD and I-WD mice were compared to standard diet (SD) mice. In the I-WD group, each LCHFD period decreased weight gain, but mice regained weight after WD resumption. I-WD mice exhibited obesity, dyslipidemia, and glucose intolerance, similarly to the C-WD mice. I-WD mice also developed nonalcoholic steatohepatitis, associated with an increase in type-III collagen gene expression and a decrease in FGF21 protein levels, in comparison with SD. I-WD mice developed weight cycling despite maintaining a high caloric consumption, suggesting that changes in macronutrients during dieting are also a trigger of weight regain.
Collapse
Affiliation(s)
- Anouk Charlot
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Sport Sciences, University of Strasbourg, 67000 Strasbourg, France
| | - Anthony Bringolf
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
| | - Léa Debrut
- CNRS, University of Strasbourg, Inserm, IGBMC UMR 7104-UMR-S 1258, 67400 Illkirch, France
| | - Joris Mallard
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Sport Sciences, University of Strasbourg, 67000 Strasbourg, France
- Institute of Cancerology Strasbourg Europe (ICANS), 67200 Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Emilie Crouchet
- Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, University of Strasbourg, Inserm, 67000 Strasbourg, France
| | - Delphine Duteil
- CNRS, University of Strasbourg, Inserm, IGBMC UMR 7104-UMR-S 1258, 67400 Illkirch, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
- Service de Physiologie et Explorations Fonctionnelles, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Joffrey Zoll
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondrie, Stress Oxydant et Plasticité Musculaire", University of Strasbourg, 67000 Strasbourg, France
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
- Service de Physiologie et Explorations Fonctionnelles, University Hospital of Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
3
|
Oliveira TPD, Morais ALB, dos Reis PLB, Palotás A, Vieira LB. A Potential Role for the Ketogenic Diet in Alzheimer's Disease Treatment: Exploring Pre-Clinical and Clinical Evidence. Metabolites 2023; 14:25. [PMID: 38248828 PMCID: PMC10818526 DOI: 10.3390/metabo14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Given the remarkable progress in global health and overall quality of life, the significant rise in life expectancy has become intertwined with the surging occurrence of neurodegenerative disorders (NDs). This emerging trend is poised to pose a substantial challenge to the fields of medicine and public health in the years ahead. In this context, Alzheimer's disease (AD) is regarded as an ND that causes recent memory loss, motor impairment and cognitive deficits. AD is the most common cause of dementia in the elderly and its development is linked to multifactorial interactions between the environment, genetics, aging and lifestyle. The pathological hallmarks in AD are the accumulation of β-amyloid peptide (Aβ), the hyperphosphorylation of tau protein, neurotoxic events and impaired glucose metabolism. Due to pharmacological limitations and in view of the prevailing glycemic hypometabolism, the ketogenic diet (KD) emerges as a promising non-pharmacological possibility for managing AD, an approach that has already demonstrated efficacy in addressing other disorders, notably epilepsy. The KD consists of a food regimen in which carbohydrate intake is discouraged at the expense of increased lipid consumption, inducing metabolic ketosis whereby the main source of energy becomes ketone bodies instead of glucose. Thus, under these dietary conditions, neuronal death via lack of energy would be decreased, inasmuch as the metabolism of lipids is not impaired in AD. In this way, the clinical picture of patients with AD would potentially improve via the slowing down of symptoms and delaying of the progression of the disease. Hence, this review aims to explore the rationale behind utilizing the KD in AD treatment while emphasizing the metabolic interplay between the KD and the improvement of AD indicators, drawing insights from both preclinical and clinical investigations. Via a comprehensive examination of the studies detailed in this review, it is evident that the KD emerges as a promising alternative for managing AD. Moreover, its efficacy is notably enhanced when dietary composition is modified, thereby opening up innovative avenues for decreasing the progression of AD.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Fisiologia e Centro de Investigação em Medicina Molecular (CIMUS), Universidad De Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana L. B. Morais
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - Pedro L. B. dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary;
- Kazan Federal University, Kazan R-420012, Russia
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| |
Collapse
|
4
|
Cortez NE, Lanzi CR, Vahmani P, Matsukuma K, Mackenzie GG. Hepatic safety profile of pancreatic cancer‑bearing mice fed a ketogenic diet in combination with gemcitabine. Oncol Lett 2023; 26:479. [PMID: 37818128 PMCID: PMC10561147 DOI: 10.3892/ol.2023.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Ketogenic diets (KDs) are actively being evaluated for their potential anticancer effects. Although KDs are generally considered safe, their safety profile when combined with chemotherapy remains unknown. It is known that a KD enhances the anticancer effect of gemcitabine (2',2'-difluoro-2'-deoxycytidine) in LSL-KrasLSL-G12D/+Trp53R172H/+Pdx-1-Cre (KPC) tumor-bearing mice. In the present study, whether a KD in combination with gemcitabine affected the liver safety profile in KPC mice was evaluated. For this purpose, male and female pancreatic tumor-bearing KPC mice were allocated to a control diet (CD; % kcal: 20% fat, 65% carbohydrate, 15% protein) + gemcitabine [control plus gemcitabine group (CG)] or a KD (% kcal: 84% fat, 15% protein, 1% carbohydrate) + gemcitabine [ketogenic plus gemcitabine group (KG)] for two months. After two months of treatment, no significant differences in body weight were observed between CGs and KGs. Moreover, the KD did not significantly alter the serum protein expression levels of liver enzymes, including aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase. In addition, the KD did not alter markers of liver-lipid accumulation as well as serum cholesterol and triglyceride levels, compared with the CG-treated group. Upon histologic examination, steatosis was rare, with no notable differences between treatment groups. When examining liver fatty acid composition, KD treatment significantly increased the content of saturated fatty acids and significantly decreased levels of cis-monounsaturated fatty acids compared with the CG. Finally, the KD did not affect liver markers of inflammation and oxidative stress, nor the protein expression levels of enzymes involved in ketone bodies, such as 3-hydroxy-3-methylglutaryl-CoA lyase and hidroximetilglutaril-CoA sintasa, and glucose metabolism, such as hexokinase 2, pyruvate dehydrogenase and phosphofructokinase. In summary, a KD in combination with gemcitabine appears to be safe, with no apparent hepatotoxicity and these data support the further evaluation of a KD as an adjuvant dietary treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Natalia E. Cortez
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | - Payam Vahmani
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, Davis Medical Center, University of California, Sacramento, CA 95817, USA
- University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| | - Gerardo G. Mackenzie
- Department of Nutrition, University of California, Davis, CA 95616, USA
- University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Cao H, Cai Q, Guo W, Su Q, Qin H, Wang T, Xian Y, Zeng L, Cai M, Guan H, Chen S, Liang H, Xu F. Malonylation of Acetyl-CoA carboxylase 1 promotes hepatic steatosis and is attenuated by ketogenic diet in NAFLD. Cell Rep 2023; 42:112319. [PMID: 37002924 DOI: 10.1016/j.celrep.2023.112319] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Protein post-translational modifications (PTMs) participate in important bioactive regulatory processes and therefore can help elucidate the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the involvement of PTMs in ketogenic diet (KD)-improved fatty liver by multi-omics and reveal a core target of lysine malonylation, acetyl-coenzyme A (CoA) carboxylase 1 (ACC1). ACC1 protein levels and Lys1523 malonylation are significantly decreased by KD. A malonylation-mimic mutant of ACC1 increases its enzyme activity and stability to promote hepatic steatosis, whereas the malonylation-null mutant upregulates the ubiquitination degradation of ACC1. A customized Lys1523ACC1 malonylation antibody confirms the increased malonylation of ACC1 in the NAFLD samples. Overall, the lysine malonylation of ACC1 is attenuated by KD in NAFLD and plays an important role in promoting hepatic steatosis. Malonylation is critical for ACC1 activity and stability, highlighting the anti-malonylation effect of ACC1 as a potential strategy for treating NAFLD.
Collapse
Affiliation(s)
- Huanyi Cao
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China; Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Qingxian Cai
- Department of Hepatopathy, the Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, P.R. China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Qiao Su
- Animal Experiment Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Hancheng Qin
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Tian Wang
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Yingxin Xian
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Hua Liang
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China.
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China.
| |
Collapse
|
6
|
Ketogenic Diet Combined with Moderate Aerobic Exercise Training Ameliorates White Adipose Tissue Mass, Serum Biomarkers, and Hepatic Lipid Metabolism in High-Fat Diet-Induced Obese Mice. Nutrients 2023; 15:nu15010251. [PMID: 36615908 PMCID: PMC9823610 DOI: 10.3390/nu15010251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity is a serious public health issue worldwide. Growing evidence demonstrates the efficacy of the ketogenic diet (KD) for weight loss, but there may be some adverse side effects such as dyslipidemia and hepatic steatosis. Aerobic exercise is a widely recognized approach for improving these metabolic markers. Here we explored the combined impacts of KD and moderate aerobic exercise for an 8-week intervention on body weight and fat loss, serum biomarkers, and hepatic lipid metabolism in a mouse model of high-fat diet-induced obesity. Both KD and KD combined with exercise significantly reduced body weight and fat mass. No significant adverse effects of KD were observed in serum biomarkers or hepatic lipid storage, except for an increase in circulating triglyceride level. However, aerobic exercise lowered serum triglyceride levels, and further ameliorated serum parameters, and hepatic steatosis in KD-fed mice. Moreover, gene and protein expression analysis indicated that KD combined with exercise was associated with increased expression of lipolysis-related genes and protein levels, and reduced expression of lipogenic genes relative to KD without exercise. Overall, our findings for mice indicate that further work on humans might reveal that KD combined with moderate aerobic exercise could be a promising therapeutic strategy for obesity.
Collapse
|
7
|
Zhu H, Bi D, Zhang Y, Kong C, Du J, Wu X, Wei Q, Qin H. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct Target Ther 2022; 7:11. [PMID: 35034957 PMCID: PMC8761750 DOI: 10.1038/s41392-021-00831-w] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, adequate-protein, and very-low-carbohydrate diet regimen that mimics the metabolism of the fasting state to induce the production of ketone bodies. The KD has long been established as a remarkably successful dietary approach for the treatment of intractable epilepsy and has increasingly garnered research attention rapidly in the past decade, subject to emerging evidence of the promising therapeutic potential of the KD for various diseases, besides epilepsy, from obesity to malignancies. In this review, we summarize the experimental and/or clinical evidence of the efficacy and safety of the KD in different diseases, and discuss the possible mechanisms of action based on recent advances in understanding the influence of the KD at the cellular and molecular levels. We emphasize that the KD may function through multiple mechanisms, which remain to be further elucidated. The challenges and future directions for the clinical implementation of the KD in the treatment of a spectrum of diseases have been discussed. We suggest that, with encouraging evidence of therapeutic effects and increasing insights into the mechanisms of action, randomized controlled trials should be conducted to elucidate a foundation for the clinical use of the KD.
Collapse
Affiliation(s)
- Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Youhua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Kong
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiahao Du
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xiawei Wu
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Spigoni V, Cinquegrani G, Iannozzi NT, Frigeri G, Maggiolo G, Maggi M, Parello V, Dei Cas A. Activation of G protein-coupled receptors by ketone bodies: Clinical implication of the ketogenic diet in metabolic disorders. Front Endocrinol (Lausanne) 2022; 13:972890. [PMID: 36339405 PMCID: PMC9631778 DOI: 10.3389/fendo.2022.972890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Ketogenesis takes place in hepatocyte mitochondria where acetyl-CoA derived from fatty acid catabolism is converted to ketone bodies (KB), namely β-hydroxybutyrate (β-OHB), acetoacetate and acetone. KB represent important alternative energy sources under metabolic stress conditions. Ketogenic diets (KDs) are low-carbohydrate, fat-rich eating strategies which have been widely proposed as valid nutritional interventions in several metabolic disorders due to its substantial efficacy in weight loss achievement. Carbohydrate restriction during KD forces the use of FFA, which are subsequently transformed into KB in hepatocytes to provide energy, leading to a significant increase in ketone levels known as "nutritional ketosis". The recent discovery of KB as ligands of G protein-coupled receptors (GPCR) - cellular transducers implicated in a wide range of body functions - has aroused a great interest in understanding whether some of the clinical effects associated to KD consumption might be mediated by the ketone/GPCR axis. Specifically, anti-inflammatory effects associated to KD regimen are presumably due to GPR109A-mediated inhibition of NLRP3 inflammasome by β-OHB, whilst lipid profile amelioration by KDs could be ascribed to the actions of acetoacetate via GPR43 and of β-OHB via GPR109A on lipolysis. Thus, this review will focus on the effects of KD-induced nutritional ketosis potentially mediated by specific GPCRs in metabolic and endocrinological disorders. To discriminate the effects of ketone bodies per se, independently of weight loss, only studies comparing ketogenic vs isocaloric non-ketogenic diets will be considered as well as short-term tolerability and safety of KDs.
Collapse
Affiliation(s)
- Valentina Spigoni
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gloria Cinquegrani
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicolas Thomas Iannozzi
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Frigeri
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Giulia Maggiolo
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marta Maggi
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Vanessa Parello
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessandra Dei Cas
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- *Correspondence: Alessandra Dei Cas,
| |
Collapse
|
9
|
Aboubakr A, Stroud A, Kumar S, Newberry C. Dietary Approaches for Management of Non-Alcoholic Fatty Liver Disease: A Clinician's Guide. Curr Gastroenterol Rep 2021; 23:21. [PMID: 34654976 DOI: 10.1007/s11894-021-00827-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with obesity, insulin resistance, and hyperlipidemia. There is strong clinical evidence that reduction in at least 5-7% total body weight is associated with improvement in hepatic steatosis and regression of fibrosis, with weight loss representing the primary approach to treatment. This guide reviews recent data on dietary approaches studied in NAFLD management. The strongest evidence currently supports a hypocaloric diet to induce weight loss and subsequent improvement in liver enzymes and histology, as well as a Mediterranean diet, which can lead to improvement in steatosis even in the absence of weight reduction. The purpose of this paper is to provide clinicians with tools to engage patients in conversations about nutrition in the setting of NAFLD, ultimately guiding suitable personalized dietary recommendations.
Collapse
Affiliation(s)
- Aiya Aboubakr
- Department of Internal Medicine, Weill Cornell Medical Center, 1320 York Avenue, Suite HT-621, New York, NY, 10021, USA.,Division of Bariatric Surgery, Oregon Health & Science University, 3485 S. Bond Avenue, Portland, OR, 97239, USA
| | - Andrea Stroud
- Division of Bariatric Surgery, Oregon Health & Science University, 3485 S. Bond Avenue, Portland, OR, 97239, USA
| | - Sonal Kumar
- Division of Gastroenterology, Weill Cornell Medical Center, 1305 York Avenue, 4th Floor, New York, NY, 10021, USA
| | - Carolyn Newberry
- Division of Gastroenterology, Weill Cornell Medical Center, 1305 York Avenue, 4th Floor, New York, NY, 10021, USA.
| |
Collapse
|
10
|
Li RJ, Liu Y, Liu HQ, Li J. Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration. J Food Biochem 2020; 44:e13140. [PMID: 31943235 DOI: 10.1111/jfbc.13140] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Ketogenic diet (KD), the "High-fat, low-carbohydrate, adequate-protein" diet strategy, replacing glucose with ketone bodies, is effective against several diseases, from intractable epileptic seizures, metabolic disorders, tumors, autosomal dominant polycystic kidney disease, and neurodegeneration to skeletal muscle atrophy and peripheral neuropathy. Key mechanisms include augmented mitochondrial efficiency, reduced oxidative stress, and regulated phospho-AMP-activated protein kinase, gamma-aminobutyric acid-glutamate, Na+/ K+ pump, leptin and adiponectin levels, ghrelin levels, lipogenesis, ketogenesis, lipolysis, and gluconeogenesis. In cancer cells, KD targets glucose metabolism, suppresses insulin-like growth factor-1 and PI3K/AKT/mTOR pathways, and reduces cancer cachexia and muscle waste and fatigue. An associated increased skeletal proliferator-activated receptor-γ coactivator-1α activity alters systemic ketone body homeostasis, contributing toward attenuated diabetic hyperketonemia. Antioxidative and anti-inflammatory properties enable KD enhance endurance and sports performances while preventing exercise-induced muscle and organ debility. KD reduces metabolic syndromes-associated allodynia and promotes peripheral axonal and sensory regeneration. This review enlightens effects of KD on various disease conditions. PRACTICAL APPLICATIONS: It is increasingly being realized that diet plays a very important role in our fight against several diseases. This can range from neurological disorders to diabetes and cancer. In this context, the potential of KD, the "High-fat, low-carbohydrate, adequate-protein" diet strategy, is increasingly being realized. In this article, we provide a comprehensive analysis of the benefits of KD against many diseases and discuss the underlying biochemical mechanisms. We hope that our write-up will stimulate further research on KD and help generate an interest for the populations to adopt this healthy diet. It can help overcome the problems associated with weight and dysregulated metabolism.
Collapse
Affiliation(s)
- Rui-Jun Li
- The Handsurgery Department, The First Hospital of Jilin University, Changchun, China
| | - Yang Liu
- The Handsurgery Department, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- The Anesthesia Department, The First Hospital of Jilin University, Changchun, China
| | - Ji Li
- The Anesthesia Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Dietary Control of Ganglioside Expression in Mammalian Tissues. Int J Mol Sci 2019; 21:ijms21010177. [PMID: 31887977 PMCID: PMC6981639 DOI: 10.3390/ijms21010177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are series of glycosphingolipids containing sialic acids in the oligosaccharide portion in mammalian cells. Gangliosides are a component of cellular membranes and play roles in modulating membrane function and the activity of membrane proteins. Abnormal expression and metabolism of gangliosides lead to the onset of several conditions in humans, such as neurologic diseases, diabetes, and cancer. A number of studies have been carried out to date to investigate the role of gangliosides in these diseases, and the effect of diet on tissue expression of gangliosides has recently become a topic of interest in this field. As gangliosides are degraded in the intestinal tract, ingested food-derived gangliosides are not directly absorbed into tissues in vivo, but the degradation products can be absorbed and affect ganglioside expression in the tissues. Recent studies have also shown that the expression of gangliosides in tissue cells can be indirectly induced by controlling the expression of ganglioside metabolism-related genes via the diet. These results indicate that dietary control can regulate the expression levels of gangliosides in tissues, which is expected to play a role in preventing and treating ganglioside-related diseases. This review introduces recent studies on the effect of diet on the expression of gangliosides in tissues, with a focus on our findings.
Collapse
|
12
|
Induction of specific adaptive immune responses by immunization with newly designed artificial glycosphingolipids. Sci Rep 2019; 9:18803. [PMID: 31827147 PMCID: PMC6906409 DOI: 10.1038/s41598-019-55088-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022] Open
Abstract
We previously found that artificial glycosphingolipids (artGSLs) containing very-long-chain fatty acids behave as strong immunogens in mice and promote the production of antibodies recognizing the oligosaccharide portion of artGSLs as the epitope. Here, we report that the oligosaccharide structure of artGSLs influences these immunogenic properties. We evaluated the antibody-inducing activity of artGSLs with different oligosaccharide structures in mice and found strong IgG-inducing activity only with an artGSL containing a core-fucosylated tetraoligosaccharide (Manβ1,4GlcNAcβ1,4[Fucα1,6]GlcNAc). To characterize the immunogenic properties of this artGSL, we analyzed various derivatives and found that the non-reducing terminal mannose structure was critical for the antibody-inducing activity. These artGSLs also exhibited IgG-inducing activity dependent on co-administration of lipid A adjuvant, but no cytokine-inducing activity similar to α-galactosylceramide was detected. Furthermore, repetitive immunization with the artGSL promoted the production of antibodies against a core-fucosylated α-fetoprotein isoform (AFP-L3) known as a hepatocellular carcinoma–specific antigen. These results indicate that the newly designed artGSLs specifically induce adaptive immune responses and promote antibody production by B cells, which can be utilized to develop anti-glycoconjugate antibodies and cancer vaccines targeting tumor-associated carbohydrate antigens.
Collapse
|
13
|
A low-carbohydrate ketogenic diet induces the expression of very-low-density lipoprotein receptor in liver and affects its associated metabolic abnormalities. NPJ Sci Food 2019; 3:25. [PMID: 31815184 PMCID: PMC6889268 DOI: 10.1038/s41538-019-0058-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
A low-carbohydrate ketogenic diet (LCKD) promotes the progression of hepatic steatosis in C57BL/6 wild-type mice, but improves the condition in leptin-deficient obese (ob/ob) mice. Here, we show a novel effect of LCKD associated with the conflicting effects on these mice. Gene expression microarray analyses showed that expression of the Vldlr gene, which encodes the very-low-density lipoprotein receptor (VLDLR), was induced in LCKD-fed ob/ob mice. Although the VLDLR is not normally expressed in the liver, the LCKD led to VLDLR expression in both ob/ob and wild-type mice. To clarify this effect on VLDL dynamics, we analyzed the lipid content of serum lipoproteins and found a marked decrease in VLDL-triglycerides only in LCKD-fed wild-type mice. Further analyses suggested that transport of triglycerides via VLDL from the liver to extrahepatic tissues was inhibited by LCKD-induced hepatic VLDLR expression, but rescued under conditions of leptin deficiency.
Collapse
|
14
|
Okuda T. Data set for characterization of the glycosylation status of hepatic glycoproteins in mice fed a low-carbohydrate ketogenic diet. Data Brief 2019; 27:104604. [PMID: 31687435 PMCID: PMC6820080 DOI: 10.1016/j.dib.2019.104604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022] Open
Abstract
The data presented herein pertain to a research article entitled “A low-carbohydrate ketogenic diet promotes ganglioside synthesis via the transcriptional regulation of ganglioside metabolism-related genes” [1]. The present article provides additional structural analysis data for the characterization of hepatic glycoproteins in mice fed a low-carbohydrate ketogenic diet (LCKD). Analysis of hepatic glycoproteins by enzyme-linked assay using the lectins UEA-I, ConA, LCA, and WGA showed that the LCKD decreased mature forms of complex-type glycans but increased immature forms of glycans on glycoproteins. An enzyme-linked immunosorbent assay using an anti–α2,6-sialyl LacNAc antibody also supported this result, indicating that dietary carbohydrate restriction results in aberrant glycosylation of tissue glycoproteins. These structural alterations of hepatic glycoproteins were not correlated with the expression levels of glycosyltransferase genes but were correlated with down-regulated expression of the Gale gene, which encodes a rate-limiting enzyme for the synthesis of sugar nucleotide donors for protein glycosylation in the liver. This property differed from glycosphingolipid metabolism in the liver of LCKD-fed mice.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Bio-Design Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
15
|
Okuda T. A low-carbohydrate ketogenic diet promotes ganglioside synthesis via the transcriptional regulation of ganglioside metabolism-related genes. Sci Rep 2019; 9:7627. [PMID: 31110277 PMCID: PMC6527835 DOI: 10.1038/s41598-019-43952-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
Low-carbohydrate ketogenic diets (LCKDs) are used for treating obesity and epilepsy; however, the molecular mechanism of LCKDs in tissues has not been fully investigated. In this study, novel LCKD-associated molecular targets were explored using gene expression profiling in the liver of mice fed a LCKD. The result showed that the LCKD promoted the expression of glycosyltransferase genes involved in ganglioside synthesis and suppressed the expression of Gm2a, the gene encoding GM2 ganglioside activator protein, a lysosomal protein indispensable for ganglioside degradation. These changes were correlated with increased ganglioside content in the liver and serum. As gangliosides are mainly expressed in central nervous tissues, we also analyzed LCKD effect on cerebral cortex. Although ganglioside levels were unchanged in mice on the LCKD, Gm2a expression was significantly down-regulated. Further analyses suggested that the LCKD altered the expression levels of gangliosides in a limited area of central nervous system tissues susceptible to Gm2a.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Bio-Design Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
16
|
Shimizu K, Saito H, Sumi K, Sakamoto Y, Tachi Y, Iida K. Short-term and long-term ketogenic diet therapy and the addition of exercise have differential impacts on metabolic gene expression in the mouse energy-consuming organs heart and skeletal muscle. Nutr Res 2018; 60:77-86. [DOI: 10.1016/j.nutres.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022]
|
17
|
Westman EC, Tondt J, Maguire E, Yancy WS. Implementing a low-carbohydrate, ketogenic diet to manage type 2 diabetes mellitus. Expert Rev Endocrinol Metab 2018; 13:263-272. [PMID: 30289048 DOI: 10.1080/17446651.2018.1523713] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) has reached epidemic proportions in the modern world. For individuals affected by obesity-related T2DM, clinical studies have shown that carbohydrate restriction and weight loss can improve hyperglycemia, obesity, and T2DM. AREAS COVERED Reducing carbohydrate intake to a certain level, typically below 50 g per day, leads to increased ketogenesis in order to provide fuel for the body. Such low-carbohydrate, ketogenic diets were employed to treat obesity and diabetes in the 19th and early 20th centuries. Recent clinical research has reinvigorated the use of the ketogenic diet for individuals with obesity and diabetes. Although characterized by chronic hyperglycemia, the underlying cause of T2DM is hyperinsulinemia and insulin resistance, typically as a result of increased energy intake leading to obesity. The ketogenic diet substantially reduces the glycemic response that results from dietary carbohydrate as well as improves the underlying insulin resistance. This review combines a literature search of the published science and practical guidance based on clinical experience. EXPERT COMMENTARY While the current treatment of T2DM emphasizes drug treatment and a higher carbohydrate diet, the ketogenic diet is an effective alternative that relies less on medication, and may even be a preferable option when medications are not available.
Collapse
Affiliation(s)
- Eric C Westman
- a Division of General Internal Medicine, Department of Medicine , Duke University Medical Center , Durham , NC , USA
| | - Justin Tondt
- b Geisinger Commonwealth School of Medicine , Scranton , PA , USA
| | | | - William S Yancy
- a Division of General Internal Medicine, Department of Medicine , Duke University Medical Center , Durham , NC , USA
- d Center for Health Services Research in Primary Care, Durham Veterans Affairs Medical Center , Durham , NC , USA
- e Duke Diet and Fitness Center , Duke University Health System , Durham , NC , USA
| |
Collapse
|
18
|
Generation of anti-oligosaccharide antibodies that recognize mammalian glycoproteins by immunization with a novel artificial glycosphingolipid. Biochem Biophys Res Commun 2018; 497:983-989. [PMID: 29458022 DOI: 10.1016/j.bbrc.2018.02.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 11/20/2022]
Abstract
Here we report a new method for the efficient generation of antibodies that recognize the fine structures of oligosaccharides on glycoproteins. We found a newly designed artificial glycosphingolipid carrying a very long chain fatty acid to be a strong immunogen in mice, with the serum of immunized mice containing antibodies recognizing the oligosaccharide structure of the immunogen. First, we found that conjugation of a simple ceramide analogue to target oligosaccharides could enhance the immunogenicity of these oligosaccharides in these immunized mice. This effect was confirmed in mice immunized with the artificial glycosphingolipids carrying 6'-Sialyl-LacNAc, 3'-Sialyl-LacNAc and LacNAc. Next, we tried to improve the immunogenic enhancing effect of the ceramide analogue. In a model experiment using 6'-Sialyl-LacNAc oligosaccharide, we manipulated the alkyl chains to several lengths, and found that a longer alkyl chain length of the fatty acid correlated with high immunogenicity. Among these we examined, artificial glycosphingolipids conjugated with a ceramide analogue carrying a very long chain fatty acid (lignoceric acid) showed the strongest immunogenicity. By using the artificial glycosphingolipid containing 6'-Sialy-LacNAc and lignoceric acid, we succeeded in the generation of a new anti-6'-Sialyl-LacNAc antibody that recognizes 6'-Sialyl-LacNAc carrying glycoproteins but does not bind to 6'-Sialyllactose, asialo-glycoporoteins and glycoproteins carrying 3'-Sialyl-LacNAc. These results indicate that the established technology is valuable for the targeted generation of monoclonal antibodies against glycoproteins containing specific oligosaccharide structures.
Collapse
|
19
|
Vu JP, Luong L, Parsons WF, Oh S, Sanford D, Gabalski A, Lighton JR, Pisegna JR, Germano PM. Long-Term Intake of a High-Protein Diet Affects Body Phenotype, Metabolism, and Plasma Hormones in Mice. J Nutr 2017; 147:2243-2251. [PMID: 29070713 PMCID: PMC5697971 DOI: 10.3945/jn.117.257873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/26/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background: High-protein diets (HPDs) recently have been used to obtain body weight and fat mass loss and expand muscle mass. Several studies have documented that HPDs reduce appetite and food intake.Objective: Our goal was to determine the long-term effects of an HPD on body weight, energy intake and expenditure, and metabolic hormones.Methods: Male C57BL/6 mice (8 wk old) were fed either an HPD (60% of energy as protein) or a control diet (CD; 20% of energy as protein) for 12 wk. Body composition and food intakes were determined, and plasma hormone concentrations were measured in mice after being fed and after overnight feed deprivation at several time points.Results: HPD mice had significantly lower body weight (in means ± SEMs; 25.73 ± 1.49 compared with 32.5 ± 1.31 g; P = 0.003) and fat mass (9.55% ± 1.24% compared with 15.78% ± 2.07%; P = 0.05) during the first 6 wk compared with CD mice, and higher lean mass throughout the study starting at week 2 (85.45% ± 2.25% compared with 75.29% ± 1.90%; P = 0.0001). Energy intake, total energy expenditure, and respiratory quotient were significantly lower in HPD compared with CD mice as shown by cumulative energy intake and eating rate. Water vapor was significantly higher in HPD mice during both dark and light phases. In HPD mice, concentrations of leptin [feed-deprived: 41.31 ± 11.60 compared with 3041 ± 683 pg/mL (P = 0.0004); postprandial: 112.5 ± 102.0 compared with 8273 ± 1415 pg/mL (P < 0.0001)] and glucagon-like peptide 1 (GLP-1) [feed-deprived: 5.664 ± 1.44 compared with 21.31 ± 1.26 pg/mL (P = <0.0001); postprandial: 6.54 ± 2.13 compared with 50.62 ± 11.93 pg/mL (P = 0.0037)] were significantly lower, whereas postprandial glucagon concentrations were higher than in CD-fed mice.Conclusions: In male mice, the 12-wk HPD resulted in short-term body weight and fat mass loss, but throughout the study preserved body lean mass and significantly reduced energy intake and expenditure as well as leptin and GLP-1 concentrations while elevating postprandial glucagon concentrations. This study suggests that long-term use of HPDs may be an effective strategy to decrease energy intake and expenditure and to maintain body lean mass.
Collapse
Affiliation(s)
- John P Vu
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| | - Leon Luong
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| | - William F Parsons
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| | - Suwan Oh
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| | - Daniel Sanford
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| | - Arielle Gabalski
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| | | | - Joseph R Pisegna
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| | - Patrizia M Germano
- CURE-Digestive Diseases Research Center, Department of Medicine at the University of California at Los Angeles, Los Angeles, CA;
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs (VA) Greater Los Angeles Health Care System and Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA; and
| |
Collapse
|
20
|
Caminhotto RDO, Lima FB. Low carbohydrate high fat diets: when models do not match reality. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 60:405-6. [PMID: 27533617 DOI: 10.1590/2359-3997000000177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/11/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Rennan de Oliveira Caminhotto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (ICB-USP), São Paulo, SP, Brasil
| | - Fabio Bessa Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (ICB-USP), São Paulo, SP, Brasil
| |
Collapse
|
21
|
PUGNAc treatment provokes globotetraosylceramide accumulation in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2017; 487:76-82. [PMID: 28392398 DOI: 10.1016/j.bbrc.2017.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
PUGNAc is a well-investigated inhibitor for protein-O-GlcNAcase, whereas recent investigations showed that PUGNAc had a broad range as inhibitor for cellular β-hexosaminidases. Here we report that PUGNAc treatment provokes globotetraosylceramide (Gb4Cer) accumulation in human umbilical vein endothelial cells (HUVEC). HPLC analysis and a quantitative ELISA using newly developed anti-Gb4Cer monoclonal antibody revealed that PUGNAc treatment specifically increased the expression of Gb4Cer among glycosphingolipids expressed in HUVEC. Although the effect was weaker than PUGNAc, an O-GlcNAcase selective inhibitor (Thiamet-G) treatment also increased Gb4Cer levels in HUVEC. Furthermore, both of PUGNAc and Thiamet-G treatment up-regulated the expression levels of α-1,4-galactosyltransferase/Gb3Cer synthase gene which encodes a key enzyme in Gb4Cer synthesis. These results indicate that protein-O-GlcNAcylation can regulate the expression levels of cellular Gb4Cer.
Collapse
|
22
|
Arslan N, Guzel O, Kose E, Yılmaz U, Kuyum P, Aksoy B, Çalık T. Is ketogenic diet treatment hepatotoxic for children with intractable epilepsy? Seizure 2016; 43:32-38. [PMID: 27866088 DOI: 10.1016/j.seizure.2016.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Long-term ketogenic diet (KD) treatment has been shown to induce liver steatosis and gallstone formation in some in vivo and clinical studies. The aim of this retrospective study was to evaluate the hepatic side effects of KD in epileptic children. METHOD A total of 141 patients (mean age: 7.1±4.1years [2-18 years], 45.4% girls), receiving KD at least one year for intractable epilepsy due to different diagnoses (congenital brain defects, GLUT-1 deficiency, West syndrome, tuberous sclerosis, hypoxic brain injury, etc.) were included in the study. Serum triglyceride, cholesterol, aminotransferase, bilirubin, protein and albumin levels and abdominal ultrasonography were recorded before and at 1, 3, 6, and 12 months following after diet initiation. RESULTS The mean duration of KD was 15.9±4.3months. At one month of therapy, three patients had elevated alanine and aspartate aminotransferase levels. These patients were receiving ketogenic diet for Doose syndrome, idiopathic epilepsy and GLUT-1 deficiency. Hepatosteatosis was detected in three patients at 6 months of treatment. Two of these patients were treated with KD for the primary diagnosis of tuberous sclerosis and one for Landau Kleffner syndrome. Cholelithiasis was detected in two patients at 12 months of treatment. They were receiving treatment for West syndrome and hypoxic brain injury sequelae. CONCLUSION Long-term ketogenic diet treatment stimulates liver parenchymal injury, hepatic steatosis and gallstone formation. Patients should be monitored by screening liver enzymes and abdominal ultrasonography in order to detect these side effects.
Collapse
Affiliation(s)
- Nur Arslan
- Dokuz Eylul University, Division of Pediatric Metabolism and Nutrition, Izmir, Turkey; Dokuz Eylul University, Izmir Biomedicine and Genome Center, Izmir, Turkey.
| | - Orkide Guzel
- Behçet Uz Children Hospital, Division of Pediatric Neurology, Izmir, Turkey
| | - Engin Kose
- Dokuz Eylul University, Division of Pediatric Metabolism and Nutrition, Izmir, Turkey
| | - Unsal Yılmaz
- Behçet Uz Children Hospital, Division of Pediatric Neurology, Izmir, Turkey
| | - Pınar Kuyum
- Dokuz Eylul University, Division of Pediatric Gastroenterology, Izmir, Turkey
| | - Betül Aksoy
- Dokuz Eylul University, Division of Pediatric Gastroenterology, Izmir, Turkey
| | - Tansel Çalık
- Behçet Uz Children Hospital, Division of Pediatric Neurology, Izmir, Turkey
| |
Collapse
|
23
|
Yamazaki T, Okawa S, Takahashi M. The effects on weight loss and gene expression in adipose and hepatic tissues of very-low carbohydrate and low-fat isoenergetic diets in diet-induced obese mice. Nutr Metab (Lond) 2016; 13:78. [PMID: 27826354 PMCID: PMC5100287 DOI: 10.1186/s12986-016-0139-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Background Obesity is caused by excessive fat or carbohydrate intake. The improvement of obesity is an important issue, especially in Western societies. Both low-carbohydrate diet (LCD) and low-fat diet (LFD) are used to achieve weight loss in humans. To clarify the mechanisms underlying LCD-induced weight loss, especially in early stage, we compared the gene expression in liver, white adipose tissue (WAT) and brown adipose tissue (BAT) of a very-low carbohydrate diet (VLCD)- and LFD-fed diet-induced obese (DIO) mice. Methods DIO male ddY mice were divided into high-fat diet (HFD), and isoenergetic VLCD and LFD groups. Pair-feeding was performed in the VLCD and LFD groups. Three weeks later, the body, liver, WAT and BAT were weighed and the serum and hepatic lipids, the mRNA expression levels in each tissue, and energy metabolism were analyzed. Results The caloric intake of the VLCD-fed mice was initially reduced but was subsequently restored. The total energy intake was similar in the VLCD- and LFD-fed mice. There was a similar decrease in the BW of the VLCD- and LFD-fed mice. The VLCD-fed mice had elevated levels of serum fibroblast growth factor 21 (FGF21) and ketone bodies, which are known to increase energy expenditure. The browning of WAT was observed to a greater extent in the VLCD-fed mice. Moreover, in the VLCD-fed mice, BAT activation was observed, the weight of the BAT was decreased, and the expression of G-protein-coupled receptor 120, type 2 iodothyronine deiodinase, and FGF21 in BAT was extremely increased. Although the energy expenditure of the VLCD- and LFD-fed mice did not differ, that of the VLCD-fed mice was sometimes higher during the dark cycle. Hepatic TG accumulation was reduced in LFD-fed mice due to their decreased fatty acid uptake but not in the VLCD-fed mice. The pro-inflammatory macrophage ratio was increased in the WAT of VLCD-fed mice. Conclusions After 3 weeks, the isoenergetic VLCD- and LFD-fed DIO mice showed similar weight loss. The VLCD-fed mice increased serum concentration of FGF21 and ketone bodies, and marker mRNA levels of browning in WAT, activation in BAT and hepatic lipogenesis.
Collapse
Affiliation(s)
- Tomomi Yamazaki
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Sumire Okawa
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Mayumi Takahashi
- Department of Life Science, Osaka Women's Junior College, 3-8-1 Kasugaoka, Fujiidera City, Osaka 583-8558 Japan
| |
Collapse
|
24
|
Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr Diabetes 2016; 6:e230. [PMID: 27643725 PMCID: PMC5048014 DOI: 10.1038/nutd.2016.36] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Brackground:The safety and tolerability of very low-calorie-ketogenic (VLCK) diets are a current concern in the treatment of obese type 2 diabetes mellitus (T2DM) patients. OBJECTIVE Evaluating the short-term safety and tolerability of a VLCK diet (<50 g of carbohydrate daily) in an interventional weight loss program including lifestyle and behavioral modification support (Diaprokal Method) in subjects with T2DM. METHODS Eighty-nine men and women, aged between 30 and 65 years, with T2DM and body mass index between 30 and 35 kg m(-)(2) participated in this prospective, open-label, multi-centric randomized clinical trial with a duration of 4 months. Forty-five subjects were randomly assigned to the interventional weight loss (VLCK diet), and 44 to the standard low-calorie diet. RESULTS No significant differences in the laboratory safety parameters were found between the two study groups. Changes in the urine albumin-to-creatinine ratio in VLCK diet were not significant and were comparable to control group. Creatinine and blood urea nitrogen did not change significantly relative to baseline nor between groups. Weight loss and reduction in waist circumference in the VLCK diet group were significantly larger than in control subjects (both P<0.001). The decline in HbA1c and glycemic control was larger in the VLCK diet group (P<0.05). No serious adverse events were reported and mild AE in the VLCK diet group declined at last follow-up. CONCLUSIONS The interventional weight loss program based on a VLCK diet is most effective in reducing body weight and improvement of glycemic control than a standard hypocaloric diet with safety and good tolerance for T2DM patients.
Collapse
|
25
|
Okuda T, Morita N. A very low carbohydrate ketogenic diet increases hepatic glycosphingolipids related to regulation of insulin signalling. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Douris N, Melman T, Pecherer JM, Pissios P, Flier JS, Cantley LC, Locasale JW, Maratos-Flier E. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2056-65. [PMID: 26170063 DOI: 10.1016/j.bbadis.2015.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice.
Collapse
Affiliation(s)
- Nicholas Douris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tamar Melman
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan M Pecherer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pavlos Pissios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey S Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jason W Locasale
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Okuda T, Fukui A, Morita N. Altered expression of O-GlcNAc-modified proteins in a mouse model whose glycemic status is controlled by a low carbohydrate ketogenic diet. Glycoconj J 2013; 30:781-9. [DOI: 10.1007/s10719-013-9482-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 01/09/2023]
|