1
|
Pérez-Solis MA, Maya-Nuñez G, Casas-González P, Olivares A, Aguilar-Rojas A. Effects of the lifestyle habits in breast cancer transcriptional regulation. Cancer Cell Int 2016; 16:7. [PMID: 26877711 PMCID: PMC4752785 DOI: 10.1186/s12935-016-0284-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
Through research carried out in the last 25 years about the breast cancer etiology, it has been possible to estimate that less than 10 % of patients who are diagnosed with the condition are carriers of some germline or somatic mutation. The clinical reports of breast cancer patients with healthy twins and the development of disease in women without high penetrance mutations detected, warn the participation more factors in the transformation process. The high incidence of mammary adenocarcinoma in the modern woman and the urgent need for new methods of prevention and early detection have demanded more information about the role that environment and lifestyle have on the transformation of mammary gland epithelial cells. Obesity, alcoholism and smoking are factors that have shown a close correlation with the risk of developing breast cancer. And although these conditions affect different cell regulation levels, the study of its effects in the mechanisms of transcriptional and epigenetic regulation is considered critical for a better understanding of the loss of identity of epithelial cells during carcinogenesis of this tissue. The main objective of this review was to establish the importance of changes occurring to transcriptional level in the mammary gland as a consequence of acute or chronic exposure to harmful products such as obesity-causing foods, ethanol and cigarette smoke components. At analyze the main studies related to topic, it has concluded that the understanding of effects caused by the lifestyle factors in performance of the transcriptional mechanisms that determine gene expression of the mammary gland epithelial cells, may help explain the development of this disease in women without genetic propensity and different phenotypic manifestations of this cancer type.
Collapse
Affiliation(s)
- Marco Allán Pérez-Solis
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Guadalupe Maya-Nuñez
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Patricia Casas-González
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Aleida Olivares
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| | - Arturo Aguilar-Rojas
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, No. 289 Río Magdalena, Tizapan San Angel, 01090 Mexico, DF Mexico
| |
Collapse
|
2
|
Li H, Wang S, Takayama K, Harada T, Okamoto I, Iwama E, Fujii A, Ota K, Hidaka N, Kawano Y, Nakanishi Y. Nicotine induces resistance to erlotinib via cross-talk between α 1 nAChR and EGFR in the non-small cell lung cancer xenograft model. Lung Cancer 2015; 88:1-8. [PMID: 25670150 DOI: 10.1016/j.lungcan.2015.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/26/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Given our previously published study, α 1 nicotinic acetylcholine receptor (nAChR) plays an essential role in nicotine-induced cell signaling and nicotine-induced resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in non-small cell lung cancer (NSCLC) PC9 cells. The aim of this study was to investigate the potential mechanism between nAChR and EGFR for nicotine-induced resistance to EGFR-TKI erlotinib in the NSCLC xenograft model. MATERIALS AND METHODS We identified the role of nicotine to EGFR/AKT/ERK pathways and to erlotinib-resistance in NSCLC PC9 and HCC827 cells by MTS assay and western blot. Then, we established the PC9 xenograft model with nicotine exposure and treated mice with erlotinib combined with vehicle or nicotine. RESULTS We confirmed the effects of nicotine on EGFR/AKT/ERK pathways and determined nicotine's potential in preventing from the effect of erlotinib on NSCLC cells. Then, we showed that nicotine exposures can promote tumor growth and induce resistance to erlotinib in the PC9 xenograft model. Our results also indicated that chronic oral administration of nicotine can cause more significant erlotinib-resistance compared with acute i.v. injection of nicotine through activating α 1 nAChR and EGFR pathways. CONCLUSIONS These results suggest that nicotine contributes to the progression and erlotinib-resistance of the NSCLC xenograft model via the cooperation between nAChR and EGFR.
Collapse
Affiliation(s)
- Heyan Li
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuo Wang
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Koichi Takayama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Taishi Harada
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Fujii
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Hidaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Kawano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Mohapatra P, Preet R, Das D, Satapathy SR, Siddharth S, Choudhuri T, Wyatt MD, Kundu CN. The contribution of heavy metals in cigarette smoke condensate to malignant transformation of breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K-AKT-NFκB cascade. Toxicol Appl Pharmacol 2013; 274:168-79. [PMID: 24099783 DOI: 10.1016/j.taap.2013.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/17/2013] [Accepted: 09/25/2013] [Indexed: 01/16/2023]
Abstract
Cigarette smoking is a crucial factor in the development and progression of multiple cancers including breast. Here, we report that repeated exposure to a fixed, low dose of cigarette smoke condensate (CSC) prepared from Indian cigarettes is capable of transforming normal breast epithelial cells, MCF-10A, and delineate the biochemical basis for cellular transformation. CSC transformed cells (MCF-10A-Tr) were capable of anchorage-independent growth, and their anchorage dependent growth and colony forming ability were higher compared to the non-transformed MCF-10A cells. Increased expression of biomarkers representative of oncogenic transformation (NRP-1, Nectin-4), and anti-apoptotic markers (PI3K, AKT, NFκB) were also noted in the MCF-10A-Tr cells. Short tandem repeat (STR) profiling of MCF-10A and MCF-10A-Tr cells revealed that transformed cells acquired allelic variation during transformation, and had become genetically distinct. MCF-10A-Tr cells formed solid tumors when implanted into the mammary fat pads of Balb/c mice. Data revealed that CSC contained approximately 1.011μg Cd per cigarette equivalent, and Cd (0.0003μg Cd/1×10(7) cells) was also detected in the lysates from MCF-10A cells treated with 25μg/mL CSC. In similar manner to CSC, CdCl2 treatment in MCF-10A cells caused anchorage independent colony growth, higher expression of oncogenic proteins and increased PI3K-AKT-NFκB protein expression. An increase in the expression of PI3K-AKT-NFκB was also noted in the mice xenografts. Interestingly, it was noted that CSC and CdCl2 treatment in MCF-10A cells increased ROS. Collectively, results suggest that heavy metals present in cigarettes of Indian origin may substantially contribute to tumorigenesis by inducing intercellular ROS accumulation and increased expression of PI3K, AKT and NFκB proteins.
Collapse
Affiliation(s)
- Purusottam Mohapatra
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Ranjan Preet
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Dipon Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Shakti Ranjan Satapathy
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Sumit Siddharth
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India; Department of Infection Biology, Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751021, India
| | - Tathagata Choudhuri
- Department of Infection Biology, Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751021, India
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India.
| |
Collapse
|
4
|
Di Cello F, Flowers VL, Li H, Vecchio-Pagán B, Gordon B, Harbom K, Shin J, Beaty R, Wang W, Brayton C, Baylin SB, Zahnow CA. Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells. Mol Cancer 2013; 12:90. [PMID: 23919753 PMCID: PMC3750372 DOI: 10.1186/1476-4598-12-90] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/25/2013] [Indexed: 01/16/2023] Open
Abstract
Background Recent epidemiological studies demonstrate that both active and involuntary exposure to tobacco smoke increase the risk of breast cancer. Little is known, however, about the molecular mechanisms by which continuous, long term exposure to tobacco smoke contributes to breast carcinogenesis because most previous studies have focused on short term treatment models. In this work we have set out to investigate the progressive transforming effects of tobacco smoke on non-tumorigenic mammary epithelial cells and breast cancer cells using in vitro and in vivo models of chronic cigarette smoke exposure. Results We show that both non-tumorigenic (MCF 10A, MCF-12A) and tumorigenic (MCF7) breast epithelial cells exposed to cigarette smoke acquire mesenchymal properties such as fibroblastoid morphology, increased anchorage-independent growth, and increased motility and invasiveness. Moreover, transplantation experiments in mice demonstrate that treatment with cigarette smoke extract renders MCF 10A cells more capable to survive and colonize the mammary ducts and MCF7 cells more prone to metastasize from a subcutaneous injection site, independent of cigarette smoke effects on the host and stromal environment. The extent of transformation and the resulting phenotype thus appear to be associated with the differentiation state of the cells at the time of exposure. Analysis by flow cytometry showed that treatment with CSE leads to the emergence of a CD44hi/CD24low population in MCF 10A cells and of CD44+ and CD49f + MCF7 cells, indicating that cigarette smoke causes the emergence of cell populations bearing markers of self-renewing stem-like cells. The phenotypical alterations induced by cigarette smoke are accompanied by numerous changes in gene expression that are associated with epithelial to mesenchymal transition and tumorigenesis. Conclusions Our results indicate that exposure to cigarette smoke leads to a more aggressive and transformed phenotype in human mammary epithelial cells and that the differentiation state of the cell at the time of exposure may be an important determinant in the phenotype of the final transformed state.
Collapse
Affiliation(s)
- Francescopaolo Di Cello
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death Differ 2013; 20:1043-54. [PMID: 23645209 DOI: 10.1038/cdd.2013.32] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 03/22/2013] [Accepted: 03/29/2013] [Indexed: 11/08/2022] Open
Abstract
Increased glucose catabolism and resistance to cell death are hallmarks of cancers, but the link between them remains elusive. Remarkably, under conditions where caspases are inhibited, the process of cell death is delayed but rarely blocked, leading to the occurrence of caspase-independent cell death (CICD). Escape from CICD is particularly relevant in the context of cancer as apoptosis inhibition only is often not sufficient to allow oncogenic transformation. While most glycolytic enzymes are overexpressed in tumors, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest as it can allow cells to recover from CICD. Here, we show that GAPDH, but no other glycolytic enzymes tested, when overexpressed could bind to active Akt and limit its dephosphorylation. Active Akt prevents FoxO nuclear localization, which precludes Bcl-6 expression and leads to Bcl-xL overexpression. The GAPDH-dependent Bcl-xL overexpression is able to protect a subset of mitochondria from permeabilization that are required for cellular survival from CICD. Thus, our work suggests that GAPDH overexpression could induce Bcl-xL overexpression and protect cells from CICD-induced chemotherapy through preservation of intact mitochondria that may facilitate tumor survival and chemotherapeutic resistance.
Collapse
|
6
|
Abstract
BACKGROUND AND OBJECTIVES Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. METHODS The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. RESULTS Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. CONCLUSIONS Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.
Collapse
|
7
|
Frampton G, Invernizzi P, Bernuzzi F, Pae HY, Quinn M, Horvat D, Galindo C, Huang L, McMillin M, Cooper B, Rimassa L, DeMorrow S. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism. Gut 2012; 61:268-77. [PMID: 22068162 PMCID: PMC4498955 DOI: 10.1136/gutjnl-2011-300643] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. METHODS The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. RESULTS Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. CONCLUSIONS Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Gabriel Frampton
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA,Department of Internal Medicine, Digestive Disease Research Center, Scott & White Hospital, Temple, Texas, USA
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Division of Internal Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Division of Internal Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Italy,Department of Translational Medicine, Università degli studi di Milano, Rozzano, Italy
| | - Hae Yong Pae
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA,Department of Internal Medicine, Digestive Disease Research Center, Scott & White Hospital, Temple, Texas, USA
| | - Matthew Quinn
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA,Department of Internal Medicine, Digestive Disease Research Center, Scott & White Hospital, Temple, Texas, USA
| | - Darijana Horvat
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA,Department of Internal Medicine, Digestive Disease Research Center, Scott & White Hospital, Temple, Texas, USA
| | - Cheryl Galindo
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA,Department of Internal Medicine, Digestive Disease Research Center, Scott & White Hospital, Temple, Texas, USA
| | - Li Huang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Matthew McMillin
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA,Department of Internal Medicine, Digestive Disease Research Center, Scott & White Hospital, Temple, Texas, USA
| | | | - Lorenza Rimassa
- UO Oncologia medica e ematologia, Humanitas Cancer Center, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | - Sharon DeMorrow
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, Texas, USA,Department of Internal Medicine, Digestive Disease Research Center, Scott & White Hospital, Temple, Texas, USA,Research Service, Central Texas Veterans Health Care System, Temple, Texas USA
| |
Collapse
|
8
|
Nishioka T, Kim HS, Luo LY, Huang Y, Guo J, Chen CY. Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res 2011; 13:R113. [PMID: 22085699 PMCID: PMC3326555 DOI: 10.1186/bcr3055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/03/2011] [Accepted: 11/15/2011] [Indexed: 02/01/2023] Open
Abstract
Introduction Tobacco smoke is known to be the main cause of lung, head and neck tumors. Recently, evidence for an increasing breast cancer risk associated with tobacco smoke exposure has been emerging. We and other groups have shown that nicotine, as a non-conventional carcinogen, has the potential to facilitate cancer genesis and progression. However, the underlying mechanisms by which the smoke affects the breast, rather than the lung, remain unclear. Here, we examine possible downstream signaling pathways of the nicotinic acetylcholine receptor (nAChR) and their role in breast cancer promotion. Methods Using human benign MCF10A and malignant MDA-MB-231 breast cells and specific inhibitors of possible downstream kinases, we identified nAChR effectors that were activated by treatment with nicotine. We further tested the effects of these effector pathways on the regulation of E2F1 activation, cell cycle progression and on Bcl-2 expression and long-term cell survival. Results In this study, we demonstrated a novel signaling mechanism by which nicotine exposure activated Src to sensitize epidermal growth factor receptor (EGFR)-mediated pathways for breast cancer cell growth promotion. After the ligation of nAChR with nicotine, EGFR was shown to be activated and then internalized in both MCF10A and MDA-MB-231 breast cancer cells. Subsequently, Src, Akt and ERK1/2 were phosphorylated at different time points following nicotine treatment. We further demonstrated that through Src, the ligation of nicotine with nAChR stimulated the EGFR/ERK1/2 pathway for the activation of E2F1 and further cell progression. Our data also showed that Akt functioned directly downstream of Src and was responsible for the increase of Bcl-2 expression and long-term cell survival. Conclusions Our study reveals the existence of a potential, regulatory network governed by the interaction of nicotine and nAChR that integrates the conventional, mitogenic Src and EGFR signals for breast cancer development.
Collapse
Affiliation(s)
- Takashi Nishioka
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 00215, USA
| | | | | | | | | | | |
Collapse
|
9
|
Cheng SE, Lin CC, Lee IT, Hsu CK, Kou YR, Yang CM. Cigarette smoke extract regulates cytosolic phospholipase A2expression via NADPH oxidase/MAPKs/AP-1 and p300 in human tracheal smooth muscle cells. J Cell Biochem 2011; 112:589-99. [DOI: 10.1002/jcb.22949] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
CCAAT/enhancer binding protein delta (CEBPD) elevating PTX3 expression inhibits macrophage-mediated phagocytosis of dying neuron cells. Neurobiol Aging 2010; 33:422.e11-25. [PMID: 21112127 DOI: 10.1016/j.neurobiolaging.2010.09.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ, NF-IL6β) is induced in many inflammation-related diseases, suggesting that CEBPD and its downstream targets may play central roles in these conditions. Neuropathological studies show that a neuroinflammatory response parallels the early stages of Alzheimer's disease (AD). However, the precise mechanistic correlation between inflammation and AD pathogenesis remains unclear. CEBPD is upregulated in the astrocytes of AD patients. Therefore, we asked if activation of astrocytic CEBPD could contribute to AD pathogenesis. In this report, a novel role of CEBPD in attenuating macrophage-mediated phagocytosis of damaged neuron cells was found. By global gene expression profiling, we identified the inflammatory marker pentraxin-3 (PTX3, TNFAIP5, TSG-14) as a CEBPD target in astrocytes. Furthermore, we demonstrate that PTX3 participates in the attenuation of macrophage-mediated phagocytosis of damaged neuron cells. This study provides the first demonstration of a role for astrocytic CEBPD and the CEBPD-regulated molecule PTX3 in the accumulation of damaged neurons, which is a hallmark of AD pathogenesis.
Collapse
|
11
|
Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, Zhang M, Mercedes L, Hong JA, Rao M, Schrump DS. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One 2010; 5:e13764. [PMID: 21048943 PMCID: PMC2966442 DOI: 10.1371/journal.pone.0013764] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/04/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Limited information is available regarding mechanisms by which miRNAs contribute to pulmonary carcinogenesis. The present study was undertaken to examine expression and function of miRNAs induced by cigarette smoke condensate (CSC) in normal human respiratory epithelia and lung cancer cells. METHODOLOGY Micro-array and quantitative RT-PCR (qRT-PCR) techniques were used to assess miRNA and host gene expression in cultured cells, and surgical specimens. Software-guided analysis, RNA cross-link immunoprecipitation (CLIP), 3' UTR luciferase reporter assays, qRT-PCR, focused super-arrays and western blot techniques were used to identify and confirm targets of miR-31. Chromatin immunoprecipitation (ChIP) techniques were used to evaluate histone marks and transcription factors within the LOC554202 promoter. Cell count and xenograft experiments were used to assess effects of miR-31 on proliferation and tumorigenicity of lung cancer cells. RESULTS CSC significantly increased miR-31 expression and activated LOC554202 in normal respiratory epithelia and lung cancer cells; miR-31 and LOC554202 expression persisted following discontinuation of CSC exposure. miR-31 and LOC554202 expression levels were significantly elevated in lung cancer specimens relative to adjacent normal lung tissues. CLIP and reporter assays demonstrated direct interaction of miR-31 with Dickkopf-1 (Dkk-1) and DACT-3. Over-expression of miR-31 markedly diminished Dkk-1 and DACT3 expression levels in normal respiratory epithelia and lung cancer cells. Knock-down of miR-31 increased Dkk-1 and DACT3 levels, and abrogated CSC-mediated decreases in Dkk-1 and DACT-3 expression. Furthermore, over-expression of miR-31 diminished SFRP1, SFRP4, and WIF-1, and increased Wnt-5a expression. CSC increased H3K4Me3, H3K9/14Ac and C/EBP-β levels within the LOC554202 promoter. Knock-down of C/EBP-β abrogated CSC-mediated activation of LOC554202. Over-expression of miR-31 significantly enhanced proliferation and tumorigenicity of lung cancer cells; knock-down of miR-31 inhibited growth of these cells. CONCLUSIONS Cigarette smoke induces expression of miR-31 targeting several antagonists of cancer stem cell signaling in normal respiratory epithelia and lung cancer cells. miR-31 functions as an oncomir during human pulmonary carcinogenesis.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maocheng Yang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yongguang Tao
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jigui Shan
- Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mary Zhang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Leandro Mercedes
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Ratovitski EA. LKB1/PEA3/ΔNp63 pathway regulates PTGS-2 (COX-2) transcription in lung cancer cells upon cigarette smoke exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:317-24. [PMID: 21150337 PMCID: PMC3154041 DOI: 10.4161/oxim.3.5.13108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first study to show that cigarette smoking induced the LKB1/PEA 3/ΔNp63-dependent transcriptional regulation of inflammatory molecules, such as COX-2/PTGS-2. Using mainstream smoke extract (MSE) and sidestream smoke extract (SSE) as modeling tools for primary and secondhand smoking, we found that both MSE and SSE downregulated protein levels for LKB1, while upregulated protein levels for PEA 3 and COX-2 in a dose-dependent manner. Using the endogenous ChIP analysis, we further found that the C/EBPβ, NFκB, NF-Y (CHOP), PEA 3 (ETS) and ΔNp63 proteins bound to the specific area (-550 to -130) of the COX-2 promoter, while forming multiple protein complexes in lung cancer cells exposed to MSE and SSE. Our results define a novel link between various transcription factors occupying the COX-2 promoter and cellular response to cigarette smoke exposure bringing a new component, ΔNp63α, showing a critical role for cooperation between various chromatin components in regulation of COX-2 expression and, therefore strengthening the central role of inflammatory process in tumorigenesis of epithelial cells, especially after cigarette smoke exposure (both primary and secondhand).
Collapse
Affiliation(s)
- Edward A Ratovitski
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD USA.
| |
Collapse
|
13
|
Sobti RC, Singh N, Hussain S, Suri V, Bharadwaj M, Das BC. Deregulation of STAT-5 isoforms in the development of HPV-mediated cervical carcinogenesis. J Recept Signal Transduct Res 2010; 30:178-88. [DOI: 10.3109/10799891003786218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|