1
|
Jeyaprakash K, Kumaran M, Kim U, Santhi R, Muthukkaruppan V, Devarajan B, Vanniarajan A. Investigating druggable kinases for targeted therapy in retinoblastoma. J Hum Genet 2024; 69:467-474. [PMID: 38956221 DOI: 10.1038/s10038-024-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Retinoblastoma (RB) is a childhood retinal neoplasm and commonly treated with cytotoxic chemotherapeutic agents. However, these therapeutic approaches often lead to diverse adverse effects. A precise molecular therapy will alleviate these side effects and offer better treatment outcomes. Over the years, kinases have become potential drug targets in cancer therapy. Hence, we aimed to investigate genetic alterations of putative kinase drug targets in RB. Targeted exome sequencing was performed on 35 RB tumors with paired blood samples using a gene panel consisting of 29 FDA-approved kinase genes. Single nucleotide variants were analyzed for pathogenicity using an in-house pipeline and copy number variations (CNVs) were detected by a depth of coverage and CNVPanelizer. The correlation between genetic changes and clinicopathological features was assessed using GraphPad Prism. Three somatic mutations, two in ERBB4 and one in EGFR were identified. Two of these mutations (ERBB4 c.C3836A & EGFR c.A1196T) were not reported earlier. CNV analysis revealed recurrent gains of ALK, MAP2K2, SRC, STK11, and FGFR3 as well as frequent losses of ATM, PI3KCA and ERBB4. Notably, nonresponsive tumors had a higher incidence of amplifications in clinically actionable genes such as ALK. Moreover, ALK gain and ATM loss were strongly correlated with optic nerve head invasion. In conclusion, our study revealed genetic alterations of druggable kinases in RB, providing preliminary insights for the exploration of kinase-targeted therapy in RB.
Collapse
Affiliation(s)
- Kumar Jeyaprakash
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India
- Department of Molecular Biology, Aravind Medical Research Foundation, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | - Manojkumar Kumaran
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Oncology, Aravind Eye Hospital, Madurai, India
| | | | | | | | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, India.
- Department of Molecular Biology, Aravind Medical Research Foundation, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
2
|
Yu L, Deng Y, Wang X, Santos C, Davis IJ, Earp HS, Liu P. Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma. Nat Commun 2024; 15:5292. [PMID: 38906855 PMCID: PMC11192891 DOI: 10.1038/s41467-024-49667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charlene Santos
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine and Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Low K, Hills F, Roberts HC, Stordal B. Establishment and Characterization of Single and Triple-Agent Resistant Osteosarcoma Cell Lines. Adv Biol (Weinh) 2023; 7:e2200194. [PMID: 36480329 DOI: 10.1002/adbi.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Two human osteosarcoma cell lines (MG-63 and HOS-143B) are developed into drug-resistant models using a short-term drug exposure and recovery in drug-free media. Cisplatin, doxorubicin, and methotrexate are used as single agents and in triple combination. The highest level of resistance to cisplatin is observed in MG-63/CISR8, doxorubicin in HOS-143B/DOXR8, and methotrexate in HOS-143B/MTXR8. The MG-63/TRIR8 and HOS-143B/TRIR8 triple-resistance models show lower levels of resistance to combination treatment and are not resistant to the drugs individually. Apoptosis assays suggest that the resistance in MG-63/TRIR8 isfrom cisplatin and methotrexate and not doxorubicin. In contrast, the resistance in HOS-143B/TRIR8 is from doxorubicin and methotrexate instead of cisplatin. Upregulation of P-glycoprotein is seen in all resistant models except those developed with single-agent methotrexate. However, P-glycoprotein is not causing resistance in all cell lines as the inhibitor elacridar only reverses the resistance of doxorubicin on MG-63/DOXR8 and HOS-143B/TRIR8. The migration of the MG-63 resistant models is significantly increased, their invasion rate tends to increase, and RT-PCR shows a switch from epithelial to mesenchymal gene signaling. In contrast, a significant decrease in migration is seen in HOS-143B resistant models with their invasion rate tending to decrease and a switch from mesenchymal to epithelial gene signaling.
Collapse
Affiliation(s)
- Kaan Low
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| | - Frank Hills
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| | - Helen C Roberts
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| | - Britta Stordal
- Department of Natural Sciences, Middlesex University London, Hendon, London, NW4 4BT, UK
| |
Collapse
|
4
|
Köhler B, Dubovik S, Hörterer E, Wilk U, Stöckl JB, Tekarslan-Sahin H, Ljepoja B, Paulitschke P, Fröhlich T, Wagner E, Roidl A. Combating Drug Resistance by Exploiting miRNA-200c-Controlled Phase II Detoxification. Cancers (Basel) 2022; 14:cancers14225554. [PMID: 36428646 PMCID: PMC9688189 DOI: 10.3390/cancers14225554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired drug resistance constitutes a serious obstacle to the successful therapy of cancer. In the process of therapy resistance, microRNAs can play important roles. In order to combat resistance formation and to improve the efficacy of chemotherapeutics, the mechanisms of the multifaceted hsa-miR-200c on drug resistance were elucidated. Upon knockout of hsa-miR-200c in breast carcinoma cells, a proteomic approach identified altered expression of glutathione S-transferases (GSTs) when cells were treated with the chemotherapeutic drug doxorubicin. In different hsa-miR-200c expression systems, such as knockout, inducible sponge and inducible overexpression, the differential expression of all members of the GST family was evaluated. Expression of hsa-miR-200c in cancer cells led to the repression of a multitude of these GSTs and as consequence, enhanced drug-induced tumor cell death which was evaluated for two chemotherapeutic drugs. Additionally, the influence of hsa-miR-200c on the glutathione pathway, which is part of the phase II detoxification mechanism, was investigated. Finally, the long-term effects of hsa-miR-200c on drug efficacy were studied in vitro and in vivo. Upon doxycycline induction of hsa-miR-200c, MDA-MB 231 xenograft mouse models revealed a strongly reduced tumor growth and an enhanced treatment response to doxorubicin. A combined treatment of these tumors with hsa-miR-200c and doxorubicin resulted in complete regression of the tumor in 60% of the animals. These results identify hsa-miR-200c as an important player regulating the cellular phase II detoxification, thus sensitizing cancer cells not expressing this microRNA to chemotherapeutics and reversing drug resistance through suppression of GSTs.
Collapse
Affiliation(s)
- Bianca Köhler
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Sviatlana Dubovik
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Jan Bernd Stöckl
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Hande Tekarslan-Sahin
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Bojan Ljepoja
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | | | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-2180-77456
| |
Collapse
|
5
|
Wu Z, Setyawati MI, Lim HK, Ng KW, Tay CY. Nanoparticle-induced chemoresistance: the emerging modulatory effects of engineered nanomaterials on human intestinal cancer cell redox metabolic adaptation. NANOSCALE 2022; 14:14491-14507. [PMID: 36106385 DOI: 10.1039/d2nr03893e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The widespread use of engineered nanomaterials (ENMs) in food products necessitates the understanding of their impact on the gastrointestinal tract (GIT). Herein, we screened several representative food-borne comparator ENMs (i.e. ZnO, SiO2 and TiO2 nanoparticles (NPs)) and report that human colon cancer cells can insidiously exploit ZnO NP-induced adaptive response to acquire resistance against several chemotherapeutic drugs. By employing a conditioning and challenge treatment regime, we demonstrate that repeated exposure to a non-toxic dose of ZnO NPs (20 μM) could dampen the efficacy of cisplatin, paclitaxel and doxorubicin by 10-50% in monolayer culture and 3D spheroids of human colon adenocarcinoma cells. Structure-activity relationship studies revealed a complex interplay between nanoparticle surface chemistry and cell type in determining the chemoresistance-inducing effect, with silica coated ZnO NPs having a negligible influence on the anticancer treatment. Mechanistically, we showed that the pro-survival paracrine signaling was potentiated and propagated by a subset of ZnO NP "stressed" (Zn2++/ROS+) cells to the surrounding "bystander" (Zn2++/ROS-) cells. Transcriptome profiling, bioinformatics analysis and siRNA gene knockdown experiments revealed the nuclear factor erythroid 2-related factor 2 (Nrf2) as the key modulator of the ZnO NP-induced drug resistance. Our findings suggest that a ROS-inducing ENM can emerge as a nano-stressor, capable of regulating the chemosensitivity of colon cancer cells.
Collapse
Affiliation(s)
- Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Hong Kit Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| |
Collapse
|
6
|
Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chem Biol 2021; 28:934-951. [PMID: 34004187 PMCID: PMC8286327 DOI: 10.1016/j.chembiol.2021.04.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or "proteostasis," is indispensable for a balanced, healthy environment within the cell. However, when natural proteostasis mechanisms are overwhelmed from excessive loads of dysregulated proteins, their accumulation can lead to disease initiation and progression. Recently, the induced degradation of such disease-causing proteins by heterobifunctional molecules, i.e., PROteolysis TArgeting Chimeras (PROTACs), is emerging as a potential therapeutic modality. In the 2 decades since the PROTAC concept was proposed, several additional Targeted Protein Degradation (TPD) strategies have also been explored to target previously undruggable proteins, such as transcription factors. In this review, we discuss the progress and evolution of the TPD field, the breadth of the proteins targeted by PROTACs and the biological effects of their degradation.
Collapse
Affiliation(s)
- Kusal T G Samarasinghe
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
7
|
Kina S, Kawabata-Iwakawa R, Miyamoto S, Arasaki A, Sunakawa H, Kinjo T. A molecular signature of well-differentiated oral squamous cell carcinoma reveals a resistance mechanism to metronomic chemotherapy and novel therapeutic candidates. J Drug Target 2021; 29:1118-1127. [PMID: 33979258 DOI: 10.1080/1061186x.2021.1929256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Well-differentiated head and neck squamous cell carcinoma (HNSCC), accounts for approximately 10% of all HNSCCs and, while these cases are associated with good prognosis after surgery, these are resistant to chemotherapy. Here we designed a retrospective study to evaluate the effects of histological differentiation on tongue squamous cell carcinoma (TSCC) patients undergoing surgery or metronomic neoadjuvant chemotherapy. The metronomic neoadjuvant chemotherapy significantly improved overall survival of patients with poorly or moderately differentiated tumour, but not those with well-differentiated tumour. Analysis of the Cancer Genome Atlas (TCGA) showed that FAT1 mutations were significantly enriched in more differentiated HNSCC while ASPM mutations were significantly enriched among the poorly differentiated HNSCC. Interestingly, Wnt/β-catenin pathway was activated in well-differentiated HNSCC. Active β-catenin is translocated to the nucleus in the well-differentiated oral squamous cell carcinoma cell lines. Wnt inhibitor, Wnt974, were synergistic with methotrexate in killing well-differentiated oral squamous cell carcinoma (OSCC) cell lines. TCGA data analyses reveal a signature in patients with well-differentiated HNSCC who have no benefits from metronomic neoadjuvant chemotherapy, suggesting that there might be novel nosology and therapeutic candidates for improving HNSCC patient survival. Well-differentiated OSCC is synergistically killed by combination chemotherapy with Wnt inhibitor, making it promising therapeutic candidates.
Collapse
Affiliation(s)
- Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Sho Miyamoto
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - Hajime Sunakawa
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - Takao Kinjo
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, University of the Ryukyus, Nakagami-gun, Japan
| |
Collapse
|
8
|
Chen K, Xu H, Lei Y, Lio P, Li Y, Guo H, Ali Moni M. Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance. Brief Bioinform 2021; 22:6272796. [PMID: 33971668 DOI: 10.1093/bib/bbab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022] Open
Abstract
Although chemotherapy is the first-line treatment for ovarian cancer (OCa) patients, chemoresistance (CR) decreases their progression-free survival. This paper investigates the genetic interaction (GI) related to OCa-CR. To decrease the complexity of establishing gene networks, individual signature genes related to OCa-CR are identified using a gradient boosting decision tree algorithm. Additionally, the genetic interaction coefficient (GIC) is proposed to measure the correlation of two signature genes quantitatively and explain their joint influence on OCa-CR. Gene pair that possesses high GIC is identified as signature pair. A total of 24 signature gene pairs are selected that include 10 individual signature genes and the influence of signature gene pairs on OCa-CR is explored. Finally, a signature gene pair-based prediction of OCa-CR is identified. The area under curve (AUC) is a widely used performance measure for machine learning prediction. The AUC of signature gene pair reaches 0.9658, whereas the AUC of individual signature gene-based prediction is 0.6823 only. The identified signature gene pairs not only build an efficient GI network of OCa-CR but also provide an interesting way for OCa-CR prediction. This improvement shows that our proposed method is a useful tool to investigate GI related to OCa-CR.
Collapse
Affiliation(s)
- Kexin Chen
- School of Electronics Engineering and Computer Science, Peking University, 100871, Beijing, China
| | - Haoming Xu
- Department of Biomedical Engineering, Duke University, 27708, Durham, United States
| | - Yiming Lei
- School of Electronics Engineering and Computer Science, Peking University, 100871, Beijing, China
| | - Pietro Lio
- Computer Laboratory, University of Cambridge, CB3-0FD, Cambridge, United Kingdom
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100083, Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 100083, Beijing, China
| | - Mohammad Ali Moni
- School of Public health and Community Medicine, University of New South Wales, 2052, Sydney, Australia
| |
Collapse
|
9
|
Le Naour A, Prat M, Thibault B, Mével R, Lemaitre L, Leray H, Joubert MV, Coulson K, Golzio M, Lefevre L, Mery E, Martinez A, Ferron G, Delord JP, Coste A, Couderc B. Tumor cells educate mesenchymal stromal cells to release chemoprotective and immunomodulatory factors. J Mol Cell Biol 2021; 12:202-215. [PMID: 31504643 PMCID: PMC7181721 DOI: 10.1093/jmcb/mjz090] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Factors released by surrounding cells such as cancer-associated mesenchymal stromal cells (CA-MSCs) are involved in tumor progression and chemoresistance. In this study, we characterize the mechanisms by which naïve mesenchymal stromal cells (MSCs) can acquire a CA-MSCs phenotype. Ovarian tumor cells trigger the transformation of MSCs to CA-MSCs by expressing pro-tumoral genes implicated in the chemoresistance of cancer cells, resulting in the secretion of high levels of CXC chemokine receptors 1 and 2 (CXCR1/2) ligands such as chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and interleukin 8 (IL-8). CXCR1/2 ligands can also inhibit the immune response against ovarian tumor cells. Indeed, through their released factors, CA-MSCs promote the differentiation of monocytes towards M2 macrophages, which favors tumor progression. When CXCR1/2 receptors are inhibited, these CA-MSC-activated macrophages lose their M2 properties and acquire an anti-tumoral phenotype. Both ex vivo and in vivo, we used a CXCR1/2 inhibitor to sensitize ovarian tumor cells to carboplatin and circumvent the pro-tumoral effects of CA-MSCs. Since high concentrations of CXCR1/2 ligands in patients’ blood are associated with chemoresistance, CXCR1/2 inhibition could be a potential therapeutic strategy to revert carboplatin resistance.
Collapse
Affiliation(s)
- Augustin Le Naour
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Benoît Thibault
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Renaud Mével
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Léa Lemaitre
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Hélène Leray
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Marie-Véronique Joubert
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Kimberley Coulson
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Muriel Golzio
- UMR CNRS 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
| | - Lise Lefevre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Eliane Mery
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France
| | - Alejandra Martinez
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France
| | - Gwénaël Ferron
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France
| | - Jean-Pierre Delord
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Bettina Couderc
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| |
Collapse
|
10
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
11
|
Li M, Ma W. miR-26a Reverses Multidrug Resistance in Osteosarcoma by Targeting MCL1. Front Cell Dev Biol 2021; 9:645381. [PMID: 33816494 PMCID: PMC8012539 DOI: 10.3389/fcell.2021.645381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
The multidrug resistance (MDR) acquired in human osteosarcoma is a huge obstacle for effective chemotherapy. Recently, microRNA-26a (miR-26a) has been associated with the pathogenesis and progression of osteosarcoma. However, whether it regulates MDR in osteosarcoma is unknown. We show here that miR-26a expression declines in chemoresistant osteosarcoma after neoadjuvant chemotherapy, and its expression correlates with clinical outcome. In addition, compared with sensitive parental cells, miR-26a expression also declines in osteosarcoma MDR cells, together suggesting a negative correlation between miR-26a expression and MDR development in osteosarcoma. We also show that the enforced expression of miR-26a reverses MDR in osteosarcoma cells, and conversely, miR-26a knockdown confers MDR in chemosensitive osteosarcoma cells treated with doxorubicin, methotrexate, or cisplatin. Mechanistically, miR-26a directly targets the pro-survival protein myeloid cell leukemia 1 (MCL1), and in turn, the enforced expression of MCL1 markedly antagonizes miR-26a-decreased MDR in osteosarcoma MDR cells, therefore demonstrating that miR-26a reverses MDR in osteosarcoma by targeting MCL1. Lastly, miR-26a reverses resistance to doxorubicin in osteosarcoma MDR cells xenografted in nude mice. Collectively, these results reveal a negative role and the underlying mechanism of miR-26a in the regulation of MDR in human osteosarcoma, implying a potential tactic of manipulating miR-26a for overcoming MDR in osteosarcoma chemotherapy.
Collapse
Affiliation(s)
- Ming Li
- Department of Orthopaedic, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Ma
- Department of Orthopaedic, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Avvaru SP, Noolvi MN, More UA, Chakraborty S, Dash A, Aminabhavi TM, Narayan KP, Sutariya V. Synthesis and Anticancer Activity of Thiadiazole Containing Thiourea, Benzothiazole and Imidazo[2,1-b][1,3,4]thiadiazole Scaffolds. Med Chem 2021; 17:750-765. [PMID: 32427086 DOI: 10.2174/1573406416666200519085626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/29/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND A great array of nitrogen-containing heterocyclic rings were being extensively explored for their functional versatility in the field of medicine, especially in anticancer research. 1,3,4- thiadiazole is one of such heterocyclic rings with promising anticancer activity against several cancer cell lines, inhibiting diverse biological targets. INTRODUCTION The 1,3,4-thiadiazole, when equipped with other heterocyclic scaffolds, has displayed enhanced anticancer properties. The thiourea, benzothiazole, imidazo[2,1,b][1,3,4]-thiadiazoles are such potential scaffolds with promising anticancer activity. METHODS A new series of 5-substituted-1,3,4-thiadiazoles linked with phenyl thiourea, benzothiazole and 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives were synthesized and tested for invitro anticancer activity on various cancer cell lines. RESULTS The National Cancer Institute's preliminary anticancer screening results showed compounds 4b and 5b having potent antileukemic activity. Compound 4b selectively showed 32 percent lethality on Human Leukemia-60 cell line. The docking studies of the derivatives on aromatase enzyme (Protein Data Bank: 3S7S) have shown reversible interactions at the active site with good docking scores comparable to Letrozole and Exemestane. Furthermore, the selected derivatives were tested for anticancer activity on HeLa cell line based on the molecular docking studies. CONCLUSION Compounds 4b and 5b showed effective inhibition equivalent to Letrozole. These preliminary biological screening studies have given positive anticancer activity for these new classes of derivatives. An additional research study like the mechanism of action of the anticancer activity of this new class of compounds is necessary. These groundwork studies illuminate a future pathway for research of this class of compounds enabling the discovery of potent antitumor agents.
Collapse
Affiliation(s)
- Stephen P Avvaru
- Department of Pharmacy, Gujarat Technological University, Ahmedabad, India
| | - Malleshappa N Noolvi
- Department of Pharmaceutical Chemistry, Shree Dhanvantary Pharmacy College, Surat, India
| | - Uttam A More
- Pharmaceutical Chemistry, Shree Dhanvantary Pharmacy College, Surat, India
| | | | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Kumar P Narayan
- Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad, India
| | - Vishnu Sutariya
- Pharmaceutical Analysis, Shree Dhanvantary Pharmacy College, Surat, India
| |
Collapse
|
13
|
Palmerini E, Setola E, Grignani G, D’Ambrosio L, Comandone A, Righi A, Longhi A, Cesari M, Paioli A, Hakim R, Pierini M, Marchesi E, Vanel D, Pignochino Y, Donati DM, Picci P, Ferrari S. High Dose Ifosfamide in Relapsed and Unresectable High-Grade Osteosarcoma Patients: A Retrospective Series. Cells 2020; 9:E2389. [PMID: 33142760 PMCID: PMC7692098 DOI: 10.3390/cells9112389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023] Open
Abstract
Background: The evidence on high-dose ifosfamide (HD-IFO) use in patients with relapsed osteosarcoma is limited. We performed a retrospective study to analyze HD-IFO activity. Methods: Patients with osteosarcoma relapsed after standard treatment [methotrexate, doxorubicin, cisplatin +/- ifosfamide (MAP+/-I)] with measurable disease according to RECIST1.1 were eligible to ifosfamide (3 g/m2/day) continuous infusion (c.i.) days 1-5 q21d. RECIST1.1 overall response rate (ORR) (complete response (CR) + partial response (PR)), progression-free survival at 6-month (6m-PFS), duration of response (DOR), and 2-year overall survival (2y-OS) were assessed. PARP1 expression and gene mutations were tested by immunohistochemistry and next-generation sequencing. Results: 51 patients were included. ORR was 20% (1 CR + 9 PR). Median DOR was 5 months (95%CI 2-7). Median PFS, 6m-PFS, OS, and 2y-OS were 6 months (95%CI 4-9), 51%, 15 months (10-19), and 30%, respectively. A second surgical complete remission (CR2) was achieved in 26 (51%) patients. After multivariate analysis, previous use of ifosfamide (HR 2.007, p = 0.034) and CR2 (HR 0.126, p < 0.001) showed a significant correlation with PFS and OS, respectively. No significant correlation was found between outcomes and PARP1 or gene mutations. Conclusions: HD-IFO should be considered as the standard first-line treatment option in relapsed osteosarcoma and control arm of future trial in this setting.
Collapse
Affiliation(s)
- Emanuela Palmerini
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| | - Elisabetta Setola
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS. St. Provinciale 142, Km 3.95, 10060 Candiolo, Torino, Italy; (G.G.); (Y.P.)
| | - Lorenzo D’Ambrosio
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS. St. Provinciale 142, Km 3.95, 10060 Candiolo, Torino, Italy; (G.G.); (Y.P.)
| | | | - Alberto Righi
- Pathology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.R.); (D.V.)
| | - Alessandra Longhi
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| | - Marilena Cesari
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| | - Anna Paioli
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| | - Rossella Hakim
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| | - Michela Pierini
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| | - Emanuela Marchesi
- Italian Sarcoma Group, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.M.); (P.P.)
| | - Daniel Vanel
- Pathology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.R.); (D.V.)
| | - Ymera Pignochino
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS. St. Provinciale 142, Km 3.95, 10060 Candiolo, Torino, Italy; (G.G.); (Y.P.)
| | - Davide Maria Donati
- Orthopedic Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Piero Picci
- Italian Sarcoma Group, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.M.); (P.P.)
| | - Stefano Ferrari
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (E.S.); (A.L.); (M.C.); (A.P.); (R.H.); (M.P.); (S.F.)
| |
Collapse
|
14
|
The novel microRNAs hsa-miR-nov7 and hsa-miR-nov3 are over-expressed in locally advanced breast cancer. PLoS One 2020; 15:e0225357. [PMID: 32298266 PMCID: PMC7162276 DOI: 10.1371/journal.pone.0225357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
miRNAs are an important class of small non-coding RNAs, which play a versatile role in gene regulation at the post-transcriptional level. Expression of miRNAs is often deregulated in human cancers. We analyzed small RNA massive parallel sequencing data from 50 locally advanced breast cancers aiming to identify novel breast cancer related miRNAs. We successfully predicted 10 novel miRNAs, out of which 2 (hsa-miR-nov3 and hsa-miR-nov7) were recurrent. Applying high sensitivity qPCR, we detected these two microRNAs in 206 and 214 out of 223 patients in the study from which the initial cohort of 50 samples were drawn. We found hsa-miR-nov3 and hsa-miR-nov7 both to be overexpressed in tumor versus normal breast tissue in a separate set of 13 patients (p = 0.009 and p = 0.016, respectively) from whom both tumor tissue and normal tissue were available. We observed hsa-miR-nov3 to be expressed at higher levels in ER-positive compared to ER-negative tumors (p = 0.037). Further stratifications revealed particularly low levels in the her2-like and basal-like cancers compared to other subtypes (p = 0.009 and 0.040, respectively). We predicted target genes for the 2 microRNAs and identified inversely correlated genes in mRNA expression array data available from 203 out of the 223 patients. Applying the KEGG and GO annotations to target genes revealed pathways essential to cell development, communication and homeostasis. Although a weak association between high expression levels of hsa-miR-nov7 and poor survival was observed, this did not reach statistical significance. hsa-miR-nov3 expression levels had no impact on patient survival.
Collapse
|
15
|
Dzobo K. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:175-179. [PMID: 32176591 DOI: 10.1089/omi.2020.0019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A bottleneck that is hindering therapeutics innovation in cancers is the current lack of integration of what we have learned in tumor biology as well as the tumor microenvironment (TME). This is because tumors are complex tissues composed of cancer cells, stromal cells, and the extracellular matrix (ECM). Although genetic alterations might cause the initial uncontrolled growth, resistance to apoptosis in cancer cells and stromal cells play additional key roles within the TME and thus influence tumor initiation, progression, therapy resistance, and metastasis. Therapies targeting cancer cells are usually insufficient when the stromal component of the TME causes therapy resistance. For innovation in cancer treatment and to take a full snapshot of cancer biology, anticancer drug design must, therefore, target both cancer cells and the stromal component. This expert review critically examines the TME components such as cancer-associated fibroblasts and ECM that can be reprogrammed to create a tumor-suppressive environment, thereby aiding in tumor treatment. Better cancer experimental models that mimic the TME such as tumor spheroids, microfluidics, three dimensional (3D) bioprinted models, and organoids will allow deeper investigations of the TME complexity and can lead to the translation of basic tumor biology to effective cancer treatments. Ultimately, innovative cancer treatments and, by extension, improvement in cancer patients' outcomes will emerge from combinatorial drug development strategies targeting both cancer cells and stromal components of the TME. Combinatorial treatment strategies can take the form of chemotherapy and radiotherapy (targeting tumor cells and stromal components) and immunotherapy that is able to regulate immune responses against tumor cells. This expert review thus addresses a previously neglected knowledge gap in cancer drug design and development by broadening the focus in cancer biology to TME so as to empower disruptive health care innovations in the oncology clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Garziera M, Cecchin E, Giorda G, Sorio R, Scalone S, De Mattia E, Roncato R, Gagno S, Poletto E, Romanato L, Ecca F, Canzonieri V, Toffoli G. Clonal Evolution of TP53 c.375+1G>A Mutation in Pre- and Post- Neo-Adjuvant Chemotherapy (NACT) Tumor Samples in High-Grade Serous Ovarian Cancer (HGSOC). Cells 2019; 8:cells8101186. [PMID: 31581548 PMCID: PMC6829309 DOI: 10.3390/cells8101186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022] Open
Abstract
Carboplatin/paclitaxel is the reference regimen in the treatment of advanced high-grade serous ovarian cancer (HGSOC) in neo-adjuvant chemotherapy (NACT) before interval debulking surgery (IDS). To identify new genetic markers of platinum-resistance, next-generation sequencing (NGS) analysis of 26 cancer-genes was performed on paired matched pre- and post-NACT tumor and blood samples in a patient with stage IV HGSOC treated with NACT-IDS, showing platinum-refractory/resistance and poor prognosis. Only the TP53 c.375+1G>A somatic mutation was identified in both tumor samples. This variant, associated with aberrant splicing, was in trans configuration with the 72Arg allele of the known germline polymorphism TP53 c.215C>G (p. Pro72Arg). In the post-NACT tumor sample we observed the complete expansion of the TP53 c.375+1G>A driver mutant clone with somatic loss of the treatment-sensitive 72Arg allele. NGS results were confirmed with Sanger method and immunostaining for p53, BRCA1, p16, WT1, and Ki-67 markers were evaluated. This study showed that (i) the splice mutation in TP53 was present as an early driver mutation at diagnosis; (ii) the mutational profile was shared in pre- and post-NACT tumor samples; (iii) the complete expansion of a single dominant mutant clone through loss of heterozygosity (LOH) had occurred, suggesting a possible mechanism of platinum-resistance in HGSOC under the pressure of NACT.
Collapse
Affiliation(s)
- Marica Garziera
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Giorgio Giorda
- Gynecological Oncology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Roberto Sorio
- Medical Oncology Unit C, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Simona Scalone
- Medical Oncology Unit C, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Elena Poletto
- Medical Oncology, "Santa Maria della Misericordia" University Hospital, ASUIUD, 33100 Udine, Italy.
| | - Loredana Romanato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
17
|
Role of the Microenvironment in Regulating Normal and Cancer Stem Cell Activity: Implications for Breast Cancer Progression and Therapy Response. Cancers (Basel) 2019; 11:cancers11091240. [PMID: 31450577 PMCID: PMC6770706 DOI: 10.3390/cancers11091240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial cells in an adult woman’s breast tissue are continuously replaced throughout their reproductive life during pregnancy and estrus cycles. Such extensive epithelial cell turnover is governed by the primitive mammary stem cells (MaSCs) that proliferate and differentiate into bipotential and lineage-restricted progenitors that ultimately generate the mature breast epithelial cells. These cellular processes are orchestrated by tightly-regulated paracrine signals and crosstalk between breast epithelial cells and their tissue microenvironment. However, current evidence suggests that alterations to the communication between MaSCs, epithelial progenitors and their microenvironment plays an important role in breast carcinogenesis. In this article, we review the current knowledge regarding the role of the breast tissue microenvironment in regulating the special functions of normal and cancer stem cells. Understanding the crosstalk between MaSCs and their microenvironment will provide new insights into how an altered breast tissue microenvironment could contribute to breast cancer development, progression and therapy response and the implications of this for the development of novel therapeutic strategies to target cancer stem cells.
Collapse
|
18
|
Lønning PE, Eikesdal HP, Løes IM, Knappskog S. Constitutional Mosaic Epimutations - a hidden cause of cancer? Cell Stress 2019; 3:118-135. [PMID: 31225507 PMCID: PMC6551830 DOI: 10.15698/cst2019.04.183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter hypermethylation is a key mechanism to facilitate cancer progression in many malignancies. While promoter hypermethylation can occur at later stages of the carcinogenesis process, constitutional methylation of key tumor suppressors may be an initiating event whereby cancer is started. Constitutional BRCA1 methylation due to cis-acting germline genetic variants is associated with a high risk of breast and ovarian cancer. However, this seems to be a rare event, restricted to a very limited number of families. In contrast, mosaic constitutional BRCA1 methylation is detected in 4-7% of newborn females without germline BRCA1 mutations. While the cause of such methylation is poorly understood, mosaic normal tissue BRCA1 methylation is associated with a 2-3 fold increased risk of high-grade serous ovarian cancer (HGSOC). As such, BRCA1 methylation may be the cause of a significant number of ovarian cancers. Given the molecular similarities between HGSOC and basal-like breast cancer, the findings with respect to HGSOC suggest that constitutional BRCA1 methylation could be a risk factor for basal-like breast cancer as well. Similar to BRCA1, some specific germline variants in MLH1 and MSH2 are associated with promoter methylation and a high risk of colorectal cancers in rare hereditary cases of the disease. However, as many as 15% of all colorectal cancers are of the microsatellite instability (MSI) "high" subtype, in which commonly the tumors harbor MLH1 hypermethylation. Constitutional mosaic methylation of MLH1 in normal tissues has been detected but not formally evaluated as a potential risk factor for incidental colorectal cancers. However, the findings with respect to BRCA1 in breast and ovarian cancer raises the question whether mosaic MLH1 methylation is a risk factor for MSI positive colorectal cancer as well. As for MGMT, a promoter variant is associated with elevated methylation across a panel of solid cancers, and MGMT promoter methylation may contribute to an elevated cancer risk in several of these malignancies. We hypothesize that constitutional mosaic promoter methylation of crucial tumor suppressors may trigger certain types of cancer, similar to germline mutations inactivating the same particular genes. Such constitutional methylation events may be a spark to ignite cancer development, and if associated with a significant cancer risk, screening for such epigenetic alterations could be part of cancer prevention programs to reduce cancer mortality in the future.
Collapse
Affiliation(s)
- Per E. Lønning
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans P. Eikesdal
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Inger M. Løes
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G.Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Fang X, Yin H, Zhang H, Wu F, Liu Y, Fu Y, Yu D, Zong L. p53 mediates hydroxyurea resistance in aneuploid cells of colon cancer. Exp Cell Res 2019; 376:39-48. [PMID: 30684461 DOI: 10.1016/j.yexcr.2019.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
Aneuploidy refers to aberrancies in cellular chromosome count, which is prevalent in most human cancers. Chemotherapy is an effective cancer treatment; however, the development of drug resistance is a major concern of conventional chemotherapy. The chemotherapy agent hydroxyurea (HU) targets proliferating cells and has long been applied to treat various human cancers. It remains elusive whether aneuploidy affects the drug sensitivity of hydroxyurea. By generating an inducible aneuploidy model, we found that aneuploid colon cancer cells were resistant to HU treatment compared to euploid controls. Surprisingly, further analyses showed that the HU resistance was dependent on the expression of wild type p53. Activation of the p53 pathway in aneuploidy cells reduced cell proliferation but generated resistance of tumor cells to HU treatment. HU resistance was abrogated in aneuploid cells if p53 was absent but re-gained when inducing proliferation repression in cells by serum deprivation. Our results demonstrate that the HU resistance developed in aneuploid colon cancer cells is mediated by wild type p53 and indicates the prognostic value of combining karyotypic and p53 status in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiao Fang
- Peking University Health Science Center, Beijing 100191, China; Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hua Yin
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hanqing Zhang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Fan Wu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yin Liu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yi Fu
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China.
| | - Liang Zong
- Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
20
|
Guestini F, Ono K, Miyashita M, Ishida T, Ohuchi N, Nakagawa S, Hirakawa H, Tamaki K, Ohi Y, Rai Y, Sagara Y, Sasano H, McNamara KM. Impact of Topoisomerase IIα, PTEN, ABCC1/MRP1, and KI67 on triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 2018; 173:275-288. [PMID: 30306430 DOI: 10.1007/s10549-018-4985-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients with residual disease following neoadjuvant chemotherapy (NAC) harbor higher risk of relapse, and eventual demise compared to those who achieve pathologic complete response. Therefore, in this study, we assessed a panel of molecules involved in key pathways of drug resistance and tumor progression before and after NAC in TNBC patients, in order to clarify the underlying mechanisms. METHODS We studied 148 TNBC Japanese patients treated with anthracycline/taxane-based NAC. KI67, Topoisomerase IIα (TopoIIα), PTEN, p53, Bcl2, vimentin, ABCG2/BCRP1, ABCB1/MDR1, and ABCC1/MRP1 were immunolocalized in surgical pathology materials before and after NAC. RESULTS The status of vimentin and increasing labeling index (LI) of TopoIIα and KI67 in biopsy specimens were significantly associated with those who responded to NAC treatment. The abundance of p53 (p = 0.003), ABCC1/MRP1 (p = 0.033), ABCB1/MDR1 (p = 0.022), and a loss of PTEN (p < 0.0001) in surgery specimens following treatment were associated with pathologic parameters. TopoIIα, PTEN, and ABCC1/MRP1 status predicted pathologic response. In addition, the status of PTEN, ABCC1/MRP1, ABCB1/MDR1, Bcl2, and vimentin in surgical specimens was also significantly associated with adverse clinicopathological factors in surgery specimens, suggesting that these alterations could be responsible for tumor relapse in TNBC patients. CONCLUSION KI67, TopoIIα, PTEN, and ABCC1/MRP1 status could predict treatment response and/or eventual clinical outcomes. These results could also provide an insight into the mechanisms of drug resistance and relapse of TNBC patients receiving NAC.
Collapse
|
21
|
Ruiz de Garibay G, Mateo F, Stradella A, Valdés-Mas R, Palomero L, Serra-Musach J, Puente DA, Díaz-Navarro A, Vargas-Parra G, Tornero E, Morilla I, Farré L, Martinez-Iniesta M, Herranz C, McCormack E, Vidal A, Petit A, Soler T, Lázaro C, Puente XS, Villanueva A, Pujana MA. Tumor xenograft modeling identifies an association between TCF4 loss and breast cancer chemoresistance. Dis Model Mech 2018; 11:dmm.032292. [PMID: 29666142 PMCID: PMC5992609 DOI: 10.1242/dmm.032292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms of cancer therapeutic resistance is fundamental to improving cancer care. There is clear benefit from chemotherapy in different breast cancer settings; however, knowledge of the mutations and genes that mediate resistance is incomplete. In this study, by modeling chemoresistance in patient-derived xenografts (PDXs), we show that adaptation to therapy is genetically complex and identify that loss of transcription factor 4 (TCF4; also known as ITF2) is associated with this process. A triple-negative BRCA1-mutated PDX was used to study the genetics of chemoresistance. The PDX was treated in parallel with four chemotherapies for five iterative cycles. Exome sequencing identified few genes with de novo or enriched mutations in common among the different therapies, whereas many common depleted mutations/genes were observed. Analysis of somatic mutations from The Cancer Genome Atlas (TCGA) supported the prognostic relevance of the identified genes. A mutation in TCF4 was found de novo in all treatments, and analysis of drug sensitivity profiles across cancer cell lines supported the link to chemoresistance. Loss of TCF4 conferred chemoresistance in breast cancer cell models, possibly by altering cell cycle regulation. Targeted sequencing in chemoresistant tumors identified an intronic variant of TCF4 that may represent an expression quantitative trait locus associated with relapse outcome in TCGA. Immunohistochemical studies suggest a common loss of nuclear TCF4 expression post-chemotherapy. Together, these results from tumor xenograft modeling depict a link between altered TCF4 expression and breast cancer chemoresistance. Summary: By modeling chemoresistance in patient-derived breast cancer xenografts, this study shows that adaptation to therapy is genetically complex and that loss of transcription factor 4 (TCF4) is associated with this process.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Francesca Mateo
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Agostina Stradella
- Department of Medical Oncology, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Rafael Valdés-Mas
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Luis Palomero
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Jordi Serra-Musach
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Diana A Puente
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Ander Díaz-Navarro
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Programme, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Eva Tornero
- Hereditary Cancer Programme, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Idoia Morilla
- Department of Medical Oncology, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Lourdes Farré
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - María Martinez-Iniesta
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Carmen Herranz
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Emmet McCormack
- Departments of Clinical Science and Internal Medicine, Haematology Section, Haukeland University Hospital, and Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Teresa Soler
- Department of Pathology, University Hospital of Bellvitge, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Conxi Lázaro
- Hereditary Cancer Programme, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.,Biomedical Research Networking Centre of Cancer, CIBERONC, Spain
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo 33006, Spain.,Biomedical Research Networking Centre of Cancer, CIBERONC, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, Oncobell, IDIBELL, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain.,Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Miguel Angel Pujana
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| |
Collapse
|
22
|
Molecular and clinical features of the TP53 signature gene expression profile in early-stage breast cancer. Oncotarget 2018; 9:14193-14206. [PMID: 29581837 PMCID: PMC5865663 DOI: 10.18632/oncotarget.24447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose TP53 signature has a robust predictive performance for prognosis in early-stage breast cancer, but the experiment that reported this relied on public microarray data and fresh-frozen samples. Before TP53 signature can be used in a clinical setting, a simple and low-cost diagnostic system using formalin-fixed paraffin-embedded (FFPE) samples is needed. New treatments based on the biological characteristics of TP53 signature are expected to follow. Experimental Design TP53 signature was evaluated in 174 FFPE early breast cancer specimens using digital quantification via the nCounter technique (NanoString). Patients were classified as TP53 signature mutant type (n = 64) or wild type (n = 110). Predictive power of TP53 signature was compared with those of other gene expression signatures in 153 fresh-frozen samples of the same cohort by RNA-seq. The molecular features of TP53 signature were elucidated using TCGA omics data and RNA-seq data to explore new therapeutic strategies for patients with TP53 signature mutant type. Results TP53 signature was a strong predictor of prognosis and was also more accurate than other gene expression signatures and independent of other clinicopathological factors. TCGA data analysis showed that risk score of TP53 signature was an index of chromosomal and genomic instability and that TP53 signature mutant type was associated with higher PD-L1 expression, variation in copy numbers, and numbers of somatic mutations. Conclusions TP53 signature as diagnosed using the nCounter system is not only a robust predictor of prognosis but also a potential predictor of responsiveness to immune checkpoint inhibitors.
Collapse
|
23
|
Abstract
The connection between genetic variation and drug response has long been explored to facilitate the optimization and personalization of cancer therapy. Crucial to the identification of drug response related genetic features is the ability to separate indirect correlations from direct correlations across abundant datasets with large number of variables. Here we analyzed proteomic and pharmacogenomic data in cancer tissues and cell lines using a global statistical model connecting protein pairs, genes and anti-cancer drugs. We estimated this model using direct coupling analysis (DCA), a powerful statistical inference method that has been successfully applied to protein sequence data to extract evolutionary signals that provide insights on protein structure, folding and interactions. We used Direct Information (DI) as a metric of connectivity between proteins as well as gene-drug pairs. We were able to infer important interactions observed in cancer-related pathways from proteomic data and predict potential connectivities in cancer networks. We also identified known and potential connections for anti-cancer drugs and gene mutations using DI in pharmacogenomic data. Our findings suggest that gene-drug connections predicted with direct couplings can be used as a reliable guide to cancer therapy and expand our understanding of the effects of gene alterations on drug efficacies.
Collapse
|
24
|
Effects of concomitant inactivation of p53 and pRb on response to doxorubicin treatment in breast cancer cell lines. Cell Death Discov 2017; 3:17026. [PMID: 28580174 PMCID: PMC5439126 DOI: 10.1038/cddiscovery.2017.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022] Open
Abstract
Loss of TP53 and RB1 function have both been linked to poor response to DNA damaging drugs in breast cancer patients. We inactivated TP53 and/or RB1 by siRNA mediated knockdown in breast cancer cell lines varying with respect to ER/PgR and Her-2 status as well as TP53 and RB1 mutation status (MCF-7, T47D, HTB-122 and CRL2324) and determined effects on cell cycle arrest, apoptosis and senescence with or without concomitant treatment with doxorubicin. In T47D cells, we found the cell cycle phase distribution to be altered when inactivating TP53 (P=0.0003) or TP53 and RB1 concomitantly (P≤0.001). No similar changes were observed in MCF-7, HTB-122 or CRL2324 cells. While no significant change was observed for the CRL2324 cells upon doxorubicin treatment, MCF-7, T47D as well as HTB-122 cells responded to knockdown of TP53 and RB1 in concert, with a decrease in the fraction of cells in G1/G0-phase (P=0.042, 0.021 and 0.027, respectively). Inactivation of TP53 and/or RB1 caused no change in induction of apoptosis. Upon doxorubicin treatment, inactivation of TP53 or RB1 separately caused no induction of apoptosis in MCF-7 and HTB-122 cells; however, concomitant inactivation leads to a slightly reduced activation of apoptosis. Interestingly, upon doxorubicin treatment, concomitant inactivation of TP53 and RB1 caused a decrease in senescence in MCF-7 cells (P=0.027). Comparing the effects of concomitant knockdown on apoptosis and senescence, we observed a strong interaction (P=0.001). We found concomitant inactivation of TP53 and RB1 to affect various routes of response to doxorubicin treatment in breast cancer cells.
Collapse
|
25
|
MicroRNA-140-5p regulates osteosarcoma chemoresistance by targeting HMGN5 and autophagy. Sci Rep 2017; 7:416. [PMID: 28341864 PMCID: PMC5428500 DOI: 10.1038/s41598-017-00405-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is an important treatment modality for osteosarcoma. However, it often fails because of chemoresistance, especially multidrug resistance. Previously, we found several genes were involved in chemoresistance development. In this report, we used high-throughput microRNA (miRNA) expression analysis to reveal that expression of miR-140-5p was associated with chemosensitivity in osteosarcoma. The exact roles of miR-140-5p in the chemoresistance of osteosarcoma were then investigated, we found that knockdown of miR-140-5p enhanced osteosarcoma cells resistance to multiple chemotherapeutics while overexpression of miR-140-5p sensitized tumors to chemotherapy in vitro. Moreover, in vivo, knockdown of miR-140-5p also increased the osteosarcoma cells resistance to chemotherapy. Luciferase assay and Western blot analysis showed that HMGN5 was the direct target of miR-140-5p which could positively regulated autophagy. Silencing these target genes by siRNA or inhibition of autophagy sensitized osteosarcoma cells to chemotherapy. These findings suggest that a miR-140-5p/HMGN5/autophagy regulatory loop plays a critical role in chemoresistance in osteosarcoma. In conclusion, our data elucidated that miR-140-5p promoted autophagy mediated by HMGN5 and sensitized osteosarcoma cells to chemotherapy. These results suggest a potential application of miR-140-5p in overall survival, chemoresistance prognosis and treatment.
Collapse
|
26
|
Yndestad S, Austreid E, Knappskog S, Chrisanthar R, Lilleng PK, Lønning PE, Eikesdal HP. High PTEN gene expression is a negative prognostic marker in human primary breast cancers with preserved p53 function. Breast Cancer Res Treat 2017; 163:177-190. [PMID: 28213783 PMCID: PMC5387035 DOI: 10.1007/s10549-017-4160-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Purpose PTEN is an important tumor suppressor in breast cancer. Here, we examined the prognostic and predictive value of PTEN and PTEN pseudogene (PTENP1) gene expression in patients with locally advanced breast cancer given neoadjuvant chemotherapy. Methods The association between pretreatment PTEN and PTENP1 gene expression, response to neoadjuvant chemotherapy, and recurrence-free and disease-specific survival was assessed in 364 patients with locally advanced breast cancer given doxorubicin, 5-fluorouracil/mitomycin, or epirubicin versus paclitaxel in three phase II prospective studies. Further, protein expression of PTEN or phosphorylated Akt, S6 kinase, and 4EBP1 was assessed in a subgroup of 187 tumors. Results Neither PTEN nor PTENP1 gene expression level predicted response to any of the chemotherapy regimens tested (n = 317). Among patients without distant metastases (n = 282), a high pretreatment PTEN mRNA level was associated with inferior relapse-free (RFS; p = 0.001) and disease-specific survival (DSS; p = 0.003). Notably, this association was limited to patients harboring TP53 wild-type tumors (RFS; p = 0.003, DSS; p = 0.009). PTEN mRNA correlated significantly with PTENP1 mRNA levels (rs = 0.456, p < 0.0001) and PTEN protein staining (rs = 0.163, p = 0.036). However, no correlation between PTEN, phosphorylated Akt, S6 kinase or 4EBP1 protein staining, and survival was recorded. Similarly, no correlation between PTENP1 gene expression and survival outcome was observed. Conclusion High intratumoral PTEN gene expression was associated with poor prognosis in patients with locally advanced breast cancers harboring wild-type TP53. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Synnøve Yndestad
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Eilin Austreid
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Ranjan Chrisanthar
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Molecular Pathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Peer Kåre Lilleng
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans Petter Eikesdal
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
27
|
Silwal-Pandit L, Langerød A, Børresen-Dale AL. TP53 Mutations in Breast and Ovarian Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026252. [PMID: 27815305 DOI: 10.1101/cshperspect.a026252] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breast and ovarian cancers are the second and fifth leading causes of cancer deaths among women. Both breast and ovarian cancers are highly heterogeneous and are presented with diverse morphology, natural history, and response to therapy. In recent years, international efforts have led to extensive molecular characterization of both breast and ovarian tumors and identified biologically and clinically relevant subtypes of the diseases based on these molecular features. The role of TP53 in tumor initiation and progression is context dependent, and abrogation of the TP53 pathway seems to be essential for the development of basal-like breast cancers and high-grade serous ovarian cancers. These subtypes of breast and ovarian cancer show several genomic similarities including high frequency of TP53 mutation, which seems to be an early, initiating, and driving alteration in these cancer subtypes.
Collapse
Affiliation(s)
- Laxmi Silwal-Pandit
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Anita Langerød
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
28
|
Ishikawa S, Miyashita T, Inokuchi M, Hayashi H, Oyama K, Tajima H, Takamura H, Ninomiya I, Ahmed AK, Harman JW, Fushida S, Ohta T. Platelets surrounding primary tumor cells are related to chemoresistance. Oncol Rep 2016; 36:787-94. [PMID: 27349611 DOI: 10.3892/or.2016.4898] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Platelets are crucial components of the tumor microenvironment that function to promote tumor progression and metastasis. In the circulation, the interaction between tumor cells and platelets increases invasiveness, protects tumor cells from shear stress and immune surveillance, and facilitates tumor cell extravasation to distant sites. However, the role and presence of platelets in the primary tumor have not been fully determined. Here, we investigated the presence of platelets around breast cancer primary tumor cells and the associations between these cells. We further investigated the associations among platelets, tumor cells, chemoresistance, and epithelial-mesenchymal transition (EMT). We retrospectively analyzed data from 74 patients with human epidermal growth factor receptor 2 (HER2)‑negative breast cancer who underwent biopsies before treatment and subsequent neo-adjuvant chemotherapy. In biopsy specimens, we evaluated the expression of platelet-specific markers and EMT markers using immunohistochemistry. The associations among the expression of platelet‑specific markers in biopsy specimens, EMT, response to neo‑adjuvant chemotherapy, and survival were analyzed. The presence of platelets was observed in 44 out of 74 (59%) primary breast cancer biopsy specimens. Platelet‑positive tumor cells showed EMT‑like morphological changes and EMT marker expression. Primary tumor cells associated with platelets were less responsive to neo‑adjuvant chemotherapy (pCR rate: 10 vs. 50%, respectively; p=0.0001). Platelets were an independent predictor of the response to chemotherapy upon multivariable analysis (p<0.0001). In conclusion, there was a significant association between platelets surrounding primary tumor cells in the biopsy specimens and the chemotherapeutic response in breast cancer. Platelets surrounding primary tumor cells may represent novel predictors of chemotherapeutic responses.
Collapse
Affiliation(s)
- Satoko Ishikawa
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Masafumi Inokuchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hironori Takamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - A Karim Ahmed
- Department of Surgery, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - John W Harman
- Department of Surgery, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
29
|
Bianchi F. Molecular profile of liquid biopsies: next generation biomarkers to improve lung cancer treatment. Ecancermedicalscience 2015; 9:598. [PMID: 26635902 PMCID: PMC4664509 DOI: 10.3332/ecancer.2015.598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
Molecular profiling of liquid biopsies is now emerging as pivotal for cancer biomarker discovery. The low-invasive nature of the approach used for collecting biospecimens (i.e. blood, urine, saliva, etc.) may allow a widespread application of novel molecular diagnostics based on liquid biopsies. This is relevant, for example, in cancer screening programmes where it is essential to reduce costs and the complexity of screening tests in order to increase study compliance and effectiveness. Here, I discuss recent advances in biomarkers for the early cancer detection and prediction of chemotherapy response based on the molecular profiling of liquid biopsies.
Collapse
Affiliation(s)
- Fabrizio Bianchi
- Molecular Medicine Program, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|
30
|
Xu E, Zhao J, Ma J, Wang C, Zhang C, Jiang H, Cheng J, Gao R, Zhou X. miR-146b-5p promotes invasion and metastasis contributing to chemoresistance in osteosarcoma by targeting zinc and ring finger 3. Oncol Rep 2015; 35:275-83. [PMID: 26549292 DOI: 10.3892/or.2015.4393] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common human primary malignant bone tumor and recurrences are common due to the development of chemoresistance. However, the underlying molecular mechanism for chemoresistance remains unclear. Recent studies demonstrated that miR-146b-5p, an important regulator in tumorigenesis, was involved in chemoresistance in thyroid cancer, lymphoma. Thus, to confirm the role of miR‑146b-5p in osteosarcoma, the study was divided into three steps: first, miR-146b-5p in paired samples were assessed using a quantitative real-time PCR (qRT-PCR) assay from osteosarcoma patients. Second, to confirm the role of miR-146b-5p, we applied lentivirus system to overexpression and knockdown of miR-146b-5p, respectively, in MG-63 osteosarcoma cell line. Third, luciferase assays were performed to determine whether Wnt/β-catenin pathway participated in the role of miR-146b-5p on chemoresistance. As a result, miR-146b-5p was highly expressed in human osteosarcoma tissues and an elevated expression of miR-146b-5p was observed in human osteosarcoma tissues after chemotherapy. Furthermore, it was shown that miR-146b-5p overexpression promoted migration and invasiveness. miR-146b-5p overexpression also increased resistance to chemotherapy. Moreover, knockdown of miR-146b-5p substantially inhibited migration and invasion of osteosarcoma cells as well as rendered them significantly more sensitive to chemotherapy. Results of western blot assay indicated that miR-146b-5p increased MMP-16 protein expression and showed a decrease of ZNRF3 protein. Whereas, IWR-1-endo, an inhibitor of Wnt/β-catenin, suppressed the decrease in apoptosis of osteosarcoma cells caused by miR-146b-5p overexpression. These results indicated that miR-146b-5p promoted proliferation, migration and invasiveness. It also increased resistance to chemotherapy through the regulation of ZNRF3, and suggested novel potential therapeutic targets for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianquan Zhao
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jun Ma
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Ce Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chenglin Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Heng Jiang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianyang Cheng
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Rui Gao
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xuhui Zhou
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
31
|
Russnes HG, Lønning PE, Børresen-Dale AL, Lingjærde OC. The multitude of molecular analyses in cancer: the opening of Pandora’s box. Genome Biol 2015; 15:447. [PMID: 25316146 PMCID: PMC4709983 DOI: 10.1186/s13059-014-0447-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The availability of large amounts of molecular data of unprecedented depth and width has instigated new paths of interdisciplinary activity in cancer research. Translation of such information to allow its optimal use in cancer therapy will require molecular biologists to embrace statistical and computational concepts and models. Progress in science has been and should be driven by our innate curiosity. This is the human quality that led Pandora to open the forbidden box, and like her, we do not know the nature or consequences of the output resulting from our actions. Throughout history, ground-breaking scientific achievements have been closely linked to advances in technology. The microscope and the telescope are examples of inventions that profoundly increased the amount of observable features that further led to paradigmatic shifts in our understanding of life and the Universe. In cell biology, the microscope revealed details of different types of tissue and their cellular composition; it revealed cells, their structures and their ability to divide, develop and die. Further, the molecular compositions of individual cell types were revealed gradually by generations of scientists. For each level of insight gained, new mathematical and statistical descriptive and analytical tools were needed (Figure 1a). The integration of knowledge of ever-increasing depth and width in order to develop useful therapies that can prevent and cure diseases such as cancer will continue to require the joint effort of scientists in biology, medicine, statistics, mathematics and computation. Here, we discuss some major challenges that lie ahead of us and why we believe that a deeper integration of biology and medicine with mathematics and statistics is required to gain the most from the diverse and extensive body of data now being generated. We also argue that to take full advantage of current technological opportunities, we must explore biomarkers using clinical studies that are optimally designed for this purpose. The need for a tight interdisciplinary collaboration has never been stronger.
Collapse
|
32
|
Syed N, Chavan S, Sahasrabuddhe NA, Renuse S, Sathe G, Nanjappa V, Radhakrishnan A, Raja R, Pinto SM, Srinivasan A, Prasad TSK, Srikumar K, Gowda H, Santosh V, Sidransky D, Califano JA, Pandey A, Chatterjee A. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics 2015; 15:383-93. [PMID: 25327479 DOI: 10.1002/pmic.201400338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/24/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022]
Abstract
Dysregulation of protein expression is associated with most diseases including cancer. MS-based proteomic analysis is widely employed as a tool to study protein dysregulation in cancers. Proteins that are differentially expressed in head and neck squamous cell carcinoma (HNSCC) cell lines compared to the normal oral cell line could serve as biomarkers for patient stratification. To understand the proteomic complexity in HNSCC, we carried out iTRAQ-based MS analysis on a panel of HNSCC cell lines in addition to a normal oral keratinocyte cell line. LC-MS/MS analysis of total proteome of the HNSCC cell lines led to the identification of 3263 proteins, of which 185 proteins were overexpressed and 190 proteins were downregulated more than twofold in at least two of the three HNSCC cell lines studied. Among the overexpressed proteins, 23 proteins were related to DNA replication and repair. These included high-mobility group box 2 (HMGB2) protein, which was overexpressed in all three HNSCC lines studied. Overexpression of HMGB2 has been reported in various cancers, yet its role in HNSCC remains unclear. Immunohistochemical labeling of HMGB2 in a panel of HNSCC tumors using tissue microarrays revealed overexpression in 77% (54 of 70) of tumors. The HMGB proteins are known to bind to DNA structure resulting from cisplatin-DNA adducts and affect the chemosensitivity of cells. We observed that siRNA-mediated silencing of HMGB2 increased the sensitivity of the HNSCC cell lines to cisplatin and 5-FU. We hypothesize that targeting HMGB2 could enhance the efficacy of existing chemotherapeutic regimens for treatment of HNSCC. All MS data have been deposited in the ProteomeXchange with identifier PXD000737 (http://proteomecentral.proteomexchange.org/dataset/PXD000737).
Collapse
Affiliation(s)
- Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, India; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Knappskog S, Berge EO, Chrisanthar R, Geisler S, Staalesen V, Leirvaag B, Yndestad S, de Faveri E, Karlsen BO, Wedge DC, Akslen LA, Lilleng PK, Løkkevik E, Lundgren S, Østenstad B, Risberg T, Mjaaland I, Aas T, Lønning PE. Concomitant inactivation of the p53- and pRB- functional pathways predicts resistance to DNA damaging drugs in breast cancer in vivo. Mol Oncol 2015; 9:1553-64. [PMID: 26004085 PMCID: PMC5528784 DOI: 10.1016/j.molonc.2015.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Chemoresistance is the main obstacle to cancer cure. Contrasting studies focusing on single gene mutations, we hypothesize chemoresistance to be due to inactivation of key pathways affecting cellular mechanisms such as apoptosis, senescence, or DNA repair. In support of this hypothesis, we have previously shown inactivation of either TP53 or its key activators CHK2 and ATM to predict resistance to DNA damaging drugs in breast cancer better than TP53 mutations alone. Further, we hypothesized that redundant pathway(s) may compensate for loss of p53‐pathway signaling and that these are inactivated as well in resistant tumour cells. Here, we assessed genetic alterations of the retinoblastoma gene (RB1) and its key regulators: Cyclin D and E as well as their inhibitors p16 and p27. In an exploratory cohort of 69 patients selected from two prospective studies treated with either doxorubicin monotherapy or 5‐FU and mitomycin for locally advanced breast cancers, we found defects in the pRB‐pathway to be associated with therapy resistance (p‐values ranging from 0.001 to 0.094, depending on the cut‐off value applied to p27 expression levels). Although statistically weaker, we observed confirmatory associations in a validation cohort from another prospective study (n = 107 patients treated with neoadjuvant epirubicin monotherapy; p‐values ranging from 7.0 × 10−4 to 0.001 in the combined data sets). Importantly, inactivation of the p53‐and the pRB‐pathways in concert predicted resistance to therapy more strongly than each of the two pathways assessed individually (exploratory cohort: p‐values ranging from 3.9 × 10−6 to 7.5 × 10−3 depending on cut‐off values applied to ATM and p27 mRNA expression levels). Again, similar findings were confirmed in the validation cohort, with p‐values ranging from 6.0 × 10−7 to 6.5 × 10−5 in the combined data sets. Our findings strongly indicate that concomitant inactivation of the p53‐ and pRB‐ pathways predict resistance towards anthracyclines and mitomycin in breast cancer in vivo. Alterations of pRB's upstream regulators may substitute for RB1 mutations. The pRB‐pathway may direct response to chemotherapy. Inactivation of the p53‐and the pRB‐pathways predict resistance to chemotherapy. Concomitant p53‐and pRB‐pathway inactivation is a strong resistance predictor. Concomitant p53‐and pRB‐pathway inactivation predicts poor prognosis.
Collapse
Affiliation(s)
- Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| | - Elisabet O Berge
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Ranjan Chrisanthar
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Geisler
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Vidar Staalesen
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Beryl Leirvaag
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Synnøve Yndestad
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Elise de Faveri
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Bård O Karlsen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - David C Wedge
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Lars A Akslen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Peer K Lilleng
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Norway
| | - Erik Løkkevik
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Steinar Lundgren
- Department of Oncology, St. Olavs University Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Østenstad
- Department of Oncology, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Terje Risberg
- Department of Oncology, University Hospital of Northern Norway and Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Ingvild Mjaaland
- Division of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Lyer S, Singh R, Tietze R, Alexiou C. Magnetic nanoparticles for magnetic drug targeting. ACTA ACUST UNITED AC 2015; 60:465-75. [DOI: 10.1515/bmt-2015-0049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/05/2015] [Indexed: 01/22/2023]
Abstract
AbstractNanomedicine and superparamagnetic iron oxide nanoparticles (SPIONs) are thought to have an important impact on medicine in the future. Especially in cancer therapy, SPIONs offer the opportunity of improving the effectivity of the treatment and reduce side effects by magnetic accumulation of SPION-bound chemotherapeutics in the tumor area. Although still some challenges have to be overcome, before the new treatment concept of magnetic drug targeting will reach the patients, substantial progress has been made, and promising results were shown in the last years.
Collapse
|
35
|
Rajan P, Stockley J, Sudbery IM, Fleming JT, Hedley A, Kalna G, Sims D, Ponting CP, Heger A, Robson CN, McMenemin RM, Pedley ID, Leung HY. Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer 2014; 14:977. [PMID: 25519703 PMCID: PMC4301544 DOI: 10.1186/1471-2407-14-977] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although chemotherapy for prostate cancer (PCa) can improve patient survival, some tumours are chemo-resistant. Tumour molecular profiles may help identify the mechanisms of drug action and identify potential prognostic biomarkers. We performed in vivo transcriptome profiling of pre- and post-treatment prostatic biopsies from patients with advanced hormone-naive prostate cancer treated with docetaxel chemotherapy and androgen deprivation therapy (ADT) with an aim to identify the mechanisms of drug action and identify prognostic biomarkers. METHODS RNA sequencing (RNA-Seq) was performed on biopsies from four patients before and ~22 weeks after docetaxel and ADT initiation. Gene fusion products and differentially-regulated genes between treatment pairs were identified using TopHat and pathway enrichment analyses undertaken. Publically available datasets were interrogated to perform survival analyses on the gene signatures identified using cBioportal. RESULTS A number of genomic rearrangements were identified including the TMPRSS2/ERG fusion and 3 novel gene fusions involving the ETS family of transcription factors in patients, both pre and post chemotherapy. In total, gene expression analyses showed differential expression of at least 2 fold in 575 genes in post-chemotherapy biopsies. Of these, pathway analyses identified a panel of 7 genes (ADAM7, FAM72B, BUB1B, CCNB1, CCNB2, TTK, CDK1), including a cell cycle-related geneset, that were differentially-regulated following treatment with docetaxel and ADT. Using cBioportal to interrogate the MSKCC-Prostate Oncogenome Project dataset we observed a statistically-significant reduction in disease-free survival of patients with tumours exhibiting alterations in gene expression of the above panel of 7 genes (p = 0.015). CONCLUSIONS Here we report on the first "real-time" in vivo RNA-Seq-based transcriptome analysis of clinical PCa from pre- and post-treatment TRUSS-guided biopsies of patients treated with docetaxel chemotherapy plus ADT. We identify a chemotherapy-driven PCa transcriptome profile which includes the down-regulation of important positive regulators of cell cycle progression. A 7 gene signature biomarker panel has also been identified in high-risk prostate cancer patients to be of prognostic value. Future prospective study is warranted to evaluate the clinical value of this panel.
Collapse
Affiliation(s)
- Prabhakar Rajan
- />Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jacqueline Stockley
- />Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | - David Sims
- />MRC Functional Genomics Unit, Oxford, UK
| | | | | | | | - Rhona M McMenemin
- />Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ian D Pedley
- />Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Hing Y Leung
- />Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, G61 1BD UK
| |
Collapse
|
36
|
Wip1 phosphatase in breast cancer. Oncogene 2014; 34:4429-38. [PMID: 25381821 DOI: 10.1038/onc.2014.375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
Understanding the factors contributing to tumor initiation, progression and evolution is of paramount significance. Among them, wild-type p53-induced phosphatase 1 (Wip1) is emerging as an important oncogene by virtue of its negative control on several key tumor suppressor pathways. Originally discovered as a p53-regulated gene, Wip1 has been subsequently found amplified and more recently mutated in a significant fraction of human cancers including breast tumors. Recent development in the field further uncovered the utility of anti-Wip1-directed therapies in delaying tumor onset or in reducing the tumor burden. Furthermore, Wip1 could be an important factor that contributes to tumor heterogeneity, suggesting that its inhibition may decrease the rate of cancer evolution. These effects depend on several signaling pathways modulated by Wip1 phosphatase in a spatial and temporal manner. In this review we discuss the recent development in understanding how Wip1 contributes to tumorigenesis with its relevance to breast cancer.
Collapse
|
37
|
Klajic J, Busato F, Edvardsen H, Touleimat N, Fleischer T, Bukholm I, Børresen-Dale AL, Lønning PE, Tost J, Kristensen VN. DNA methylation status of key cell-cycle regulators such as CDKNA2/p16 and CCNA1 correlates with treatment response to doxorubicin and 5-fluorouracil in locally advanced breast tumors. Clin Cancer Res 2014; 20:6357-66. [PMID: 25294903 DOI: 10.1158/1078-0432.ccr-14-0297] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore alterations in gene promoter methylation as a potential cause of acquired drug resistance to doxorubicin or combined treatment with 5-fluorouracil and mitomycin C in human breast cancers. EXPERIMENTAL DESIGN Paired tumor samples from locally advanced breast cancer patients treated with doxorubicin and 5-fluorouracil-mitomycin C were used in the genome-wide DNA methylation analysis as discovery cohort. An enlarged cohort from the same two prospective studies as those in the discovery cohort was used as a validation set in pyrosequencing analysis. RESULTS A total of 469 genes were differentially methylated after treatment with doxorubicin and revealed a significant association with canonical pathways enriched for immune cell response and cell-cycle regulating genes including CDKN2A, CCND2, CCNA1, which were also associated to treatment response. Treatment with FUMI resulted in 343 differentially methylated genes representing canonical pathways such as retinoate biosynthesis, gαi signaling, and LXR/RXR activation. Despite the clearly different genes and pathways involved in the metabolism and therapeutic effect of both drugs, 46 genes were differentially methylated before and after treatment with both doxorubicin and FUMI. DNA methylation profiles in genes such as BRCA1, FOXC1, and IGFBP3, and most notably repetitive elements like ALU and LINE1, were associated with TP53 mutations status. CONCLUSION We identified and validated key cell-cycle regulators differentially methylated before and after neoadjuvant chemotherapy such as CDKN2A and CCNA1 and reported that methylation patterns of these genes may be potential predictive markers to anthracycline/mitomycine sensitivity.
Collapse
Affiliation(s)
- Jovana Klajic
- Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway. K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Hege Edvardsen
- Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Nizar Touleimat
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Thomas Fleischer
- K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Ida Bukholm
- Department of Surgery, Akerhus University Hospital, Oslo, Norway. Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Anne-Lise Børresen-Dale
- K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway
| | - Per Eystein Lønning
- Section of Oncology, Institute of Clinical Science, University of Bergen, Bergen, Norway. Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Vessela N Kristensen
- Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway. K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet Montebello, Oslo, Norway.
| |
Collapse
|
38
|
Austreid E, Lonning PE, Eikesdal HP. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin Pharmacother 2014; 15:681-700. [PMID: 24579888 DOI: 10.1517/14656566.2014.885952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Deregulated signaling pathways are associated with resistance to chemotherapy and endocrine treatment, providing a rationale for the implementation of novel targeted therapies in breast cancer therapy. Key molecules targeted therapeutically in ongoing clinical breast cancer trials are phosphoinositide 3-kinase-Akt-mammalian target of rapamycin (mTOR), Src, insulin-like growth factor 1 receptor, heat shock protein-90, histone deacetylases, cyclin-dependent kinases (CDKs), Notch and human epidermal growth factor receptors (HERs). AREAS COVERED This review provides an overview of novel targeted agents currently explored in clinical breast cancer trials and registered in ClinicalTrials.gov. The main focus will be on their ability to prevent or reverse endocrine resistance and chemoresistance in breast cancer. EXPERT OPINION HER2 targeted agents have extended survival substantially, both in the adjuvant and metastatic setting, pointing to a crucial dependency on this pathway in HER2-amplified breast cancer, including drug resistance reversal. While data on mTOR inhibitors are encouraging and preliminary results on CDK4/6 and Src inhibitors exciting, so far other targeted agents have been of limited benefit when added in concert with conventional therapies. Future clinical trials should systematically explore biomarkers and defects in functional gene cascades to identify relevant biological mechanisms to be targeted therapeutically in breast cancer.
Collapse
Affiliation(s)
- Eilin Austreid
- University of Bergen, Department of Clinical Science, Section of Oncology , Bergen , Norway
| | | | | |
Collapse
|
39
|
Peacock JD, Cherba D, Kampfschulte K, Smith MK, Monks NR, Webb CP, Steensma M. Molecular-guided therapy predictions reveal drug resistance phenotypes and treatment alternatives in malignant peripheral nerve sheath tumors. J Transl Med 2013; 11:213. [PMID: 24040940 PMCID: PMC3848568 DOI: 10.1186/1479-5876-11-213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNST) are rare highly aggressive sarcomas that affect 8-13% of people with neurofibromatosis type 1. The prognosis for patients with MPNST is very poor. Despite TOP2A overexpression in these tumors, doxorubicin resistance is common, and the mechanisms of chemotherapy resistance in MPNST are poorly understood. Molecular-guided therapy prediction is an emerging strategy for treatment refractory sarcomas that involves identification of therapy response and resistance mechanisms in individual tumors. Here, we report the results from a personalized, molecular-guided therapy analysis of MPNST samples. Methods Established molecular-guided therapy prediction software algorithms were used to analyze published microarray data from human MPNST samples and cell lines, with benign neurofibroma tissue controls. MPNST and benign neurofibroma-derived cell lines were used for confirmatory in vitro experimentation using quantitative real-time PCR and growth inhibition assays. Microarray data was analyzed using Affymetrix expression console MAS 5.0 method. Significance was calculated with Welch’s t-test with non-corrected p-value < 0.05 and validated using permutation testing across samples. Paired Student’s t-tests were used to compare relative EC50 values from independent growth inhibition experiments. Results Molecular guided therapy predictions highlight substantial variability amongst human MPNST samples in expression of drug target and drug resistance pathways, as well as some similarities amongst samples, including common up-regulation of DNA repair mechanisms. In a subset of MPNSTs, high expression of ABCC1 is observed, serving as a predicted contra-indication for doxorubicin and related therapeutics in these patients. These microarray-based results are confirmed with quantitative, real-time PCR and immunofluorescence. The functional effect of drug efflux in MPNST-derived cells is confirmed using in vitro growth inhibition assays. Alternative therapeutics supported by the molecular-guided therapy predictions are reported and tested in MPNST-derived cells. Conclusions These results confirm the substantial molecular heterogeneity of MPNSTs and validate molecular-guided therapy predictions in vitro. The observed molecular heterogeneity in MPNSTs influences therapy prediction. Also, mechanisms involving drug transport and DNA damage repair are primary mediators of MPNST chemotherapy resistance. Together, these findings support the utility of individualized therapy in MPNST as in other sarcomas, and provide initial proof-of concept that individualized therapy prediction can be accomplished.
Collapse
|
40
|
Li J, Zhao S, Zhou X, Zhang T, Zhao L, Miao P, Song S, Sun X, Liu J, Zhao X, Huang G. Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel. PLoS One 2013; 8:e74623. [PMID: 24040298 PMCID: PMC3770579 DOI: 10.1371/journal.pone.0074623] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022] Open
Abstract
Chemoresistance is a major cause of treatment failure in patients with lung cancer. Although the extensive efforts have been made in overcoming chemoresistance, the underlying mechanisms are still elusive. Cancer cells reprogram cellular metabolism to satisfy the demands of malignant phenotype. To reveal roles of cancer metabolism in regulating chemoresistance, we profiled the metabolic characteristics in paclitaxel-resistant lung cancer cells by flux assay. Glucose and oleate metabolism were significantly different between resistant and non-resistant cells. In addition, targeting metabolism as a strategy to overcome drug resistance was investigated using specific metabolic inhibitors. Inhibition of glycolysis and oxidative phosphorylation by 2-deoxyglucose and malonate, respectively, potentiated the effects of paclitaxel on nonresistant lung adenocarcinoma cells but not paclitaxel-resistant cells. By contrast, inhibition of lipolysis by mercaptoacetate or etomoxir synergistically inhibited drug-resistant lung adenocarcinoma cell proliferation. We conclude that lipolysis inhibition potentially be a therapeutic strategy to overcome drug resistance in lung cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyan Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Teng Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Miao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoguang Sun
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Abstract
Following their successful implementation for the treatment of metastatic breast cancer, the 'third-generation' aromatase inhibitors (anastrozole, letrozole, and exemestane) have now become standard adjuvant endocrine treatment for postmenopausal estrogen receptor-positive breast cancers. These drugs are characterized by potent aromatase inhibition, causing >98% inhibition of estrogen synthesis in vivo. A recent meta-analysis found no difference in anti-tumor efficacy between these three compounds. As of today, aromatase inhibitor monotherapy and sequential treatment using tamoxifen followed by an aromatase inhibitor for a total of 5 years are considered equipotent treatment options. However, current trials are addressing the potential benefit of extending treatment duration beyond 5 years. Regarding side effects, aromatase inhibitors are not found associated with enhanced risk of cardiovascular disease, and enhanced bone loss is prevented by adding bisphosphonates in concert for those at danger of developing osteoporosis. However, arthralgia and carpal tunnel syndrome preclude drug administration among a few patients. While recent findings have questioned the use of aromatase inhibitors among overweight and, in particular, obese patients, this problem seems to focus on premenopausal patients treated with an aromatase inhibitor and an LH-RH analog in concert, questioning the efficacy of LH-RH analogs rather than aromatase inhibitors among overweight patients. Finally, recent findings revealing a benefit from adding the mTOR inhibitor everolimus to endocrine treatment indicate targeted therapy against defined growth factor pathways to be a way forward, by reversing acquired resistance to endocrine therapy.
Collapse
Affiliation(s)
- Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | | |
Collapse
|
42
|
Kunze D, Erdmann K, Froehner M, Wirth MP, Fuessel S. Enhanced inhibition of bladder cancer cell growth by simultaneous knockdown of antiapoptotic Bcl-xL and survivin in combination with chemotherapy. Int J Mol Sci 2013; 14:12297-312. [PMID: 23749114 PMCID: PMC3709786 DOI: 10.3390/ijms140612297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023] Open
Abstract
The overexpression of antiapoptotic genes, such as Bcl-xL and survivin, contributes to the increased survival of tumor cells and to the development of treatment resistances. In the bladder cancer cell lines EJ28 and J82, the siRNA-mediated knockdown of survivin reduces cell proliferation and the inhibition of Bcl-xL sensitizes these cells towards subsequent chemotherapy with mitomycin C and cisplatin. Therefore, the aim of this study was to analyze if the simultaneous knockdown of Bcl-xL and survivin might represent a more powerful treatment option for bladder cancer than the single inhibition of one of these target genes. At 96 h after transfection, reduction in cell viability was stronger after simultaneous inhibition of Bcl-xL and survivin (decrease of 40%-48%) in comparison to the single target treatments (decrease of 29% at best). Furthermore, simultaneous knockdown of Bcl-xL and survivin considerably increased the efficacy of subsequent chemotherapy. For example, cellular viability of EJ28 cells decreased to 6% in consequence of Bcl-xL and survivin inhibition plus cisplatin treatment whereas single target siRNA plus chemotherapy treatments mediated reductions down to 15%-36% only. In conclusion, the combination of simultaneous siRNA-mediated knockdown of antiapoptotic Bcl-xL and survivin-a multitarget molecular-based therapy-and conventional chemotherapy shows great potential for improving bladder cancer treatment.
Collapse
Affiliation(s)
- Doreen Kunze
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Kati Erdmann
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Michael Froehner
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Manfred P. Wirth
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| | - Susanne Fuessel
- Department of Urology, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; E-Mails: (K.E.); (M.F.); (M.P.W.); (S.F.)
| |
Collapse
|