1
|
Wang T, Li J, Du J, Zhou W, Lu G. Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncol Lett 2025; 29:110. [PMID: 39776648 PMCID: PMC11704873 DOI: 10.3892/ol.2024.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the Drosophila fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full-length membrane proteins that contain cadherin-like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies. However, the biological functions of FAT1 and the precise downstream signaling pathways that it mediates have remained to be fully elucidated. The present review discussed the current literature on FAT1, focusing on FAT1 mutations and expression levels, and their impact on signaling pathways and mechanisms in various types of cancer, including both solid tumors and hematological malignancies, such as esophageal squamous cell carcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, hepatocellular carcinoma, glioma, breast cancer, acute lymphoblastic leukemia, acute myeloid leukemia, lymphoma and myeloma. The present review aimed to provide further insights and research directions for future studies on FAT1 as an oncogenic factor or tumor suppressor.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Junting Li
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Wei Zhou
- Department of Ultrasonic Examination, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
2
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024; 18:2871-2889. [PMID: 39148319 PMCID: PMC11619803 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Brain Tumour Centre, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Health NHS TrustLondonUK
| |
Collapse
|
3
|
Khan MT, Almas M, Malik N, Jalota A, Sharma S, Ali SA, Luthra K, Suri V, Suri A, Basak S, Seth P, Chosdol K, Sinha S. STAT1 mediated downregulation of the tumor suppressor gene PDCD4, is driven by the atypical cadherin FAT1, in glioblastoma. Cell Signal 2024; 119:111178. [PMID: 38640981 DOI: 10.1016/j.cellsig.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.
Collapse
Affiliation(s)
- Md Tipu Khan
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| | - Mariyam Almas
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; Centre for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Akansha Jalota
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Oncology, Albert Einstein College of Medicine, New York, USA
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sk Asif Ali
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Vaishali Suri
- Neuropathalogy Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Subrata Sinha
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India; Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
4
|
Li L, Xiang T, Li X. The immune response-related genomic alterations in patients with malignant melanoma. Medicine (Baltimore) 2024; 103:e37966. [PMID: 38669390 PMCID: PMC11049764 DOI: 10.1097/md.0000000000037966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) significantly improve the survival outcomes of patients with advanced melanoma. However, response varies among from patient to patient and predictive biomarkers are urgently needed. We integrated mutational profiles from next-generation sequencing (NGS) data and clinicopathologic characteristics of melanoma patients to investigate whether tumor genomic profiling contribute to clinical benefit of ICIs treatment. The majority of genes identified with high mutation frequency have all been reported as well-known immunotherapy-related genes. Thirty-five patients (43.2%) had at least 1 BRAF/RAS/NF1 mutation. The other 46 (56.8%) melanomas without BRAF/RAS/NF1 mutation were classified as Triple-WT. We identified mutational signature 6 (known as associated with defective DNA mismatch repair) among cases in this cohort. Compared to patients with PD-L1 expression (TPS < 1%), patients with PD-L1 expression (TPS ≥ 1%) had significantly higher median progression-free survival (mPFS), but no significantly higher durable clinical benefit (DCB) rate. In contrast, FAT1, ATM, BRCA2, LRP1B, and PBRM1 mutations only occurred frequently in patients with DCB, irrespective of PD-L1 expression status. Our study explored molecular signatures of melanoma patients who respond to ICIs treatment and identified a series of mutated genes that might serve as predictive biomarker for ICIs responses in melanoma.
Collapse
Affiliation(s)
- Linqing Li
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Tianmin Xiang
- Research and Development Department, Bioperfectus Technologies Company Limited, Jiangsu, China
| | - Xianan Li
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| |
Collapse
|
5
|
Chen C, Li Y, Liu H, Liao M, Yang J, Liu J. FAT1 upregulation is correlated with an immunosuppressive tumor microenvironment and predicts unfavorable outcome of immune checkpoint therapy in non-small cell lung cancer. Heliyon 2024; 10:e28356. [PMID: 38560204 PMCID: PMC10979093 DOI: 10.1016/j.heliyon.2024.e28356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Background Previous studies found that FAT1 was recurrently mutated and aberrantly expressed in multiple cancers, and the loss function of FAT1 promoted the formation of cancer-initiating cells in several cancers. However, in some types of cancer, FAT1 upregulation could lead to epithelial-mesenchymal transition (EMT). The role of FAT1 in cancer progression, which appears to be cancer-type-specific, is largely unknown. Methods QRT-PCR and immunochemistry were used to verify the expression of FAT1 in non-small cell lung cancer (NSCLC). QRT-PCR and Western blot were used to detect the influence of siFAT1 knockdown on the expression of potential targets of FAT1 in NSCLC cell lines. GEPIA, KM-plotter, CAMOIP, and ROC-Plotter were used to evaluate the association between FAT1 and clinical outcomes based on expression and clinical data from TCGA and immune checkpoint inhibitors (ICI) treated cohorts. Results We found that FAT1 upregulation was associated with the activation of TGF-β and EMT signaling pathways in NSCLC. Patients with a high FAT1 expression level tend to have a poor prognosis and hard to benefit from ICI therapy. Genes involved in TGF-β/EMT signaling pathways (SERPINE1, TGFB1/2, and POSTN) were downregulated upon knockdown of FAT1. Genomic and immunologic analysis showed that high cancer-associated fibroblast (CAF) abundance, decreased CD8+ T cells infiltration, and low TMB/TNB were correlated with the upregulation of FAT1, thus promoting an immunosuppressive tumor microenvironment (TME) which influence the effect of ICI-therapy. Conclusion Our findings revealed the pattern of FAT1 upregulation in the TME of patients with NSCLC, and demonstrated its utility as a biomarker for unfavorable clinical outcomes, thereby providing a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Chao Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| | - Yanling Li
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Haozhen Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| | - Mengying Liao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518035, China
| | - Jianyi Yang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| |
Collapse
|
6
|
Malik N, Kundu A, Gupta Y, Irshad K, Arora M, Goswami S, Mahajan S, Sarkar C, Suri V, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Protumorigenic role of the atypical cadherin FAT1 by the suppression of PDCD10 via RelA/miR221-3p/222-3p axis in glioblastoma. Mol Carcinog 2023; 62:1817-1831. [PMID: 37606187 DOI: 10.1002/mc.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.
Collapse
Affiliation(s)
- Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archismita Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Riascos-Bernal DF, Ressa G, Korrapati A, Sibinga NES. The FAT1 Cadherin Drives Vascular Smooth Muscle Cell Migration. Cells 2023; 12:1621. [PMID: 37371091 PMCID: PMC10297709 DOI: 10.3390/cells12121621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are normally quiescent and non-migratory, regulating the contraction and relaxation of blood vessels to control the vascular tone. In response to arterial injury, these cells become active; they proliferate, secrete matrix proteins, and migrate, and thereby contribute importantly to the progression of several cardiovascular diseases. VSMC migration specifically supports atherosclerosis, restenosis after catheter-based intervention, transplant vasculopathy, and vascular remodeling during the formation of aneurysms. The atypical cadherin FAT1 is expressed robustly in activated VSMCs and promotes their migration. A positive role of FAT1 in the migration of other cell types, including neurons, fibroblasts, podocytes, and astrocyte progenitors, has also been described. In cancer biology, however, the effect of FAT1 on migration depends on the cancer type or context, as FAT1 either suppresses or enhances cancer cell migration and invasion. With this review, we describe what is known about FAT1's effects on cell migration as well as the factors that influence FAT1-dependent migration. In VSMCs, these factors include angiotensin II, which activates FAT1 expression and cell migration, and proteins of the Atrophin family: Atrophin-1 and the short isoform of Atrophin-2, which promote VSMC migration, and the long isoform of Atrophin-2, which exerts negative effects on FAT1-dependent VSMC migration.
Collapse
Affiliation(s)
- Dario F. Riascos-Bernal
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gaia Ressa
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
| | - Anish Korrapati
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
| | - Nicholas E. S. Sibinga
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (G.R.); (A.K.)
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Tavallaii A, Meybodi KT, Nejat F, Habibi Z. Current Status of Research on Targeted Therapy Against Central Nervous System Tumors in Low- and Lower-Middle-Income Countries. World Neurosurg 2023; 174:74-80. [PMID: 36918096 DOI: 10.1016/j.wneu.2023.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVE In recent decades, a significant body of research has focused on targeted therapies for the treatment of central nervous system (CNS) tumors to enhance the effectiveness of management strategies. However, most of these efforts have been centered in high-income countries, which renders the generalizability of their results to low- and middle-income countries questionable. Therefore, in this review, we systematically investigated the status of research conducted on targeted therapy for CNS tumors in low- and lower-middle-income countries to elucidate the contribution of these countries in advancing neuro-oncology. METHODS A systematic search of 3 databases was performed using a predefined search strategy. After screening the articles based on our inclusion/exclusion criteria, the data were extracted to a predesigned Excel worksheet. RESULTS A review of 44 included studies showed that India, Iran, and Lebanon were the only countries with a contribution to this field. All included studies were laboratory or animal experiments, and there were no clinical studies in this field. The most investigated CNS tumor was malignant glioma, and gene-targeted therapy was the most investigated category of targeted therapies in these countries. CONCLUSIONS Low- and lower-middle-income countries comprise more than half of the world population, but they are deprived of targeted therapies against CNS tumors. Although there are basic experiments performed on this subject, they originate in a limited number of these countries. Therefore, targeted therapy is in its preliminary stage in these countries.
Collapse
Affiliation(s)
- Amin Tavallaii
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Tayyebi Meybodi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Nejat
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Habibi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Nasehi R, Abdallah AT, Pantile M, Zanon C, Vogt M, Rütten S, Fischer H, Aveic S. 3D geometry orchestrates the transcriptional landscape of metastatic neuroblastoma cells in a multicellular in vitro bone model. Mater Today Bio 2023; 19:100596. [PMID: 36910273 PMCID: PMC9999213 DOI: 10.1016/j.mtbio.2023.100596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
A key challenge for the discovery of novel molecular targets and therapeutics against pediatric bone metastatic disease is the lack of bona fide in vitro cell models. Here, we show that a beta-tricalcium phosphate (β-TCP) multicellular 3D in vitro bone microtissue model reconstitutes key phenotypic and transcriptional patterns of native metastatic tumor cells while promoting their stemness and proinvasive features. Comparing planar with interconnected channeled scaffolds, we identified geometry as a dominant orchestrator of proangiogenic traits in neuroblastoma tumor cells. On the other hand, the β-TCP-determined gene signature was DNA replication related. Jointly, the geometry and chemical impact of β-TCP revealed a prometastatic landscape of the engineered tumor microenvironment. The proposed 3D multicellular in vitro model of pediatric bone metastatic disease may advance further analysis of the molecular, genetic and metabolic bases of the disease and allow more efficient preclinical target validations.
Collapse
Affiliation(s)
- Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcella Pantile
- Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| | - Carlo Zanon
- Bioinformatics Core Facility, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| | - Michael Vogt
- Interdisciplinary Center for Clinical Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| |
Collapse
|
10
|
Zhang W, Ji K, Min C, Zhang C, Yang L, Zhang Q, Tian Z, Zhang M, Wang X, Li X. Oncogenic LINC00857 recruits TFAP2C to elevate FAT1 expression in gastric cancer. Cancer Sci 2022; 114:63-74. [PMID: 35524544 PMCID: PMC9807510 DOI: 10.1111/cas.15394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1) is a mutant gene frequently found in human cancers and mainly accumulates at the plasma membrane of cancer cells. Emerging evidence has implicated FAT1 in the progression of gastric cancer (GC). This study intended to identify a regulatory network related to FAT1 in GC development. Upregulated expression of FAT1 was confirmed in GC tissues, and silencing FAT1 was observed to result in suppression of GC cell oncogenic phenotypes. Mechanistic investigation results demonstrated that FAT1 upregulated AP-1 expression by phosphorylating c-JUN and c-FOS, whereas LINC00857 elevated the expression of FAT1 by recruiting a transcription factor TFAP2C. Functional experiments further suggested that LINC00857 enhanced the malignant biological characteristics of GC cells through TFAP2C-mediated promotion of FAT1. More importantly, LINC00857 silencing delayed the tumor growth and blocked epithelial-mesenchymal transition in tumor-bearing mice, which was associated with downregulated expression of TFAP2C/FAT1. To conclude, LINC00857 plays an oncogenic role in GC through regulating the TFAP2C/FAT1/AP-1 axis. Therefore, this study contributes to extended the understanding of gastric carcinogenesis and LINC00857 may serve as a therapeutic target for GC.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Kaiyue Ji
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | | | - Cuiping Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Lin Yang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qi Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zibin Tian
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mengyuan Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xinyu Wang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoyu Li
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
11
|
Wang H, Lu L, Liang X, Chen Y. Identification of prognostic genes in the pancreatic adenocarcinoma immune microenvironment by integrated bioinformatics analysis. Cancer Immunol Immunother 2022; 71:1757-1769. [PMID: 34854950 DOI: 10.1007/s00262-021-03110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Pancreatic adenocarcinoma (PAAD) is one of the most common causes of death among solid tumors, and its pathogenesis remains to be clarified. This study aims to elucidate the value of immune/stromal-related genes in the prognosis of PAAD through comprehensive bioinformatics analysis based on the immune microenvironment and validated in Chinese pancreatic cancer patients. METHODS Gene expression profiles of pancreatic cancer patients were obtained from TCGA database. Differentially expressed genes (DEGs) were identified based on the ESTIMATE algorithm. Gene co-expression networks were constructed using WGCNA. In the key module, survival analysis was used to reveal the prognostic value. Subsequently, we performed functional enrichment analysis to construct a protein-protein interaction (PPI) network. The relationship between tumor immune infiltration and hub genes was analyzed by TIMER and CIBERSORT. Finally, it was validated in the GEO database and in tissues of Chinese pancreatic cancer patients. RESULTS In the TCGA pancreatic cancer cohort, a low immune/stromal score was associated with a good prognosis. After bioinformatic analysis, 57 genes were identified to be significantly associated with pancreatic cancer prognosis. Among them, up-regulation of four genes (COL6A3, PLAU, MMP11 and MMP14) indicated poor prognosis and was associated with multiple immune cell infiltration. IHC results showed that PLAU protein levels from Chinese pancreatic cancer tissues were significantly higher than those from adjacent non-tumor tissues and were also associated with tumor TNM stage and lymph node metastasis. CONCLUSION In conclusion, this study demonstrates that PLAU may serve as a new diagnostic and therapeutic target, which is highly expressed in Chinese pancreatic cancer tissues and associated with lymph node metastasis.
Collapse
Affiliation(s)
- Haolan Wang
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liqing Lu
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Zhang W, Tang Y, Guo Y, Kong Y, Shi F, Sheng C, Wang S, Wang Q. Favorable immune checkpoint inhibitor outcome of patients with melanoma and NSCLC harboring FAT1 mutations. NPJ Precis Oncol 2022; 6:46. [PMID: 35739249 PMCID: PMC9226130 DOI: 10.1038/s41698-022-00292-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are most commonly used for melanoma and non-small cell lung cancer (NSCLC) patients. FAT atypical cadherin 1 (FAT1), which frequently mutates in melanoma and NSCLC. In this study, we aim to investigate the association of FAT1 mutations with ICI response and outcome. We collected somatic mutation profiles and clinical information from ICI-treated 631 melanoma and 109 NSCLC samples, respectively. For validation, a pan-cancer cohort with 1661 patients in an immunotherapy setting was also used. Melanoma and NSCLC samples from the Cancer Genome Atlas were used to evaluate the potential immunologic mechanisms of FAT1 mutations. In melanoma, patients with FAT1 mutations had a significantly improved survival outcome than those wild-type patients (HR: 0.67, 95% CI: 0.46–0.97, P = 0.033). An elevated ICI response rate also appeared in FAT1-mutated patients (43.2% vs. 29.2%, P = 0.032). Associations of FAT1 mutations with improved prognosis and ICI response were confirmed in NSCLC patients. In the pan-cancer cohort, the association between FAT1 mutations and favorable ICI outcome was further validated (HR: 0.74, 95% CI: 0.58–0.96, P = 0.022). Genomic and immunologic analysis showed that a high mutational burden, increased infiltration of immune-response cells, decreased infiltration of immune-suppressive cells, interferon and cell cycle-related pathways were enriched in patients with FAT1 mutations. Our study revealed that FAT1 mutations were associated with better immunogenicity and ICI efficacy, which may be considered as a biomarker for selecting patients to receive immunotherapy.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yunfeng Tang
- School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yuxian Guo
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Chao Sheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Suzhen Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China.
| |
Collapse
|
13
|
Irshad K, Srivastava C, Malik N, Arora M, Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Upregulation of Atypical Cadherin FAT1 Promotes an Immunosuppressive Tumor Microenvironment via TGF-β. Front Immunol 2022; 13:813888. [PMID: 35720420 PMCID: PMC9205206 DOI: 10.3389/fimmu.2022.813888] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-β cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-β1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-β1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-β1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-β1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-β1/2 secretion. Reduced TGF-β1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-β1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-β1/2.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Jiang NN, Gar-Lee Yue G, Li P, Ye YS, Gomes AJ, Hin-Fai Kwok F, Kin-Ming Lee J, Gao S, Lau CBS, Xu G. Discovery of dearomatized isoprenylated acylphloroglucinols with colon tumor suppressive activities in mice via inhibiting NFκB-FAT1-PDCD4 signaling activation. Eur J Med Chem 2022; 239:114532. [PMID: 35749988 DOI: 10.1016/j.ejmech.2022.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Dearomatized isoprenylated acylphloroglucinols (DIAPs) are specific natural products mainly distributed in the plants of genus Hypericum. In this study, guided by HPLC-UV screening, 46 DIAPs (approximately 70% of all DIAPs) including 20 new ones and an unprecedented architecture, were discovered from the roots of Hypericum henryi, which were elucidated by comprehensive spectroscopic, X-ray crystallography, and ECD methods. Compounds 1-7, 39, and 41-42 exhibited remarkable cytotoxicities (IC50 = 0.84-5.63 μM) in human colon cancer HCT116 cells, in which 2 and 6 possessed selective cytotoxicities towards colon cancer cells. The preliminary structure-activity relationships of these tested compounds were discussed. In addition, mechanistic investigations demonstrated that 2 and 6 could significantly suppress the expressions of NFκB, FAT1, and promoted novel tumor suppressor gene PDCD4 in HCT116 cells. Furthermore, in HCT116 colon xenograft-bearing mouse model, treatments with 2 and 6 reduced the growth of xenograft tumors in dose-dependent manner. Expressions of FAT1 in tumors were also decreased in mice treated with 2 and 6, suggesting their anti-tumor effects were via FAT1 signaling pathway. In conclusion, this is the first report on the mechanistic and in vivo studies of DIAP, indicating that these metabolites can be considered as a new type of anti-colon cancer lead agents for further drug development.
Collapse
Affiliation(s)
- Na-Na Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peng Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China
| | - Adele Joyce Gomes
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Frankie Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China.
| |
Collapse
|
15
|
Lan T, Ge Q, Zheng K, Huang L, Yan Y, Zheng L, Lu Y, Zheng D. FAT1 Upregulates in Oral Squamous Cell Carcinoma and Promotes Cell Proliferation via Cell Cycle and DNA Repair. Front Oncol 2022; 12:870055. [PMID: 35646625 PMCID: PMC9130556 DOI: 10.3389/fonc.2022.870055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Objective Previous studies have revealed that FAT atypical cadherin 1 (FAT1) plays a tumor-suppressive or oncogenic role in a context-dependent manner in various cancers. However, the functions of FAT1 are ambiguous in tumorigenesis owing to inconsistent research in oral squamous cell carcinoma (OSCC). The present study aimed at gaining an insight into the role of FAT1 in the tumor genesis and development. Methods The expression, mutant, and survival data analyses were done using data from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database, verified with clinical samples via real-time polymerase chain reaction (qRT-PCR), Western blot (WB), and immunohistochemical (IHC) staining. OSCC cells transfected with siRNA were employed for in vitro assessment in cell proliferation, apoptosis, and migration ability in appropriate ways. The underlying mechanism was explored by RNA sequencing after FAT1 silencing. Results Overall, FAT1 significantly increased in OSCC with a poor prognosis outcome. The in vitro experiment showed the promoting effect of FAT1 in the proliferation and migration of OSCC cells. FAT1 can also inhibit both the early and late apoptosis of OSCC cells. RNA-sequencing analysis of FAT1 silencing revealed that the cell cycle, DNA replication, and some core genes (MCM2, MCM5, CCNE1 SPC24, MYBL2, KIF2C) may be the potential mechanism in OSCC. Conclusions FAT1 may act as an oncogene in OSCC with potential mechanism influencing the cell cycle and DNA repair.
Collapse
Affiliation(s)
- Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qi Ge
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Huang
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lixin Zheng
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Hurst CD, Cheng G, Platt FM, Alder O, Black EV, Burns JE, Brown J, Jain S, Roulson JA, Knowles MA. Molecular profile of pure squamous cell carcinoma of the bladder identifies major roles for OSMR and YAP signalling. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2022; 8:279-293. [PMID: 35289095 PMCID: PMC8977277 DOI: 10.1002/cjp2.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Pure squamous cell carcinoma (SCC) is the most common pure variant form of bladder cancer, found in 2–5% of cases. It often presents late and is unresponsive to cisplatin‐based chemotherapy. The molecular features of these tumours have not been elucidated in detail. We carried out whole‐exome sequencing (WES), copy number, and transcriptome analysis of bladder SCC. Muscle‐invasive bladder cancer (MIBC) samples with no evidence of squamous differentiation (non‐SD) were used for comparison. To assess commonality of features with urothelial carcinoma with SD, we examined data from SD samples in The Cancer Genome Atlas (TCGA) study of MIBC. TP53 was the most commonly mutated gene in SCC (64%) followed by FAT1 (45%). Copy number analysis revealed complex changes in SCC, many differing from those in samples with SD. Gain of 5p and 7p was the most common feature, and focal regions on 5p included OSMR and RICTOR. In addition to 9p deletions, we found some samples with focal gain of 9p24 containing CD274 (PD‐L1). Loss of 4q35 containing FAT1 was found in many samples such that all but one sample analysed by WES had FAT1 mutation or deletion. Expression features included upregulation of oncostatin M receptor (OSMR), metalloproteinases, metallothioneins, keratinisation genes, extracellular matrix components, inflammatory response genes, stem cell markers, and immune response modulators. Exploration of differentially expressed transcription factors identified BNC1 and TFAP2A, a gene repressed by PPARG, as the most upregulated factors. Known urothelial differentiation factors were downregulated along with 72 Kruppel‐associated (KRAB) domain‐containing zinc finger family protein (KZFP) genes. Novel therapies are urgently needed for these tumours. In addition to upregulated expression of EGFR, which has been suggested as a therapeutic target in basal/squamous bladder cancer, we identified expression signatures that indicate upregulated OSMR and YAP/TAZ signalling. Preclinical evaluation of the effects of inhibition of these pathways alone or in combination is merited.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Guo Cheng
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Emma Vi Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Joanne Brown
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Sunjay Jain
- Pyrah Department of Urology, St James's University Hospital, Leeds, UK
| | - Jo-An Roulson
- Department of Histopathology, St James's University Hospital, Leeds, UK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| |
Collapse
|
17
|
Puebla M, Tapia PJ, Espinoza H. Key Role of Astrocytes in Postnatal Brain and Retinal Angiogenesis. Int J Mol Sci 2022; 23:ijms23052646. [PMID: 35269788 PMCID: PMC8910249 DOI: 10.3390/ijms23052646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.
Collapse
Affiliation(s)
- Mariela Puebla
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Av. Plaza 680, Las Condes, Santiago 7550000, Chile;
| | - Pablo J. Tapia
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Av. Lota 2465, Providencia, Santiago 7500000, Chile;
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Av. República 71, Santiago 8320000, Chile
| | - Hilda Espinoza
- Facultad de Ciencias de la Salud, Universidad del Alba, Av. Ejército Libertador 171, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
18
|
Yu W, Ma Y, Hou W, Wang F, Cheng W, Qiu F, Wu P, Zhang G. Identification of Immune-Related lncRNA Prognostic Signature and Molecular Subtypes for Glioblastoma. Front Immunol 2021; 12:706936. [PMID: 34899682 PMCID: PMC8657607 DOI: 10.3389/fimmu.2021.706936] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is extensively genetically and transcriptionally heterogeneous, which poses challenges for classification and management. Long noncoding RNAs (lncRNAs) play a critical role in the development and progression of GBM, especially in tumor-associated immune processes. Therefore, it is necessary to develop an immune-related lncRNAs (irlncRNAs) signature. Methods Univariate and multivariate Cox regression analyses were utilized to construct a prognostic model. GBM-specific CeRNA and PPI network was constructed to predict lncRNAs targets and evaluate the interactions of immune mRNAs translated proteins. GO and KEGG pathway analyses were used to show the biological functions and pathways of CeRNA network-related immunity genes. Consensus Cluster Plus analysis was used for GBM gene clustering. Then, we evaluated GBM subtype-specific prognostic values, clinical characteristics, genes and pathways, immune infiltration access single cell RNA-seq data, and chemotherapeutics efficacy. The hub genes were finally validated. Results A total of 17 prognostically related irlncRNAs were screened to build a prognostic model signature based on six key irlncRNAs. Based on GBM-specific CeRNAs and enrichment analysis, PLAU was predicted as a target of lncRNA-H19 and mainly enriched in the malignant related pathways. GBM subtype-A displayed the most favorable prognosis, high proportion of genes (IDH1, ATRX, and EGFR) mutation, chemoradiotherapy, and low risk and was characterized by low expression of four high-risk lncRNAs (H19, HOTAIRM1, AGAP2-AS1, and AC002456.1) and one mRNA KRT8. GSs with poor survival were mainly infiltrated by mesenchymal stem cells (MSCs) and astrocyte, and were more sensitive to gefitinib and roscovitine. Among GSs, three hub genes KRT8, NGFR, and TCEA3, were screened and validated to potentially play feasible oncogenic roles in GBM. Conclusion Construction of lncRNAs risk model and identification of GBM subtypes based on 17 irlncRNAs, which suggesting that irlncRNAs had the promising potential for clinical immunotherapy of GBM.
Collapse
Affiliation(s)
- Wanli Yu
- Department of Neurosurgery, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanan Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wan Cheng
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qiu
- Oncology Department, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China.,Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China.,Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
| | - Guohua Zhang
- Central Laboratory, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Zhang B, Zhang Y, Liu JL. Highly effective proximate labeling in Drosophila. G3-GENES GENOMES GENETICS 2021; 11:6173991. [PMID: 33724396 PMCID: PMC8104946 DOI: 10.1093/g3journal/jkab077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
The protein-protein interaction (PPI) is a basic strategy for life to operate. The analysis of PPIs in multicellular organisms is very important but extremely challenging because PPIs are particularly dynamic and variable among different development stages, tissues, cells, and even organelles. Therefore, understanding PPI needs a good resolution of time and space. More importantly, understanding in vivo PPI needs to be realized in situ. Proximity-based biotinylation combined with mass spectrometry (MS) has emerged as a powerful approach to study PPI networks and protein subcellular compartmentation. TurboID, the newly engineered promiscuous ligase, has been reported to label proximate proteins effectively in various species. In Drosophila, we systematically apply TurboID-mediated biotinylation in a wide range of developmental stages and tissues, and demonstrate the feasibility of TurboID-mediated labeling system in desired cell types. For a proof-of-principle, we use the TurboID-mediated biotinylation coupled with MS to distinguish CTP synthase with or without the ability to form filamentous cytoophidia, retrieving two distinct sets of proximate proteomes. Therefore, this makes it possible to map PPIs in vivo and in situ at a defined spatiotemporal resolution, and demonstrates a referable resource for cytoophidium proteome in Drosophila.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
20
|
Multiregional Sequencing of IDH-WT Glioblastoma Reveals High Genetic Heterogeneity and a Dynamic Evolutionary History. Cancers (Basel) 2021; 13:cancers13092044. [PMID: 33922652 PMCID: PMC8122908 DOI: 10.3390/cancers13092044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and aggressive primary brain malignancy in adults. In addition to extensive inter-patient heterogeneity, glioblastoma shows intra-tumor extensive cellular and molecular heterogeneity, both spatially and temporally. This heterogeneity is one of the main reasons for the poor prognosis and overall survival. Moreover, it raises the important question of whether the molecular characterization of a single biopsy sample, as performed in standard diagnostics, actually represents the entire lesion. In this study, we sequenced the whole exome of nine spatially different cancer regions of three primary glioblastomas. We characterized their mutational profiles and copy number alterations, with implications for our understanding of tumor biology in relation to clonal architecture and evolutionary dynamics, as well as therapeutically relevant alterations. Abstract Glioblastoma is one of the most common and lethal primary neoplasms of the brain. Patient survival has not improved significantly over the past three decades and the patient median survival is just over one year. Tumor heterogeneity is thought to be a major determinant of therapeutic failure and a major reason for poor overall survival. This work aims to comprehensively define intra- and inter-tumor heterogeneity by mapping the genomic and mutational landscape of multiple areas of three primary IDH wild-type (IDH-WT) glioblastomas. Using whole exome sequencing, we explored how copy number variation, chromosomal and single loci amplifications/deletions, and mutational burden are spatially distributed across nine different tumor regions. The results show that all tumors exhibit a different signature despite the same diagnosis. Above all, a high inter-tumor heterogeneity emerges. The evolutionary dynamics of all identified mutations within each region underline the questionable value of a single biopsy and thus the therapeutic approach for the patient. Multiregional collection and subsequent sequencing are essential to try to address the clinical challenge of precision medicine. Especially in glioblastoma, this approach could provide powerful support to pathologists and oncologists in evaluating the diagnosis and defining the best treatment option.
Collapse
|
21
|
The quest for ligands and binding partners of atypical cadherin FAT1. Transl Oncol 2021; 14:101097. [PMID: 33878524 PMCID: PMC8081986 DOI: 10.1016/j.tranon.2021.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
A recent study in Scientific Reports identified glypican-3 (GPC3) as a novel extracellular interacting protein for FAT1 in hepato-cellular carcinoma (HCC) cells. FAT1 is a large transmembrane atypical cadherin with limited knowledge existing about its binding partners. While in Drosophila, dachsous (ds), another transmembrane member of the cadherin superfamily, is known to function as FAT1 ligand, no ligand is known in mammals so far. The revelation of GPC3 as a potential binding partner of FAT1 extracellular domain unfolds an opportunity to study potential triggers of FAT1 signaling in cancers. Available inhibitors of GPC3 in various phases of clinical trials also present an attractive option to curb GPC3-FAT1 signaling in tumors that overexpress these proteins.
Collapse
|
22
|
PDCD4-mediated downregulation of Listeria monocytogenes burden in macrophages. Cent Eur J Immunol 2021; 46:38-46. [PMID: 33897282 PMCID: PMC8056355 DOI: 10.5114/ceji.2021.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Macrophages are effector cells of the innate immune system and defend against invading pathogens. Previous reports have shown that infection with Listeria monocytogenes upregulates miR-21a expression in macrophages. Aim of the study We aimed to verify whether programmed cell death 4 (PDCD4) is involved in the high bacterial burden observed in macrophages during late-stage L. monocytogenes infections. Material and methods We examined the expression of miR-21a and its known target PDCD4 in macrophages after L. monocytogenes infection. The macrophages’ uptake ability of L. monocytogenes was measured using FluoSpheres Carboxylate-modified microspheres. We depleted PDCD4 by transfecting macrophages with siPDCD4. Results In macrophages, PDCD4 protein was downregulated 5 h, but not 2 h, after L. monocytogenes infection. Our results validated the hypothesis that PDCD4-depleted macrophages present a higher L. monocytogenes burden. Moreover, we found that the activation of c-Jun and STAT3 accompanied PDCD4 downregulation. Conclusions Our results showed that PDCD4 mediated the suppression of L. monocytogenes infection in macrophages via c-Jun/STAT3 signalling activation.
Collapse
|
23
|
Cai L, Chen Y, Tong X, Wu X, Bao H, Shao Y, Luo Z, Wang X, Cao Y. The genomic landscape of young and old lung cancer patients highlights age-dependent mutation frequencies and clinical actionability in young patients. Int J Cancer 2021; 149:883-892. [PMID: 33811322 DOI: 10.1002/ijc.33583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/09/2022]
Abstract
The aim of the study was to investigate age-dependent tendency of genomic alterations in lung cancer, and also to examine mutational profiles and its association with clinical treatment outcomes in young adenocarcinoma patients. By studying 7858 lung cancer samples using targeted-gene sequencing, we investigated genomic differences and clinical on-treatment time (OTT) to different therapies between young (≤ 45 years) and old (> 45 years) patients. The age-dependent trend test for genomic alterations in all patients revealed steady increases in tumor mutation burden and alterations in a number of genes with age, including KRAS, MET, CDKN2A, PIK3CA and MDM2, while the frequencies of ALK, ROS1 and RET fusions and ERBB2 mutations were decreasing. The highest rate of EGFR alterations was observed in the 45 ~ 50 years age group. Comparisons of young and old adenocarcinoma patients found that young patients were characterized by a higher prevalence of ALK, ROS1 and RET fusions, and ERBB2 exon-20 insertions and EGFR exon-19 deletions. Actionable mutations were highly prevalent in young adenocarcinoma patients, with 88% of patients harboring at least one actionable genetic alteration. First-line therapies in EGFR-positive patients (n = 979) by EGFR tyrosine kinase inhibitors or chemotherapy resulted in similar OTT between young and old patients. Somatic interaction analyses implied that young EGFR-positive patients were more likely to also have PIK3CA, MET, TP53 and RB1 mutations than old patients. Lung cancer in young patients, and especially those with adenocarcinoma, exhibited different clinical features and genomic attributes compared to old patients, which should be considered for therapeutic decision-making purposes.
Collapse
Affiliation(s)
- Lei Cai
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoling Tong
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Ontario, Canada
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Ontario, Canada
| | - Hua Bao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Ontario, Canada
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuang Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Xuming Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Yang Cao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Meng P, Zhang YF, Zhang W, Chen X, Xu T, Hu S, Liang X, Feng M, Yang X, Ho M. Identification of the atypical cadherin FAT1 as a novel glypican-3 interacting protein in liver cancer cells. Sci Rep 2021; 11:40. [PMID: 33420124 PMCID: PMC7794441 DOI: 10.1038/s41598-020-79524-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glypican-3 (GPC3) is a cell surface heparan sulfate proteoglycan that is being evaluated as an emerging therapeutic target in hepatocellular carcinoma (HCC). GPC3 has been shown to interact with several extracellular signaling molecules, including Wnt, HGF, and Hedgehog. Here, we reported a cell surface transmembrane protein (FAT1) as a new GPC3 interacting protein. The GPC3 binding region on FAT1 was initially mapped to the C-terminal region (Q14517, residues 3662-4181), which covered a putative receptor tyrosine phosphatase (RTP)-like domain, a Laminin G-like domain, and five EGF-like domains. Fine mapping by ELISA and flow cytometry showed that the last four EGF-like domains (residues 4013-4181) contained a specific GPC3 binding site, whereas the RTP domain (residues 3662-3788) and the downstream Laminin G-2nd EGF-like region (residues 3829-4050) had non-specific GPC3 binding. In support of their interaction, GPC3 and FAT1 behaved concomitantly or at a similar pattern, e.g. having elevated expression in HCC cells, being up-regulated under hypoxia conditions, and being able to regulate the expression of EMT-related genes Snail, Vimentin, and E-Cadherin and promoting HCC cell migration. Taken together, our study provides the initial evidence for the novel mechanism of GPC3 and FAT1 in promoting HCC cell migration.
Collapse
Affiliation(s)
- Panpan Meng
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wangli Zhang
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Tong Xu
- College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China
| | - Sheng Hu
- Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Xinjun Liang
- Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China.
| | - Xiaoqing Yang
- Hospital of Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, 430070, Hubei Province, China.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Lu K, Chen Q, Li M, He L, Riaz F, Zhang T, Li D. Programmed cell death factor 4 (PDCD4), a novel therapy target for metabolic diseases besides cancer. Free Radic Biol Med 2020; 159:150-163. [PMID: 32745771 DOI: 10.1016/j.freeradbiomed.2020.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Programmed cell death factor 4 (PDCD4) is originally described as a tumor suppressor gene that exerts antineoplastic effects by promoting apoptosis and inhibiting tumor cell proliferation, invasion, and metastasis. Several investigations have probed the aberrant expression of PDCD4 with the progression of metabolic diseases, such as polycystic ovary syndrome (PCOS), obesity, diabetes, and atherosclerosis. It has been ascertained that PDCD4 causes glucose and lipid metabolism disorders, insulin resistance, oxidative stress, chronic inflammatory response, and gut flora disorders to regulate the progression of metabolic diseases. This review aims to summarize the latest researches to uncover the structure, expression regulation, and biological functions of PDCD4 and to elucidate the regulatory mechanism of the development of tumors and metabolic diseases. This review has emphasized the understanding of the PDCD4 role and to provide new ideas for the research, diagnosis, and treatment of tumors and metabolic diseases.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Mengda Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Tianyun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
26
|
Zhang X, Li F, Tang Y, Ren Q, Xiao B, Wan Y, Jiang S. miR-21a in exosomes from Lewis lung carcinoma cells accelerates tumor growth through targeting PDCD4 to enhance expansion of myeloid-derived suppressor cells. Oncogene 2020; 39:6354-6369. [DOI: 10.1038/s41388-020-01406-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
27
|
Guan R, Zhang X, Guo M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chin Neurosurg J 2020; 6:25. [PMID: 32922954 PMCID: PMC7398200 DOI: 10.1186/s41016-020-00207-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common form of primary brain tumor. Glioblastoma stem cells play an important role in tumor formation by activation of several signaling pathways. Wnt signaling pathway is one such important pathway which helps cellular differentiation to promote tumor formation in the brain. Glioblastoma remains to be a highly destructive type of tumor despite availability of treatment strategies like surgery, chemotherapy, and radiation. Advances in the field of cancer biology have revolutionized therapy by allowing targeting of tumor-specific molecular deregulation. In this review, we discuss about the significance of glioblastoma stem cells in cancer progression through Wnt signaling pathway and highlight the clinical targets being potentially considered for therapy in glioblastoma.
Collapse
Affiliation(s)
- Ruoyu Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| | - Xiaoming Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang Province China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| |
Collapse
|
28
|
Wang F, Liu P, An H, Zhang Y. Sulforaphane suppresses the viability and metastasis, and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT‑1. Int J Mol Med 2020; 46:1085-1095. [PMID: 32705150 PMCID: PMC7387090 DOI: 10.3892/ijmm.2020.4665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1) regulates complex mechanisms for the promotion of oncogenesis or the suppression of malignancies. Sulforaphane (SFN) has antioxidant and anti-tumor activities. The present study investigated the roles of SFN and FAT1 in bladder cancer (BC). The expression of FAT1 in BC cell lines and tissues was measured by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR). The association between FAT1 expression and the 5-year survival rate of patients with BC was evaluated. The viability of and FAT1 expression in T24 and SW780 cells exposed to various concentrations of SFN were detected by MTT assay, and western blot analysis and RT-qPCR, respectively. Furthermore, the viability, migration, invasion and apoptosis of and FAT1 expression in BC cells subjected to FAT1 overexpression or knockdown, and with or without SFN stimulation, were examined. The results revealed that FAT1 expression in BC cells and tissues was increased, and patients with a high FAT-1 expression had a shorter 5-year survival time than those with a low FAT-1 expression. BC cell viability and FAT1 expression were suppressed by SFN in a concentration-dependent manner. The knockdown of FAT1 inhibited the viability, migration and invasion, and promoted the apoptosis of BC cells, whereas the overexpression of FAT1 produced opposite effects. In addition, cells exposed to SFN exhibited a reduced viability, migration, invasion and an increased apoptosis, effects which were promoted by FAT1 knockdown; however, the overexpression of FAT1 blocked the above-mentioned effects of SFN on the cells. On the whole, the present study demonstrates that SFN suppresses the progression of BC by inhibiting the expression of FAT-1; thus, SFN may be used as a potential drug for the treatment of BC.
Collapse
Affiliation(s)
- Fei Wang
- Shenzhen Key Laboratory of Viral Oncology, Clinical Innovation and Research Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Penghua Liu
- Department of Urology, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518102, P.R. China
| | - Hexiang An
- Department of Urology, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518102, P.R. China
| | - Yu Zhang
- Department of Urology, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518102, P.R. China
| |
Collapse
|
29
|
Srivastava C, Irshad K, Gupta Y, Sarkar C, Suri A, Chattopadhyay P, Sinha S, Chosdol K. NFкB is a critical transcriptional regulator of atypical cadherin FAT1 in glioma. BMC Cancer 2020; 20:62. [PMID: 31992226 PMCID: PMC6988320 DOI: 10.1186/s12885-019-6435-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023] Open
Abstract
Background Overexpression of FAT1 gene and its oncogenic effects have been reported in several cancers. Previously, we have documented upregulation of FAT1 gene in glioblastoma (GBM) tumors which was found to increase the expression of proinflammatory markers, HIF-1α, stemness genes and EMT markers in glioma cells. Here, we reveal NFкB (RelA)/RelA/p65 as the transcriptional regulator of FAT1 gene in GBM cells. Methods In-silico analysis of FAT1 gene promoter was performed using online bioinformatics tool Promo alggen (Transfac 8.3) to identify putative transcription factor(s) binding motifs. A 4.0 kb FAT1 promoter (− 3220 bp to + 848 bp w.r.t. TSS + 1) was cloned into promoter less pGL3Basic reporter vector. Characterization of FAT1 promoter for transcriptional regulation was performed by in-vitro functional assays using promoter deletion constructs, site directed mutagenesis and ChIP in GBM cells. Results Expression levels of NFкB (RelA) and FAT1 were found to be increased and positively correlated in GBM tumors (n = 16), REMBRANDT GBM-database (n = 214) and TCGA GBM-database (n = 153). In addition to glioma, positive correlation between NFкB (RelA) and FAT1 expression was also observed in other tumors like pancreatic, hepatocellular, lung and stomach cancers (data extracted from TCGA tumor data). A 4.0 kb FAT1-promoter-construct [− 3220 bp/+ 848 bp, transcription start site (TSS) + 1, having 17 NFкB (RelA) motifs] showed high FAT1 promoter luciferase-activity in GBM cells (U87MG/A172/U373MG). FAT1 promoter deletion-construct pGL3F1 [− 200 bp/+ 848 bp, with 3-NFкB (RelA)-motifs] showed the highest promoter activity. Exposure of GBM cells to known NFкB (RelA)-activators [severe-hypoxia/TNF-α/ectopic-NFкB (RelA) + IKBK vectors] led to increased pGL3F1-promoter activity and increased endogenous-FAT1 expression. Conversely, siRNA-mediated NFкB (RelA) knockdown led to decreased pGL3F1-promoter activity and decreased endogenous-FAT1 expression. Deletion of NFкB (RelA)-motif at − 90 bp/− 80 bp [pGL3F1δ1-construct] showed significant decrease in promoter activity. Site directed mutagenesis at -90 bp/− 80 bp and ChIP assay for endogenous-NFкB (RelA) confirmed the importance of this motif in FAT1 expression regulation. Significant reduction in the migration, invasion as well as colony forming capacity of the U87MG glioma cells was observed on siRNA-mediated knockdown of NFкB (RelA). Conclusion Since FAT1 and NFкB (RelA) are independently known to promote pro-tumorigenic inflammation and upregulate the expression of HIF-1α/EMT/stemness in tumors, targeting the NFкB (RelA)-FAT1 axis may attenuate an important tumor-promoting pathway in GBM. This may also be applicable to other tumors.
Collapse
Affiliation(s)
- Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, -110029, New Delhi, India.,Present address: Cell Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, -110029, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, -110029, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, -110029, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, -110029, New Delhi, India.
| |
Collapse
|
30
|
Targeting FAT1 Inhibits Carcinogenesis, Induces Oxidative Stress and Enhances Cisplatin Sensitivity through Deregulation of LRP5/WNT2/GSS Signaling Axis in Oral Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11121883. [PMID: 31783581 PMCID: PMC6966489 DOI: 10.3390/cancers11121883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) regulates cell-cell adhesion and extracellular matrix architecture, while acting as tumor suppressor or oncogene, context-dependently. Despite implication of FAT1 in several malignancies, its role in oral squamous cell carcinoma (OSCC) remains unclear. Herein, we document the driver-oncogene role of FAT1, and its mediation of cell-death evasion, proliferation, oncogenicity, and chemoresistance in OSCC. In-silica analyses indicate FAT1 mutations are frequent and drive head-neck SCC, with enhanced expression defining high-risk population and poor prognosis. We demonstrated aberrant FAT1 mRNA and protein expression in OSCC compared with non-cancer tissues, whereas loss-of-FAT1-function attenuates human primary SAS and metastatic HSC-3 OSCC cell viability, without affecting normal primary human gingival fibroblast cells. shFAT1 suppressed PCNA and upregulated BAX/BCL2 ratio in SAS and HSC-3 cells. Moreover, compared with wild-type cells, shFAT1 concomitantly impaired HSC-3 cell migration, invasion, and clonogenicity. Interestingly, while over-expressed FAT1 characterized cisplatin-resistance (CispR), shFAT1 synchronously re-sensitized CispR cells to cisplatin, enhanced glutathione (GSH)/GSH synthetase (GSS)-mediated oxidative stress and deregulated LRP5/WNT2 signaling. Concisely, FAT1 is an actionable driver-oncogene in OSCC and targeting FAT1 in patients with erstwhile cisplatin-resistant OSCC is therapeutically promising.
Collapse
|
31
|
Lin SC, Lin LH, Yu SY, Kao SY, Chang KW, Cheng HW, Liu CJ. FAT1 somatic mutations in head and neck carcinoma are associated with tumor progression and survival. Carcinogenesis 2019; 39:1320-1330. [PMID: 30102337 DOI: 10.1093/carcin/bgy107] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, the incidence and mortality rates of head and neck squamous cell carcinoma (HNSCC) have increased worldwide. Therefore, understanding genomic alterations in HNSCC carcinogenesis is crucial for appropriate diagnosis and therapy. Protocadherin FAT1, which encodes 4588 amino acid residues, regulates complex mechanisms to promote oncogenesis or suppression of malignancies. Multiplex PCR-based next-generation sequencing (NGS) revealed FAT1 somatic mutations. The clinicopathologic implications of FAT1 in HNSCC were investigated using expression assays, and the functional role of FAT1 in HNSCC pathogenesis was determined using ectopic expression and knockdown experiments. Approximately 29% patients with HNSCC harbored damaging FAT1 mutations. InVEx algorithm identified FAT1 as a significant functional mutation burden. Each type of mutation (missense, nonsense and frameshift) accounted for nearly one-third of deleterious mutations. FAT1 mutations correlated with lower FAT1 expression in tumors. The knockdown of the endogenous expression of FAT1 and exogenous expression of crucial FAT1 domains unequivocally indicated that FAT1 suppressed the migration and invasion capability of HNSCC cells. Functional analysis suggested that nonsense mutations in FAT1 result in the loss of the suppression of tumor progression. FAT1 mutations and downregulation defined nodal involvement, lymphovascular permeation and tumor recurrence. In addition, FAT1 mutations and downregulation are independent predictors of poor disease-free survival in patients with HNSCC. This study is the first to perform multiplex PCR-based NGS to indicate marked non-synonymous FAT1 mutations in HNSCC, which are prognostic indicators. The gene analysis strategy proposed for detecting FAT1 mutations may be a valid method for mutation screening.
Collapse
Affiliation(s)
- Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Stomatology Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ssu-Yu Yu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Stomatology Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Stomatology Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Zwirner K, Hilke FJ, Demidov G, Socarras Fernandez J, Ossowski S, Gani C, Thorwarth D, Riess O, Zips D, Schroeder C, Welz S. Radiogenomics in head and neck cancer: correlation of radiomic heterogeneity and somatic mutations in TP53, FAT1 and KMT2D. Strahlenther Onkol 2019; 195:771-779. [PMID: 31123786 DOI: 10.1007/s00066-019-01478-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Genetic tumour profiles and radiomic features can be used to complement clinical information in head and neck squamous cell carcinoma (HNSCC) patients. Radiogenomics imply the potential to investigate complementarity or interrelations of radiomic and genomic features, and prognostic factors might be determined. The aim of our study was to explore radiogenomics in HNSCC. METHODS For 20 HNSCC patients treated with primary radiochemotherapy, next-generation sequencing (NGS) of tumour and corresponding normal tissue was performed. In total, 327 genes were investigated by panel sequencing. Radiomic features were extracted from computed tomography data. A hypothesis-driven approach was used for radiogenomic correlations of selected image-based heterogeneity features and well-known driver gene mutations in HNSCC. RESULTS The most frequently mutated driver genes in our cohort were TP53 (involved in cell cycle control), FAT1 (Wnt signalling, cell-cell contacts, migration) and KMT2D (chromatin modification). Radiomic features of heterogeneity did not correlate significantly with somatic mutations in TP53 or KMT2D. However, somatic mutations in FAT1 and smaller primary tumour volumes were associated with reduced radiomic intra-tumour heterogeneity. CONCLUSION The landscape of somatic variants in our cohort is well in line with previous reports. An association of somatic mutations in FAT1 with reduced radiomic tumour heterogeneity could potentially elucidate the previously described favourable outcomes of these patients. Larger studies are needed to validate this exploratory data in the future.
Collapse
Affiliation(s)
- Kerstin Zwirner
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Franz J Hilke
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University, Calwerstraße 7, 72076, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University, Calwerstraße 7, 72076, Tübingen, Germany
| | - Jairo Socarras Fernandez
- Section for Biomedical Physics, Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University, Calwerstraße 7, 72076, Tübingen, Germany.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Cihan Gani
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Cancer Research Center (DKFZ) partner site Tübingen, German Cancer Consortium (DKTK), Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Cancer Research Center (DKFZ) partner site Tübingen, German Cancer Consortium (DKTK), Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University, Calwerstraße 7, 72076, Tübingen, Germany.,NGS Competence Center Tübingen (NCCT), Eberhard Karls University, Calwerstraße 7, 72076, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Cancer Research Center (DKFZ) partner site Tübingen, German Cancer Consortium (DKTK), Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, Medical Faculty and University Hospital, Eberhard Karls University, Calwerstraße 7, 72076, Tübingen, Germany
| | - Stefan Welz
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Cancer Research Center (DKFZ) partner site Tübingen, German Cancer Consortium (DKTK), Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| |
Collapse
|
33
|
Sousa B, Pereira J, Paredes J. The Crosstalk Between Cell Adhesion and Cancer Metabolism. Int J Mol Sci 2019; 20:E1933. [PMID: 31010154 PMCID: PMC6515343 DOI: 10.3390/ijms20081933] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells preferentially use aerobic glycolysis over mitochondria oxidative phosphorylation for energy production, and this metabolic reprogramming is currently recognized as a hallmark of cancer. Oncogenic signaling frequently converges with this metabolic shift, increasing cancer cells' ability to produce building blocks and energy, as well as to maintain redox homeostasis. Alterations in cell-cell and cell-extracellular matrix (ECM) adhesion promote cancer cell invasion, intravasation, anchorage-independent survival in circulation, and extravasation, as well as homing in a distant organ. Importantly, during this multi-step metastatic process, cells need to induce metabolic rewiring, in order to produce the energy needed, as well as to impair oxidative stress. Although the individual implications of adhesion molecules and metabolic reprogramming in cancer have been widely explored over the years, the crosstalk between cell adhesion molecular machinery and metabolic pathways is far from being clearly understood, in both normal and cancer contexts. This review summarizes our understanding about the influence of cell-cell and cell-matrix adhesion in the metabolic behavior of cancer cells, with a special focus concerning the role of classical cadherins, such as Epithelial (E)-cadherin and Placental (P)-cadherin.
Collapse
Affiliation(s)
- Bárbara Sousa
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Pereira
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
| | - Joana Paredes
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
34
|
Wang Y, Wang G, Ma Y, Teng J, Wang Y, Cui Y, Dong Y, Shao S, Zhan Q, Liu X. FAT1, a direct transcriptional target of E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Chin J Cancer Res 2019; 31:609-619. [PMID: 31564804 PMCID: PMC6736659 DOI: 10.21147/j.issn.1000-9604.2019.04.05] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Growing evidence indicates that FAT atypical cadherin 1 (FAT1) has aberrant genetic alterations and exhibits potential tumor suppressive function in esophageal squamous cell carcinoma (ESCC). However, the role of FAT1 in ESCC tumorigenesis remains not well elucidated. The aim of this study was to further investigate genetic alterations and biological functions of FAT1, as well as to explore its transcriptional regulation and downstream targets in ESCC. Methods The mutations of FAT1 in ESCC were achieved by analyzing a combined study from seven published genomic data, while the copy number variants of FAT1 were obtained from an analysis of our previous data as well as of The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) databases using the cBioPortal. The transcriptional regulation of FAT1 expression was investigated by chromatin immunoprecipitation (ChIP) and the luciferase reporter assays. In-cell western, Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to assess the indicated gene expression. In addition, colony formation and Transwell migration/invasion assays were employed to test cell proliferation, migration and invasion. Finally, RNA sequencing was used to study the transcriptomes. Results FAT1 was frequently mutated in ESCC and was deleted in multiple cancers. Furthermore, the transcription factor E2F1 occupied the promoter region of FAT1, and depletion of E2F1 led to a decrease in transcription activity and mRNA levels of FAT1. Moreover, we found that knockdown of FAT1 promoted KYSE30 and KYSE150 cell proliferation, migration and invasion; while overexpression of FAT1 inhibited KYSE30 and KYSE410 cell proliferation, migration and invasion. In addition, knockdown of FAT1 led to enrichment of the mitogen-activated protein kinase (MAPK) signaling pathway and cell adhesion process. Conclusions Our data provided evidence for the tumor suppressive function of FAT1 in ESCC cells and elucidated the transcriptional regulation of FAT1 by E2F1, which may facilitate the understanding of molecular mechanisms of the progression of ESCC.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yunping Ma
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinglei Teng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongping Cui
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yan Dong
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Qimin Zhan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
35
|
Chen X, Deng M, Zhou X, Wang X, Ye Y, Zhu J, Jiang H, Chen X, Zha W. Euxanthone Impairs the Metastatic Potential of Osteosarcoma by Reducing COX-2 Expression. Anat Rec (Hoboken) 2018; 302:1399-1408. [PMID: 30334373 DOI: 10.1002/ar.23992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/14/2023]
Abstract
Osteosarcoma (OS) is one of the most common malignancies of bone. This study was aimed to explore the anti-metastatic effect of euxanthone on OS. Adhesion assay and Transwell assay were used to examine the effect of euxanthone on adhesion, migration and invasion of OS cells. COX-2-over-expressing plasmid was applied to transfect OS cells to assess whether COX-2 affects the anti-metastatic function of euxanthone. PDCD4 knockdown and miR-21 mimic were applied to assess whether euxanthone suppresses the transactivation of c-jun via modulating miR-21-PDCD4 signaling. The effect of euxanthone in vivo was also examined by lung metastasis assay. Euxanthone, a xanthone derivative extracted from Polygala caudata, has been found to exhibit anti-neoplastic activities. In present study, our results showed that euxanthone suppressed cell adhesion, migration, and invasion in OS cells. Our experimental data also showed that repression of COX-2 by euxanthone mediated its anti-metastatic activities. Moreover, our findings revealed that euxanthone modulated the COX-2 expression through the miR-21/PDCD4/c-jun signaling pathway. The anti-metastatic activities of euxanthone were also validated in a pulmonary metastasis model. Taken together, our results highlighted the potential of euxanthone to be used in the treatment of OS. Anat Rec, 302:1399-1408, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Min Deng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Xinshe Zhou
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Xuyi Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Yuchen Ye
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Jun Zhu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Huafeng Jiang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Xiaotian Chen
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Wenju Zha
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| |
Collapse
|
36
|
Doan NB, Nguyen HS, Alhajala HS, Jaber B, Al-Gizawiy MM, Ahn EYE, Mueller WM, Chitambar CR, Mirza SP, Schmainda KM. Identification of radiation responsive genes and transcriptome profiling via complete RNA sequencing in a stable radioresistant U87 glioblastoma model. Oncotarget 2018; 9:23532-23542. [PMID: 29805753 PMCID: PMC5955095 DOI: 10.18632/oncotarget.25247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
The absence of major progress in the treatment of glioblastoma (GBM) is partly attributable to our poor understanding of both GBM tumor biology and the acquirement of treatment resistance in recurrent GBMs. Recurrent GBMs are characterized by their resistance to radiation. In this study, we used an established stable U87 radioresistant GBM model and total RNA sequencing to shed light on global mRNA expression changes following irradiation. We identified many genes, the expressions of which were altered in our radioresistant GBM model, that have never before been reported to be associated with the development of radioresistant GBM and should be concertedly further investigated to understand their roles in radioresistance. These genes were enriched in various biological processes such as inflammatory response, cell migration, positive regulation of epithelial to mesenchymal transition, angiogenesis, apoptosis, positive regulation of T-cell migration, positive regulation of macrophage chemotaxis, T-cell antigen processing and presentation, and microglial cell activation involved in immune response genes. These findings furnish crucial information for elucidating the molecular mechanisms associated with radioresistance in GBM. Therapeutically, with the global alterations of multiple biological pathways observed in irradiated GBM cells, an effective GBM therapy may require a cocktail carrying multiple agents targeting multiple implicated pathways in order to have a chance at making a substantial impact on improving the overall GBM survival.
Collapse
Affiliation(s)
- Ninh B Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ha S Nguyen
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hisham S Alhajala
- Department of Medicine, Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Basem Jaber
- Faculty of Medicine, University of Damascus, Damascus, Syria
| | - Mona M Al-Gizawiy
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher R Chitambar
- Department of Medicine, Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shama P Mirza
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Kathleen M Schmainda
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
37
|
Jalota A, Kumar M, Das BC, Yadav AK, Chosdol K, Sinha S. A drug combination targeting hypoxia induced chemoresistance and stemness in glioma cells. Oncotarget 2018; 9:18351-18366. [PMID: 29719610 PMCID: PMC5915077 DOI: 10.18632/oncotarget.24839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is a characteristic of solid tumors especially Glioblastoma and is critical to chemoresistance. Cancer stem cells present in hypoxic niches are known to be a major cause of the progression, metastasis and relapse. We tried to identify synergistic combinations of drugs effective in both hypoxia and normoxia in tumor cells as well as in cancer stem cells. Since COX-2 is over-expressed in subset of glioblastoma and is also induced in hypoxia, we studied combinations of a prototype Cyclooxygenase (COX-2) inhibitor, NS-398 with various drugs (BCNU, Temozolomide, 2-Deoxy-D-glucose and Cisplatin) for their ability to abrogate chemoresistance under both severe hypoxia (0.2% O2) and normoxia (20% O2) in glioma cells. The only effective combination was of NS-398 and BCNU which showed a synergistic effect in both hypoxia and normoxia. This synergism was evident at sub-lethal doses for either of the single agent. The effectiveness of the combination resulted from increased pro- apoptotic and decreased anti-apoptotic molecules and increased caspase activity. PGE2 levels, a manifestation of COX-2 activity were increased during hypoxia, but were reduced by the combination during both hypoxia and normoxia. The combination reduced the levels of epithelial-mesenchymal transition (EMT) markers. It also resulted in a greater reduction of cell migration. While single drugs could reduce the number of gliomaspheres, the combination successfully abrogated their formation. The combination also resulted in a greater reduction of the cancer stem cell marker CD133. This combination could be a prototype of possible therapy in a tumor with a high degree of hypoxia like glioma.
Collapse
Affiliation(s)
- Akansha Jalota
- National Brain Research Centre, Manesar, Gurgaon-122051, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mukesh Kumar
- National Brain Research Centre, Manesar, Gurgaon-122051, India
| | - Bhudev C Das
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida-201313, India
| | - Ajay K Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurgaon-122051, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
38
|
Srivastava C, Irshad K, Dikshit B, Chattopadhyay P, Sarkar C, Gupta DK, Sinha S, Chosdol K. FAT1 modulates EMT and stemness genes expression in hypoxic glioblastoma. Int J Cancer 2017; 142:805-812. [PMID: 28994107 DOI: 10.1002/ijc.31092] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is characterized by the presence of hypoxia, stemness and local invasiveness. We have earlier demonstrated that FAT1 promotes invasiveness, inflammation and upregulates HIF-1α expression and its signaling in hypoxic GBM. Here, we have identified the role of FAT1 in regulating EMT (epithelial-mesenchymal transition) and stemness characteristics in GBM. The expression of FAT1, EMT (Snail/LOX/Vimentin/N-cad), stemness (SOX2/OCT4/Nestin/REST) and hypoxia markers (HIF-1α/VEGF/PGK1/CA9) was upregulated in ≥39% of GBM tumors (n = 31) with significant positive correlation (p ≤ 0.05) of the expression of FAT1 with LOX/Vimentin/SOX2/HIF-1α/PGK1/VEGF/CA9. Furthermore, positive correlation (p ≤ 0.01) of FAT1 with Vimentin/N-cad/SOX2/REST/HIF-1α has been observed in TCGA GBM-dataset (n = 430). Analysis of cells (U87MG/A172) exposed to severe hypoxia (0.2%O2 ) revealed elevated mRNA expression of FAT1, EMT (Snail/LOX/Vimentin/N-cad), stemness (SOX2/OCT4/Nestin/REST) and hypoxia markers (HIF-1α/PGK1/VEGF/CA9) as compared to their normoxic (20%O2 ) counterparts. FAT1 knockdown in U87MG/A172 maintained in severe hypoxia and in normoxic primary glioma cultures led to significant reduction of EMT/stemness markers as compared to controls. HIF-1α knockdown in U87MG cells markedly reduced the expression of all the EMT/stemness markers studied except for Nestin and SOX2 which were more under the influence of FAT1. This indicates FAT1 has a novel regulatory effect on EMT/stemness markers both via or independent of HIF-1α. The functional relevance of our study was corroborated by significant reduction in the number of soft-agar colonies formed in hypoxic-siFAT1 treated U87MG cells. Hence, our study for the first time reveals FAT1 as a novel regulator of EMT/stemness in hypoxic GBM and suggests FAT1 as a potential therapeutic candidate.
Collapse
Affiliation(s)
- Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Bhawana Dikshit
- College of Pharmacy, 543 Riffe Building, Ohio State University, Columbus, OH
| | | | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurgaon, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
39
|
Jiang LP, He CY, Zhu ZT. Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget 2017; 8:23675-23689. [PMID: 28423589 PMCID: PMC5410336 DOI: 10.18632/oncotarget.15644] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022] Open
Abstract
This study aims to explore the effects of microRNA-21 (miR-21) on radiosensitivity in non-small cell lung cancer (NSCLC) by targeting programmed cell deanth 4 (PDCD4) and regulating PI3K/AKT/mTOR signaling pathway. Cancer tissues and adjacent normal tissues were collected from 97 NSCLC patients who received a standard radiotherapy regimen. TUNEL assay was applied to determine cell apoptosis in tissues. The qRT-PCR assay was used to detect the expressions of miR-21 expression and PDCD4 mRNA. The protein expressions of PDCD4 and PI3K/AKT/mTOR signaling pathway-related proteins were determined by Western blotting. Colony formation assay was used to observe the sensitivity to radiotherapy of NSCLC cells. Flow cytometry was adopted to testify cell apoptosis. Compared with adjacent normal tissues, miR-21 expression was significantly increased and the mRNA and protein expressions of PDCD4 were decreased in NSCLC tissues. Higher miR-21 expression was associated with attenuated radiation efficacy and shorter median survival time. PDCD4 was the target gene of miR-21. The miR-21 mimics and siRNA-PDCD4 decreased the sensitivity to radiotherapy and cell apoptosis of A549 and H1299 cells and activated PI3K/AKT/mTOR pathway. The sensitivity of A549 and H1299 cells was strengthened in the miR-21 inhibitors group and the PI3K/AKT/mTOR inhibitors group. The siRNA-PDCD4 could reverse the effects of miR-21 inhibitors on sensitivity to radiotherapy and cell apoptosis of NSCLC cells. Our findings provide strong evidence that miR-21 could inhibit PDCD4 expression and activate PI3K/AKT/mTOR signaling pathway, thereby affecting the radiation sensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Li-Peng Jiang
- Department of Radiation Oncology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Chun-Yan He
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Zhi-Tu Zhu
- Department of Oncology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| |
Collapse
|
40
|
Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature 2016; 539:575-578. [PMID: 27828948 DOI: 10.1038/nature20170] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial products such as ATP, reactive oxygen species, and aspartate are key regulators of cellular metabolism and growth. Abnormal mitochondrial function compromises integrated growth-related processes such as development and tissue repair, as well as homeostatic mechanisms that counteract ageing and neurodegeneration, cardiovascular disease, and cancer. Physiologic mechanisms that control mitochondrial activity in such settings remain incompletely understood. Here we show that the atypical Fat1 cadherin acts as a molecular 'brake' on mitochondrial respiration that regulates vascular smooth muscle cell (SMC) proliferation after arterial injury. Fragments of Fat1 accumulate in SMC mitochondria, and the Fat1 intracellular domain interacts with multiple mitochondrial proteins, including critical factors associated with the inner mitochondrial membrane. SMCs lacking Fat1 (Fat1KO) grow faster, consume more oxygen for ATP production, and contain more aspartate. Notably, expression in Fat1KO cells of a modified Fat1 intracellular domain that localizes exclusively to mitochondria largely normalizes oxygen consumption, and the growth advantage of these cells can be suppressed by inhibition of mitochondrial respiration, which suggest that a Fat1-mediated growth control mechanism is intrinsic to mitochondria. Consistent with this idea, Fat1 species associate with multiple respiratory complexes, and Fat1 deletion both increases the activity of complexes I and II and promotes the formation of complex-I-containing supercomplexes. In vivo, Fat1 is expressed in injured human and mouse arteries, and inactivation of SMC Fat1 in mice potentiates the response to vascular damage, with markedly increased medial hyperplasia and neointimal growth, and evidence of higher SMC mitochondrial respiration. These studies suggest that Fat1 controls mitochondrial activity to restrain cell growth during the reparative, proliferative state induced by vascular injury. Given recent reports linking Fat1 to cancer, abnormal kidney and muscle development, and neuropsychiatric disease, this Fat1 function may have importance in other settings of altered cell growth and metabolism.
Collapse
|
41
|
Madan E, Dikshit B, Gowda SH, Srivastava C, Sarkar C, Chattopadhyay P, Sinha S, Chosdol K. FAT1 is a novel upstream regulator of HIF1α and invasion of high grade glioma. Int J Cancer 2016; 139:2570-82. [PMID: 27536856 PMCID: PMC6585695 DOI: 10.1002/ijc.30386] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/13/2016] [Accepted: 06/23/2016] [Indexed: 01/15/2023]
Abstract
The hypoxic microenvironment is an important contributor of glioblastoma (GBM) aggressiveness via HIF1α, while tumour inflammation is profoundly influenced by FAT Atypical Cadherin (FAT1). This study was designed to explore the functional interaction and significance of FAT1 and HIF1α under severe hypoxia‐mimicking tumour microenvironment in primary human tumours. We first identified a positive correlation of FAT1 with HIF1α and its target genes in GBM tumour specimens, revealing the significance of the FAT1‐HIF1α axis in glioma cells. We found that severe hypoxia leads to an increased expression of FAT1 and HIF1α in U87MG and U373MG cells. To reveal the relevance of FAT1 under hypoxic conditions, we depleted endogenous FAT1 under hypoxia and found a substantial reduction in the expression of HIF1α and its downstream target genes like CA9, GLUT1, VEGFA, MCT4, HK2, BNIP3 and REDD1, as well as a significant reduction in the invasiveness in GBM cells. At the molecular level, under hypoxia the FAT1 depletion‐associated reduction in HIF1α was due to compromised EGFR‐Akt signaling as well as increased VHL‐dependent proteasomal degradation of HIF1α. In brief, for the first time, these results reveal an upstream master regulatory role of FAT1 in the expression and role of HIF1α under hypoxic conditions and that FAT1‐HIF1α axis controls the invasiveness of GBM. Hence, FAT1 represents a novel potential therapeutic target for GBM. What's new? The hypoxic microenvironment is an important contributor of glioblastoma aggressiveness via HIF1α while tumor inflammation is profoundly influenced by FAT Atypical Cadherin (FAT1). This study explores the functional interaction of FAT1 and HIF1α in severe hypoxia‐mimicking tumor microenvironments. The results show that FAT1 upregulation is critical for enhancing and maintaining high HIFIα levels in tumors with severe hypoxia. FAT1 both increases HIFIα transcription and decreases HIFIα degradation in glioblastoma multiforme cell lines under hypoxic conditions. With FAT1 regulating the activity of HIF1α under hypoxic condition and the FAT1‐HIF1α axis controlling the invasiveness of glioblastoma, FAT1 represents a novel potential therapeutic target for glioblastomas.
Collapse
Affiliation(s)
- Evanka Madan
- Department of Biochemistry, AIIMS, New Delhi, India
| | | | | | | | | | | | - Subrata Sinha
- Department of Biochemistry, AIIMS, New Delhi, India. .,Director, National Brain Research Center, Manesar, Gurgaon, India.
| | | |
Collapse
|
42
|
Xia J, Huang N, Huang H, Sun L, Dong S, Su J, Zhang J, Wang L, Lin L, Shi M, Bin J, Liao Y, Li N, Liao W. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer 2016; 139:2553-69. [PMID: 27529686 DOI: 10.1002/ijc.30381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Voltage-gated sodium channels (VGSCs), which are aberrantly expressed in several human cancers, affect cancer cell behavior; however, their role in gastric cancer (GC) and the link between these channels and tumorigenic signaling remain unclear. The aims of this study were to determine the clinicopathological significance and role of the VGSC Nav 1.7 in GC progression and to investigate the associated mechanisms. Here, we report that the SCN9A gene encoding Nav 1.7 was the most abundantly expressed VGSC subtype in GC tissue samples and two GC cell lines (BGC-823 and MKN-28 cells). SCN9A expression levels were also frequently found to be elevated in GC samples compared to nonmalignant tissues by real-time PCR. In the 319 GC specimens evaluated by immunohistochemistry, Nav 1.7 expression was correlated with prognosis, and transporter Na(+) /H(+) exchanger-1 (NHE1) and oncoprotein metastasis-associated in colon cancer-1 (MACC1) expression. Nav 1.7 suppression resulted in reduced voltage-gated sodium currents, decreased NHE1 expression, increased extracellular pH and decreased intracellular pH, and ultimately, reduced invasion and proliferation rates of GC cells and growth of GC xenografts in nude mice. Nav 1.7 inhibition led to reduced MACC1 expression, while MACC1 inhibition resulted in reduced NHE1 expression in vitro and in vivo. Mechanistically, the suppression of Nav 1.7 decreased NF-κB p65 nuclear translocation via p38 activation, thus reducing MACC1 expression. Downregulation of MACC1 decreased c-Jun phosphorylation and subsequently reduced NHE1 expression, whereas the addition of hepatocyte growth factor (HGF), a c-Met physiological ligand, reversed the effect. These results indicate that Nav 1.7 promotes GC progression through MACC1-mediated upregulation of NHE1. Therefore, Nav 1.7 is a potential prognostic marker and/or therapeutic target for GC.
Collapse
Affiliation(s)
- Jianling Xia
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongxiang Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoting Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinyu Su
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nailin Li
- Karolinska Institute, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm, 17176, Sweden
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
43
|
FAT1: a potential target for monoclonal antibody therapy in colon cancer. Br J Cancer 2016; 115:40-51. [PMID: 27328312 PMCID: PMC4931367 DOI: 10.1038/bjc.2016.145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 12/25/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the major causes of cancer-associated mortality worldwide. The currently approved therapeutic agents have limited efficacy. Methods: The atypical cadherin FAT1 was discovered as a novel CRC-associated protein by using a monoclonal antibody (mAb198.3). FAT1 expression was assessed in CRC cells by immunohistochemistry (IHC), immunoblots, flow cytometry and confocal microscopy. In addition, in vitro and in vivo tumour models were done to assess FAT1 potential value for therapeutic applications. Results: The study shows that FAT1 is broadly expressed in primary and metastatic CRC stages and detected by mAb198.3, regardless of KRAS and BRAF mutations. FAT1 mainly accumulates at the plasma membrane of cancer cells, whereas it is only marginally detected in normal human samples. Moreover, the study shows that FAT1 has an important role in cell invasiveness while it does not significantly influence apoptosis. mAb198.3 specifically recognises FAT1 on the surface of colon cancer cells and is efficiently internalised. Furthermore, it reduces cancer growth in a colon cancer xenograft model. Conclusions: This study provides evidence that FAT1 and mAb198.3 may offer new therapeutic opportunities for CRC including the tumours resistant to current EGFR-targeted therapies.
Collapse
|
44
|
Mühlberg L, Kühnemuth B, Costello E, Shaw V, Sipos B, Huber M, Griesmann H, Krug S, Schober M, Gress TM, Michl P. miRNA dynamics in tumor-infiltrating myeloid cells modulating tumor progression in pancreatic cancer. Oncoimmunology 2016; 5:e1160181. [PMID: 27471627 DOI: 10.1080/2162402x.2016.1160181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
Myeloid cells including tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) are known as important mediators of tumor progression in solid tumors such as pancreatic cancer. Infiltrating myeloid cells have been identified not only in invasive tumors, but also in early pre-invasive pancreatic intraepithelial precursor lesions (PanIN). The functional dynamics of myeloid cells during carcinogenesis is largely unknown. We aimed to systematically elucidate phenotypic and transcriptional changes in infiltrating myeloid cells during carcinogenesis and tumor progression in a genetic mouse model of pancreatic cancer. Using murine pancreatic myeloid cells isolated from the genetic mouse model at different time points during carcinogenesis, we examined both established markers of macrophage polarization using RT-PCR and FACS as well as transcriptional changes focusing on miRNA profiling. Myeloid cells isolated during carcinogenesis showed a simultaneous increase of established markers of M1 and M2 polarization during carcinogenesis, indicating that phenotypic changes of myeloid cells during carcinogenesis do not follow the established M1/M2 classification. MiRNA profiling revealed distinct regulations of several miRNAs already present in myeloid cells infiltrating pre-invasive PanIN lesions. Among them miRNA-21 was significantly increased in myeloid cells surrounding both PanIN lesions and invasive cancers. Functionally, miRNA-21-5p and -3p altered expression of the immune-modulating cytokines CXCL-10 and CCL-3 respectively. Our data indicate that miRNAs are dynamically regulated in infiltrating myeloid cells during carcinogenesis and mediate their functional phenotype by facilitating an immune-suppressive tumor-promoting micro-milieu.
Collapse
Affiliation(s)
- Leonie Mühlberg
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University , Marburg, Germany
| | - Benjamin Kühnemuth
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University , Marburg, Germany
| | - Eithne Costello
- Department of Surgery, University of Liverpool , Liverpool, UK
| | - Victoria Shaw
- Department of Surgery, University of Liverpool , Liverpool, UK
| | - Bence Sipos
- Institute of Pathology, University of Tuebingen , Tuebingen, Germany
| | - Magdalena Huber
- Institute of Microbiology, University Hospital, Philipps-University , Marburg, Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg , Halle, Germany
| | - Sebastian Krug
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg , Halle, Germany
| | - Marvin Schober
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg , Halle, Germany
| | - Thomas M Gress
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University , Marburg, Germany
| | - Patrick Michl
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University, Marburg, Germany; Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
45
|
Wang L, Lyu S, Wang S, Shen H, Niu F, Liu X, Liu J, Niu Y. Loss of FAT1 during the progression from DCIS to IDC and predict poor clinical outcome in breast cancer. Exp Mol Pathol 2016; 100:177-83. [DOI: 10.1016/j.yexmp.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/20/2015] [Accepted: 12/20/2015] [Indexed: 12/21/2022]
|
46
|
Mechanisms regulating glioma invasion. Cancer Lett 2015; 362:1-7. [PMID: 25796440 DOI: 10.1016/j.canlet.2015.03.015] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, deadliest, and most common brain malignancy in adults. Despite the advances made in surgical techniques, radiotherapy and chemotherapy, the median survival for GBM patients has remained at a mere 14 months. GBM poses several unique challenges to currently available treatments for the disease. For example, GBM cells have the propensity to aggressively infiltrate/invade into the normal brain tissues and along the vascular tracks, which prevents complete resection of all malignant cells and limits the effect of localized radiotherapy while sparing normal tissue. Although anti-angiogenic treatment exerts anti-edematic effect in GBM, unfortunately, tumors progress with acquired increased invasiveness. Therefore, it is an important task to gain a deeper understanding of the intrinsic and post-treatment invasive phenotypes of GBM in hopes that the gained knowledge would lead to novel GBM treatments that are more effective and less toxic. This review will give an overview of some of the signaling pathways that have been shown to positively and negatively regulate GBM invasion, including, the PI3K/Akt, Wnt, sonic hedgehog-GLI1, and microRNAs. The review will also discuss several approaches to cancer therapies potentially altering GBM invasiveness.
Collapse
|
47
|
Taranu I, Braicu C, Marin DE, Pistol GC, Motiu M, Balacescu L, Beridan Neagoe I, Burlacu R. Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression. Toxicol Lett 2014; 232:310-25. [PMID: 25455459 DOI: 10.1016/j.toxlet.2014.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
The gut represents the main route of intoxication with mycotoxins. To evaluate the effect and the underlying molecular changes that occurred when the intestine is exposed to zearalenone, a Fusarium sp mycotoxin, porcine epithelial cells (IPEC-1) were treated with 10μM of ZEA for 24h and analysed by microarray using Gene Spring GX v.11.5. Our results showed that 10μM of ZEA did not affect cell viability, but can increase the expression of toll like receptors (TLR1-10) and of certain cytokines involved in inflammation (TNF-α, IL-1β, IL-6, IL-8, MCP-1, IL-12p40, CCL20) or responsible for the recruitment of immune cells (IL-10, IL-18). Microarray results identified 190 genes significantly and differentially expressed, of which 70% were up-regulated. ZEA determined the over expression of ITGB5 gene, essential against the attachment and adhesion of ETEC to porcine jejunal cells and of TFF2 implicated in mucosal protection. An up-regulation of glutathione peroxidase enzymes (GPx6, GPx2, GPx1) was also observed. Upon ZEA challenge, genes like GTF3C4 responsible for the recruitment of polymerase III and initiation of tRNA transcription in eukaryotes and STAT5B were significantly higher induced. The up-regulation of CD97 gene and the down-regulation of tumour suppressor genes (DKK-1, PCDH11X and TC531386) demonstrates the carcinogenic potential of ZEA.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania.
| | - Cornelia Braicu
- National Institute for Research and Development for Oncology "Prof. Dr. Ion Chiricuta", Str. Republicii, No. 34-36, Cluj-Napoca, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania
| | - Monica Motiu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania
| | - Loredana Balacescu
- National Institute for Research and Development for Oncology "Prof. Dr. Ion Chiricuta", Str. Republicii, No. 34-36, Cluj-Napoca, Romania
| | - Ioana Beridan Neagoe
- National Institute for Research and Development for Oncology "Prof. Dr. Ion Chiricuta", Str. Republicii, No. 34-36, Cluj-Napoca, Romania
| | - Radu Burlacu
- Mathematics and Physics Department, University of Agriculture and Veterinary Medicine, Bulevardul Marasti No. 59, Bucharest 011464, Romania
| |
Collapse
|
48
|
Serio RN. Wnt of the Two Horizons: Putting Stem Cell Self-Renewal and Cell Fate Determination into Context. Stem Cells Dev 2014; 23:1975-90. [DOI: 10.1089/scd.2014.0055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ryan N. Serio
- Graduate School of Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
49
|
Lin DC, Meng X, Hazawa M, Nagata Y, Varela AM, Xu L, Sato Y, Liu LZ, Ding LW, Sharma A, Goh BC, Lee SC, Petersson BF, Yu FG, Macary P, Oo MZ, Ha CS, Yang H, Ogawa S, Loh KS, Koeffler HP. The genomic landscape of nasopharyngeal carcinoma. Nat Genet 2014; 46:866-71. [PMID: 24952746 DOI: 10.1038/ng.3006] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/13/2014] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) has extremely skewed ethnic and geographic distributions, is poorly understood at the genetic level and is in need of effective therapeutic approaches. Here we determined the mutational landscape of 128 cases with NPC using whole-exome and targeted deep sequencing, as well as SNP array analysis. These approaches revealed a distinct mutational signature and nine significantly mutated genes, many of which have not been implicated previously in NPC. Notably, integrated analysis showed enrichment of genetic lesions affecting several important cellular processes and pathways, including chromatin modification, ERBB-PI3K signaling and autophagy machinery. Further functional studies suggested the biological relevance of these lesions to the NPC malignant phenotype. In addition, we uncovered a number of new druggable candidates because of their genomic alterations. Together our study provides a molecular basis for a comprehensive understanding of, and exploring new therapies for, NPC.
Collapse
Affiliation(s)
- De-Chen Lin
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California, USA. [3]
| | - Xuan Meng
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Department of Medicine, School of Medicine, National University of Singapore, Singapore. [3]
| | - Masaharu Hazawa
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yasunobu Nagata
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ana Maria Varela
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yusuke Sato
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Li-Zhen Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Arjun Sharma
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Boon Cher Goh
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Soo Chin Lee
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | | | - Feng Gang Yu
- Department of Otolaryngology, National University Hospital Singapore, Singapore
| | - Paul Macary
- Department of Immunology, National University of Singapore, Singapore
| | - Min Zin Oo
- Department of Immunology, National University of Singapore, Singapore
| | - Chan Soh Ha
- Department of Microbiology, National University of Singapore, Singapore
| | - Henry Yang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2]
| | - Seishi Ogawa
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. [3]
| | - Kwok Seng Loh
- 1] Department of Otolaryngology, National University Hospital Singapore, Singapore. [2]
| | - H Phillip Koeffler
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California, USA. [3] National University Cancer Institute, National University Hospital Singapore, Singapore. [4]
| |
Collapse
|
50
|
Qiu L, Zhang X, Chen Z. Screening and functional analysis of glioma‑related genes induced by candoxin. Mol Med Rep 2014; 10:767-72. [PMID: 24913449 DOI: 10.3892/mmr.2014.2311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/09/2014] [Indexed: 11/05/2022] Open
Abstract
This study aimed to identify time‑specific and common differential genes (CDGs) expressed in glioma cells following exposure to candoxin at three different time‑points. Gene expression data from candoxin‑treated human glioma (Hs 683) cells were downloaded from the Gene Expression Omnibus database (accession number, GSE1682), from a 12‑time‑point set of samples. Differentially expressed genes were screened between control and candoxin‑treated samples at different time‑points, and three time‑specific gene sets and CDGs were identified. All genes were subject to pathway enrichment analysis to gain further insight into gene function. CDGs were clustered based upon their original expression between 0 and 48 h, and, from this subset, feature genes were selected. Small molecules associated with candoxin were identified by comparing the expression pattern of the most valid candidate genes with that of differential genes exposed to small molecules in the Connectivity Map. From the 12‑, 24‑ and 48‑h time‑points, 746, 265 and 539 differentially expressed genes were identified, respectively. A total of 129 genes were differentially expressed and significantly enriched in focal adhesion and gap junction pathways. From these, 11 feature genes and one marker gene (EPS8L1) were identified. Four small molecules that were most relevant to candoxin action were identified. In conclusion, it is hypothesized that candoxin stimulation can cause glial inflammation through mutations in cell adhesion activity. The EPS8L1 gene may be a valid marker for glioma diagnosis, and the four small molecules identified may be relevant for future drug design.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Neurosurgery, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Xiang Zhang
- Department of Neurosurgery, The Tenth People's Hospital Affiliated to Shanghai Tongji University, Shanghai 200072, P.R. China
| | - Zuoquan Chen
- Department of Neurosurgery, The Tenth People's Hospital Affiliated to Shanghai Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|