1
|
Wu F, Feng J, Wang H, Wang S, Cui X, Liu Y, Yan L, Ye K, Thorne RF, Zhang XD, La T. Efficacy of toripalimab in combination with anlotinib in recurrent undifferentiated pleomorphic sarcoma of the sinonasal region: a case report with biomarker analysis. Front Immunol 2025; 16:1541209. [PMID: 40416963 PMCID: PMC12098334 DOI: 10.3389/fimmu.2025.1541209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/17/2025] [Indexed: 05/27/2025] Open
Abstract
Background Soft tissue sarcoma (STS) typically originates in the muscles and is associated with a poor prognosis. Undifferentiated pleomorphic sarcoma (UPS) is the most commonly diagnosed subtype of STS; however, UPS occurring in the sinonasal region is exceedingly rare and lacks effective treatment options. Objective This case report presents a patient with sinonasal UPS who experienced disease progression after surgery and chemotherapy but showed a positive response to combination therapy with toripalimab and anlotinib. Additionally, it explores the underlying biomarkers associated with this case. Case A 63-year-old woman with no significant past medical history was diagnosed with sinonasal UPS. The lesions recurred despite seven extensive surgical resections, and standard chemotherapy failed to control the disease, leading to progressive disease (PD). Results The patient was treated with a combination of toripalimab and anlotinib, resulting in a significant partial response (PR) after just two cycles. Continued PR was observed after an additional six cycles, indicating the potential for a prolonged response with ongoing therapy. Genotyping and immunohistochemistry revealed that the sarcoma cells were rapidly dividing and enriched in vasculature prior to systemic treatment. Conclusion These findings suggest that the combination of toripalimab and anlotinib may be an effective treatment option for advanced cases of UPS in the sinonasal region.
Collapse
Affiliation(s)
- Fang Wu
- Department of Oncology, the First Affiliated Hospital of The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junqiao Feng
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hong Wang
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shan Wang
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaoguang Cui
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ying Liu
- Department of Radiology, the First Affiliated Hospital of The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Linli Yan
- Department of Pathology, the First Affiliated Hospital of The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kaihong Ye
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rick F. Thorne
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Soukupova J, Stastna B, Kanwal M, Hojny J, Zemankova P, Borecka M, Cerna L, Cerna M, Cerna M, Curtisova V, Dolezalova T, Duskova P, Foretova L, Havranek O, Horackova K, Hovhannisyan M, Hruskova L, Chvojka S, Janatova M, Janikova M, Jelinkova S, Just P, Kalousova M, Kleiblova P, Kosarova M, Koudova M, Kral J, Krausova M, Krutilkova V, Machackova E, Matejkova K, Michalovska R, Nehasil P, Nemcova B, Novotny J, Palek M, Pesek P, Safarikova M, Scheinost O, Springer D, Stolarova L, Stranecky V, Subrt I, Tavandzis S, Tureckova E, Vesela K, Vlckova Z, Vocka M, Zima T, Macurek L, Kleibl Z, the CZECANCA consortium. A comprehensive study evaluating germline FANCG variants in predisposition to breast and ovarian cancer. Cancer Med 2024; 13:e70103. [PMID: 39149814 PMCID: PMC11327753 DOI: 10.1002/cam4.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Monoallelic germline pathogenic variants (GPVs) in five Fanconi anemia (FA) genes (BRCA1/FANCS, BRCA2/FANCD1, PALB2/FANCN, BRIP1/FANCJ, and RAD51C/FANCO) confer an increased risk of breast (BC) and/or ovarian (OC) cancer, but the role of GPVs in 17 other FA genes remains unclear. METHODS Here, we investigated the association of germline variants in FANCG/XRCC9 with BC and OC risk. RESULTS The frequency of truncating GPVs in FANCG did not differ between BC (20/10,204; 0.20%) and OC (8/2966; 0.27%) patients compared to controls (6/3250; 0.18%). In addition, only one out of five tumor samples showed loss-of-heterozygosity of the wild-type FANCG allele. Finally, none of the nine functionally tested rare recurrent missense FANCG variants impaired DNA repair activities (FANCD2 monoubiquitination and FANCD2 foci formation) upon DNA damage, in contrast to all tested FANCG truncations. CONCLUSION Our study suggests that heterozygous germline FANCG variants are unlikely to contribute to the development of BC or OC.
Collapse
Affiliation(s)
- Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Barbora Stastna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Biochemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Madiha Kanwal
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Hojny
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles UniversityPragueCzech Republic
| | - Marianna Borecka
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Leona Cerna
- Centre for Medical Genetics and Reproductive Medicine, GENNETPragueCzech Republic
| | - Marta Cerna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Monika Cerna
- Institute of Medical Genetics, University Hospital PilsenPilsenCzech Republic
| | - Vaclava Curtisova
- Department of Medical GeneticsFaculty of Medicine and Dentistry, University Hospital Olomouc, Palacky UniversityOlomoucCzech Republic
| | - Tatana Dolezalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Petra Duskova
- Hospital Ceske BudejoviceCeske BudejoviceCzech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Ondrej Havranek
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- BIOCEV, First Faculty of MedicineCharles UniversityVestecCzech Republic
| | - Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Milena Hovhannisyan
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Lucie Hruskova
- Department of Medical GeneticsGHC GeneticsPragueCzech Republic
| | - Stepan Chvojka
- Centre for Medical Genetics and Reproductive Medicine, GENNETPragueCzech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Maria Janikova
- Department of Medical GeneticsFaculty of Medicine and Dentistry, University Hospital Olomouc, Palacky UniversityOlomoucCzech Republic
| | - Sandra Jelinkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Pavel Just
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | | | - Monika Koudova
- Centre for Medical Genetics and Reproductive Medicine, GENNETPragueCzech Republic
| | - Jan Kral
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Michaela Krausova
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Vera Krutilkova
- Department of Medical Genetics, AGEL LaboratoriesAGEL Research and Training InstituteNovy JicinCzech Republic
| | - Eva Machackova
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Department of Genetics and Microbiology, Faculty of ScienceCharles University in PraguePragueCzech Republic
| | | | - Petr Nehasil
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles UniversityPragueCzech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Barbora Nemcova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Jan Novotny
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute for Clinical and Experimental MedicinePragueCzech Republic
| | - Matous Palek
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Pavel Pesek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Marketa Safarikova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | | | - Drahomira Springer
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Lenka Stolarova
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Viktor Stranecky
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Ivan Subrt
- Institute of Medical Genetics, University Hospital PilsenPilsenCzech Republic
| | - Spiros Tavandzis
- Department of Medical Genetics, AGEL LaboratoriesAGEL Research and Training InstituteNovy JicinCzech Republic
| | - Eva Tureckova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Kamila Vesela
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Zdenka Vlckova
- Department of Medical GeneticsGHC GeneticsPragueCzech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
| | - Libor Macurek
- Laboratory of Cancer Cell BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in PraguePragueCzech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles UniversityPragueCzech Republic
| | | |
Collapse
|
3
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
4
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2022; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
5
|
Zhu W, Liu Y, Zhang W, Fan W, Wang S, Gu JH, Sun H, Liu F. Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging (Albany NY) 2021; 13:11705-11726. [PMID: 33875618 PMCID: PMC8109066 DOI: 10.18632/aging.202865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) can differentiate into all blood lineages to maintain hematopoiesis, wound healing, and immune functions. Recently, cobalt-chromium alloy casting implants have been used extensively in total hip replacements; however, cobalt nanoparticles (CoNPs) released from the alloy were toxic to HSCs and HPCs. We aimed to investigate the mechanism underlying the toxic effect of CoNPs on HSCs/HPCs and to determine the protective effect of selenomethionine (SeMet) against CoNPs in vitro and in vivo. Human and rat CD34+ HSCs/HPCs were isolated from cord blood and bone marrow, respectively. CoNPs decreased the viability of CD34+ HSCs/HPCs and increased apoptosis. SeMet attenuated the toxicity of CoNPs by enhancing the antioxidant ability of cells. The protective effect of SeMet was not completely abolished after adding H2O2 to abrogate the improvement of the antioxidant capacity by SeMet. SeMet and CoNPs stimulated ATM/ATR DNA damage response signals and inhibited cell proliferation. Unlike CoNPs, SeMet did not damage the DNA, and cell proliferation recovered after removing SeMet. SeMet inhibited the CoNP-induced upregulation of hypoxia inducible factor (HIF)-1α, thereby disrupting the inhibitory effect of HIF-1α on breast cancer type 1 susceptibility protein (BRCA1). Moreover, SeMet promoted BRCA1-mediated ubiquitination of cyclin B by upregulating UBE2K. Thus, SeMet enhanced cell cycle arrest and DNA repair post-CoNP exposure. Overall, SeMet protected CD34+ HSCs/HPCs against CoNPs by stimulating antioxidant activity and DNA repair.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weinan Zhang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wentao Fan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siqi Wang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Huanjian Sun
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Schubert S, van Luttikhuizen JL, Auber B, Schmidt G, Hofmann W, Penkert J, Davenport CF, Hille-Betz U, Wendeburg L, Bublitz J, Tauscher M, Hackmann K, Schröck E, Scholz C, Wallaschek H, Schlegelberger B, Illig T, Steinemann D. The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants. Int J Cancer 2019; 144:2683-2694. [PMID: 30426508 DOI: 10.1002/ijc.31992] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
NGS-based multiple gene panel resequencing in combination with a high resolution CGH-array was used to identify genetic risk factors for hereditary breast and/or ovarian cancer in 237 high risk patients who were previously tested negative for pathogenic BRCA1/2 variants. All patients were screened for pathogenic variants in 94 different cancer predisposing genes. We identified 32 pathogenic variants in 14 different genes (ATM, BLM, BRCA1, CDH1, CHEK2, FANCG, FANCM, FH, HRAS, PALB2, PMS2, PTEN, RAD51C and NBN) in 30 patients (12.7%). Two pathogenic BRCA1 variants that were previously undetected due to less comprehensive and sensitive methods were found. Five pathogenic variants are novel, three of which occur in genes yet unrelated to hereditary breast and/or ovarian cancer (FANCG, FH and HRAS). In our cohort we discovered a remarkably high frequency of truncating variants in FANCM (2.1%), which has recently been suggested as a susceptibility gene for hereditary breast cancer. Two patients of our cohort carried two different pathogenic variants each and 10 other patients in whom a pathogenic variant was confirmed also harbored a variant of unknown significance in a breast and ovarian cancer susceptibility gene. We were able to identify pathogenic variants predisposing for tumor formation in 12.3% of BRCA1/2 negative breast and/or ovarian cancer patients.
Collapse
Affiliation(s)
- Stephanie Schubert
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Judith Penkert
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Colin F Davenport
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Ursula Hille-Betz
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Lena Wendeburg
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Janin Bublitz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marcel Tauscher
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Partner Site Dresden, Dresden, Germany
| | - Caroline Scholz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Associations of complementation group, ALDH2 genotype, and clonal abnormalities with hematological outcome in Japanese patients with Fanconi anemia. Ann Hematol 2018; 98:271-280. [PMID: 30368588 DOI: 10.1007/s00277-018-3517-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Fanconi anemia (FA) is a genetically and clinically heterogeneous disorder that predisposes patients to bone marrow failure (BMF), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). To study which genetic and phenotypic factors predict clinical outcomes for Japanese FA patients, we examined the FA genes, bone marrow karyotype, and aldehyde dehydrogenase-2 (ALDH2) genotype; variants of which are associated with accelerated progression of BMF in FA. In 88 patients, we found morphologic MDS/AML in 33 patients, including refractory cytopenia in 16, refractory anemia with excess blasts (RAEB) in 7, and AML in 10. The major mutated FA genes observed in this study were FANCA (n = 52) and FANCG (n = 23). The distribution of the ALDH2 variant alleles did not differ significantly between patients with mutations in FANCA and FANCG. However, patients with FANCG mutations had inferior BMF-free survival and received hematopoietic stem cell transplantation (HSCT) at a younger age than those with FANCA mutations. In FANCA, patients with the c.2546delC mutation (n = 24) related to poorer MDS/AML-free survival and a younger age at HSCT than those without this mutation. All patients with RAEB/AML had an abnormal karyotype and poorer prognosis after HSCT; specifically, the presence of a structurally complex karyotype with a monosomy (n = 6) was associated with dismal prognosis. In conclusion, the best practice for a clinician may be to integrate the morphological, cytogenetic, and genetic data to optimize HSCT timing in Japanese FA patients.
Collapse
|
8
|
Farris TR, Zhu B, Wang JY, McBride JW. Ehrlichia chaffeensis TRP32 Nucleomodulin Function and Localization Is Regulated by NEDD4L-Mediated Ubiquitination. Front Cell Infect Microbiol 2018; 7:534. [PMID: 29376035 PMCID: PMC5768648 DOI: 10.3389/fcimb.2017.00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that reprograms the mononuclear phagocyte through diverse effector-host interactions to modulate various host cell processes. In a previous study, we reported that the E. chaffeensis nucleomodulin TRP32 regulates transcription of host genes in several biologically relevant categories, including cell differentiation and proliferation. In this study, we investigate the effect of ubiquitination on TRP32 function and localization within the host cell. TRP32 is both mono- and polyubiquitinated on multiple lysine residues during infection and when ectopically expressed. Despite lacking a canonical PPxY motif, TRP32 interacted with, and was modified by the human HECT E3 ubiquitin (Ub) ligase NEDD4L. TRP32 ubiquitination was not by K48-linked polyUb chains, nor was it degraded by the proteasome; however, TRP32 was modified by K63-linked polyUb chains detected both in the cytosol and nucleus. HECT ligase inhibitor, heclin, altered the subnuclear localization of ectopically expressed TRP32 from a diffuse nuclear pattern to a lacy, punctate pattern with TRP32 distributed around the periphery of the nucleus and nucleoli. When a TRP32 lysine null (K-null) mutant was ectopically expressed, it exhibited a similar phenotype as single lysine mutants (K63R, K93R, and K123R). However, the K-null mutant showed increased amounts of cytoplasmic TRP32 compared to single lysine mutants or heclin-treated cells ectopically expressing TRP32. These alterations in localization corresponded to changes in TRP32 transcriptional repressor function with heclin-treated and single lysine mutants unable to repress transcription of a TRP32 target genes in a luciferase assay.
Collapse
Affiliation(s)
- Tierra R Farris
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bing Zhu
- Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer Y Wang
- Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Cell Biology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
10
|
Bhattacharjee S, Nandi S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 2017; 15:41. [PMID: 29017571 PMCID: PMC5635482 DOI: 10.1186/s12964-017-0195-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.
Collapse
|
11
|
Türke C, Horn S, Petto C, Labudde D, Lauer G, Wittenburg G. Loss of heterozygosity in FANCG, FANCF and BRIP1 from head and neck squamous cell carcinoma of the oral cavity. Int J Oncol 2017; 50:2207-2220. [PMID: 28440438 DOI: 10.3892/ijo.2017.3974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Recent advances have been made in the understanding of Fanconi anemia (FA), a hereditary disease that increases the risk for head and neck squamous cell carcinomas (HNSCC) by 500- to 700-fold. FA patients harbour germline mutations in genes of cellular DNA repair pathways that are assumed to facilitate the accumulation of mutations during HNSCC development. Mutations in these FA genes may also contribute to HNSCC in general. In the present study, we analysed three FA genes; FANCF, FANCG and BRIP1, that are involved in the repair of DNA inter strand cross-links, in HNSCC and their potential role for patient survival. We measured loss of heterozygosity (LOH) mutations at eight microsatellite loci flanking three FA genes in 54 HNSCC of the oral cavity and corresponding blood samples. Survival analyses were carried out using mutational data and clinical variables. LOH was present in 17% (FANCF region), 41% (FANCG region) and 11% (BRIP1 region) of the patients. Kaplan-Meier survival curves and log-rank tests indicated strong clinical predictors (lymph node stages with decreased survival: p=2.69e-12; surgery with improved survival: p=0.0005). LOH in the FANCF region showed a weaker association with decreased overall survival (p=0.006), which however, did not hold in multivariate analyses. LOH may predominantly indicate copy number gains in FANCF and losses in FANCG and BRIP1. Integration of copy number data and gene expression proved difficult as the available sample sets did not overlap. In conclusion, LOH in FA genes appears to be a common feature of HNSCC development seen here in 57% of patients and other mutation types may increase this mutation frequency. We suggest larger patient cohorts would be needed to test the observed association of LOH in FANCF and patient survival comprehensively.
Collapse
Affiliation(s)
- Christin Türke
- Department for Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, and German Consortium for Translational Cancer Research (DKTK), Essen, Germany
| | - Carola Petto
- Department for Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dirk Labudde
- Department of Bioinformatics, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Günter Lauer
- Department for Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gretel Wittenburg
- Department for Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Lopez-Martinez D, Liang CC, Cohn MA. Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell Mol Life Sci 2016; 73:3097-114. [PMID: 27094386 PMCID: PMC4951507 DOI: 10.1007/s00018-016-2218-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Interstrand crosslinks (ICLs) are a highly toxic form of DNA damage. ICLs can interfere with vital biological processes requiring separation of the two DNA strands, such as replication and transcription. If ICLs are left unrepaired, it can lead to mutations, chromosome breakage and mitotic catastrophe. The Fanconi anemia (FA) pathway can repair this type of DNA lesion, ensuring genomic stability. In this review, we will provide an overview of the cellular response to ICLs. First, we will discuss the origin of ICLs, comparing various endogenous and exogenous sources. Second, we will describe FA proteins as well as FA-related proteins involved in ICL repair, and the post-translational modifications that regulate these proteins. Finally, we will review the process of how ICLs are repaired by both replication-dependent and replication-independent mechanisms.
Collapse
Affiliation(s)
- David Lopez-Martinez
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
13
|
Her J, Soo Lee N, Kim Y, Kim H. Factors forming the BRCA1-A complex orchestrate BRCA1 recruitment to the sites of DNA damage. Acta Biochim Biophys Sin (Shanghai) 2016; 48:658-64. [PMID: 27325824 DOI: 10.1093/abbs/gmw047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
Sustaining genomic integrity is essential for preventing onset of cancers. Therefore, human cells evolve to have refined biological pathways to defend genetic materials from various genomic insults. DNA damage response and DNA repair pathways essential for genome maintenance are accomplished by cooperative executions of multiple factors including breast cancer type 1 susceptibility protein (BRCA1). BRCA1 is initially identified as an altered gene in the hereditary breast cancer patients. Since then, tremendous efforts to understand the functions of BRAC1 reveal that BRCA1 is found in distinct complexes, including BRCA1-A, BRCA1-B, BRCA1-C, and the BRCA1/PALB2/BRCA2 complex, and plays diverse roles in a context-dependent manner. Among the complexes, BRCA1-A is critical for BRCA1 recruitment to the sites of DNA damage. Factors comprising the BRCA1-A include RAP80, CCDC98/Abraxas, BRCC36, BRCC45, BARD1, BRCA1, and MERIT40, a RAP80-associated factor. In this review, we summarize recent findings of the factors that form the BRCA1-A complex.
Collapse
Affiliation(s)
- Joonyoung Her
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
14
|
Renaudin X, Koch Lerner L, Menck CFM, Rosselli F. The ubiquitin family meets the Fanconi anemia proteins. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:36-46. [PMID: 27543315 DOI: 10.1016/j.mrrev.2016.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
Fanconi anaemia (FA) is a hereditary disorder characterized by bone marrow failure, developmental defects, predisposition to cancer and chromosomal abnormalities. FA is caused by biallelic mutations that inactivate genes encoding proteins involved in replication stress-associated DNA damage responses. The 20 FANC proteins identified to date constitute the FANC pathway. A key event in this pathway involves the monoubiquitination of the FANCD2-FANCI heterodimer by the collective action of at least 10 different proteins assembled in the FANC core complex. The FANC core complex-mediated monoubiquitination of FANCD2-FANCI is essential to assemble the heterodimer in subnuclear, chromatin-associated, foci and to regulate the process of DNA repair as well as the rescue of stalled replication forks. Several recent works have demonstrated that the activity of the FANC pathway is linked to several other protein post-translational modifications from the ubiquitin-like family, including SUMO and NEDD8. These modifications are related to DNA damage responses but may also affect other cellular functions potentially related to the clinical phenotypes of the syndrome. This review summarizes the interplay between the ubiquitin and ubiquitin-like proteins and the FANC proteins that constitute a major pathway for the surveillance of the genomic integrity and addresses the implications of their interactions in maintaining genome stability.
Collapse
Affiliation(s)
- Xavier Renaudin
- CNRS UMR 8200-Equipe Labellisée "La Ligue Contre le Cancer"-Institut Gustave Roussy, 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris Sud, 91400 Orsay, France.
| | - Leticia Koch Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | | - Filippo Rosselli
- CNRS UMR 8200-Equipe Labellisée "La Ligue Contre le Cancer"-Institut Gustave Roussy, 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris Sud, 91400 Orsay, France.
| |
Collapse
|
15
|
Ng HM, Wei L, Lan L, Huen MSY. The Lys63-deubiquitylating Enzyme BRCC36 Limits DNA Break Processing and Repair. J Biol Chem 2016; 291:16197-207. [PMID: 27288411 DOI: 10.1074/jbc.m116.731927] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Multisubunit protein assemblies offer integrated functionalities for efficient cell signal transduction control. One example of such protein assemblies, the BRCA1-A macromolecular complex, couples ubiquitin recognition and metabolism and promotes cellular responses to DNA damage. Specifically, the BRCA1-A complex not only recognizes Lys(63)-linked ubiquitin (K63-Ub) adducts at the damaged chromatin but is endowed with K63-Ub deubiquitylase (DUB) activity. To explore how the BRCA1-A DUB activity contributes to its function at DNA double strand breaks (DSBs), we used RNAi and genome editing approaches to target BRCC36, the protein subunit that confers the BRCA1-A complex its DUB activity. Intriguingly, we found that the K63-Ub DUB activity, although dispensable for maintaining the integrity of the macromolecular protein assembly, is important in enforcing the accumulation of the BRCA1-A complex onto DSBs. Inactivating BRCC36 DUB attenuated BRCA1-A functions at DSBs and led to unrestrained DSB end resection and hyperactive DNA repair. Together, our findings uncover a pivotal role of BRCC36 DUB in limiting DSB processing and repair and illustrate how cells may physically couple ubiquitin recognition and metabolizing activities for fine tuning of DNA repair processes.
Collapse
Affiliation(s)
- Hoi-Man Ng
- From the School of Biomedical Sciences, LKS Faculty of Medicine, and
| | - Leizhen Wei
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Li Lan
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Michael S Y Huen
- From the School of Biomedical Sciences, LKS Faculty of Medicine, and the State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, L1-46, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong and
| |
Collapse
|
16
|
Nagy Z, Kalousi A, Furst A, Koch M, Fischer B, Soutoglou E. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs. PLoS Genet 2016; 12:e1005791. [PMID: 26845027 PMCID: PMC4741384 DOI: 10.1371/journal.pgen.1005791] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022] Open
Abstract
DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. MDC1 recruit Tankyrases to DNA lesions to regulate homologous recombination and to control check-point activation.
Collapse
Affiliation(s)
- Zita Nagy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alkmini Kalousi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Audrey Furst
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Marc Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Benoit Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|