1
|
Afsahi A, Silvestri CM, Moore AE, Graham CF, Bacchiochi K, St-Jean M, Baker CL, Korneluk RG, Beug ST, LaCasse EC, Bramson JL. LCL161 enhances expansion and survival of engineered anti-tumor T cells but is restricted by death signaling. Front Immunol 2023; 14:1179827. [PMID: 37138866 PMCID: PMC10150108 DOI: 10.3389/fimmu.2023.1179827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background The genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-κB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics. Methods We have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology. Results LCL161 activated the non-canonical NF-κB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug's effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161. Conclusions Our results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Arya Afsahi
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Christopher M. Silvestri
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Allyson E. Moore
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Carly F. Graham
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kaylyn Bacchiochi
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martine St-Jean
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Christopher L. Baker
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Robert G. Korneluk
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Eric C. LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Jonathan L. Bramson
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- *Correspondence: Jonathan L. Bramson,
| |
Collapse
|
2
|
Jensen S, Seidelin JB, LaCasse EC, Nielsen OH. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 2020; 13:13/619/eaax8295. [PMID: 32071170 DOI: 10.1126/scisignal.aax8295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis, and psoriasis are needed because current treatments are often suboptimal in terms of both efficacy and the risks of serious adverse events. Inhibitor of apoptosis proteins (IAPs) are E3 ubiquitin ligases that inhibit cell death pathways and are themselves inhibited by second mitochondria-derived activator of caspases (SMAC). SMAC mimetics (SMs), small-molecule antagonists of IAPs, are being evaluated as cancer therapies in clinical trials. IAPs are also crucial regulators of inflammatory pathways because they influence both the activation of inflammatory genes and the induction of cell death through the receptor-interacting serine-threonine protein kinases (RIPKs), nuclear factor κB (NF-κB)-inducing kinase, and mitogen-activated protein kinases (MAPKs). Furthermore, there is an increasing interest in specifically targeting the substrates of IAP-mediated ubiquitylation, especially RIPK1, RIPK2, and RIPK3, as druggable nodes in inflammation control. Several studies have revealed an anti-inflammatory potential of RIPK inhibitors that either block inflammatory signaling or block the form of inflammatory cell death known as necroptosis. Expanding research on innate immune signaling through pattern recognition receptors that stimulate proinflammatory NF-κB and MAPK signaling may further contribute to uncovering the complex molecular roles used by IAPs and downstream RIPKs in inflammatory signaling. This may benefit and guide the development of SMs or selective RIPK inhibitors as anti-inflammatory therapeutics for various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark.
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| |
Collapse
|
3
|
Yu M, Zheng L, Wang X, Wu M, Qi M, Fu W, Zhang Y. Comparative transcriptomic analysis of surf clams (Paphia undulate) infected with two strains of Vibrio spp. reveals the identity of key immune genes involved in host defense. BMC Genomics 2019; 20:988. [PMID: 31847806 PMCID: PMC6915886 DOI: 10.1186/s12864-019-6351-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vibrio spp. is the major infection-producing marine bacteria in commercially important bivalve Paphia undulata. The host resistance is the major determining factor for the development of pathogenesis. To explore defense mechanisms, researchers have focused primarily on the study of differential expression of individual or specific groups of host immune genes during pathogen-challenge. RESULTS We compared the expression profile in the surf clams infected with avirulent V. alginolyticus and virulent V. parahaemolyticus to mark the possible molecular mechanisms of pathogenesis. Comparison of the differentially expressed genes between the two groups of Vibrio-infected clams revealed that the number of down-regulate genes in V. parahaemolyticus injected clams (1433) were significantly higher than the other group (169). Based on Gene Ontology classification, a large proportion of these down-regulate genes were found to be associated with cellular and molecular mechanisms for pathogen recognition, and immunity development thereby explaining the low survival rate for the V. parahaemolyticus-treated clams and suggesting a higher virulence of this bacterium towards the surf clams. Quantitative real-time PCR of 24 candidate genes related to immunity involving the JAK-STAT signaling pathway, complementary cascade, cytokine signaling pathway, oxidative stress, phagocytosis and apoptosis down regulated under V. parahaemolyticus infection, indicating compromised host defense. Furthermore, we could demonstrate a central role of JAK-STAT pathway in bacterial clearance. dsRNA mediated depletion of a clam STAT homolog gene results in dramatic increase in the infection by V. alginolyticus, a mildly pathogenic strain under control conditions. CONCLUSIONS The difference in gene expression profiles in surf clams treated with two Vibrio species with a differential pathogenicity to P. undulate and downstream molecular analysis could enlighten on the probable molecular mechanisms of the Vibrio pathogenesis and the virulence of V. parahaemolyticus in surf clams, which also benefits to develop new strategies for disease control in surf calm aquaculture.
Collapse
Affiliation(s)
- Mingjia Yu
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Lin Zheng
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Xiaobo Wang
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Minfu Wu
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Ming Qi
- Department of Food Science, Foshan Polytechnic, Foshan, 528137, China
| | - Wandong Fu
- Zhejiang Marine Development Research Institute, Zhoushan, 316100, People's Republic of China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
4
|
Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance. J Neurochem 2018; 148:275-290. [PMID: 30444263 DOI: 10.1111/jnc.14628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Opioid-induced hyperalgesia and analgesic tolerance can lead to dose escalation and inadequate pain treatment with μ-opioid receptor agonists. Opioids cause tonic activation of glutamate NMDA receptors (NMDARs) at primary afferent terminals, increasing nociceptive input. However, the signaling mechanisms responsible for opioid-induced activation of pre-synaptic NMDARs in the spinal dorsal horn remain unclear. In this study, we determined the role of MAPK signaling in opioid-induced pre-synaptic NMDAR activation caused by chronic morphine administration. Whole-cell recordings of excitatory post-synaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine administration markedly increased the frequency of miniature EPSCs, increased the amplitude of monosynaptic EPSCs evoked from the dorsal root, and reduced the paired-pulse ratio of evoked EPSCs. These changes were fully reversed by an NMDAR antagonist and normalized by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2), p38, or c-Jun N-terminal kinase (JNK). Furthermore, intrathecal injection of a selective ERK1/2, p38, or JNK inhibitor blocked pain hypersensitivity induced by chronic morphine treatment. These inhibitors also similarly attenuated a reduction in morphine's analgesic effect in rats. In addition, co-immunoprecipitation assays revealed that NMDARs formed a protein complex with ERK1/2, p38, and JNK in the spinal cord and that chronic morphine treatment increased physical interactions of NMDARs with these three MAPKs. Our findings suggest that opioid-induced hyperalgesia and analgesic tolerance are mediated by tonic activation of pre-synaptic NMDARs via three functionally interrelated MAPKs at the spinal cord level. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Meichun Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingchun Dong
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Dougan SK, Dougan M. Regulation of innate and adaptive antitumor immunity by IAP antagonists. Immunotherapy 2018; 10:787-796. [PMID: 29807457 DOI: 10.2217/imt-2017-0185] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inhibition of the T-cell co-inhibitory checkpoint receptors or their ligands CTLA-4, PD-1 and PD-L1 using monoclonal antibodies has proven to be highly effective against many cancers. Yet many cancers remain resistant to checkpoint blockade, and durable remissions occur in only a minority of patients. Novel approaches to enhancing antitumor responses are thus necessary in order to expand the reach of these treatments. The inhibitor of apoptosis (IAP) protein family comprises a diverse group of proteins, many of which have immunoregulatory roles. Small molecule IAP antagonists have been developed and are undergoing early phase clinical testing. These drugs were initially developed to promote tumor cell apoptosis; however, a considerable body of work now indicates that IAP antagonists induce antitumor activity through modulation of innate and adaptive immunity. Primarily through inhibition of cellular (c)-IAP1 and c-IAP2, IAP antagonists can activate alternative NF-κB signaling, promoting B-cell survival, activation of dendritic cells and delivering a broad co-stimulatory signal to T cells. At the same time, IAP antagonists can promote tumor cell intrinsic sensitization to innate immune signals, and enhance tumor cell killing by inflammatory cytokines and phagocytic macrophages. These drugs thus represent an attractive investigational approach to immunotherapy, providing a positive signaling counterpart to the relief of signal inhibition conferred by checkpoint blockade.
Collapse
Affiliation(s)
- Stephanie K Dougan
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Michael Dougan
- Harvard Medical School, Boston, MA 02115, USA.,Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Saito N, Shirai Y, Uwagawa T, Horiuchi T, Sugano H, Haruki K, Shiba H, Ohashi T, Yanaga K. Pomalidomide enhanced gemcitabine and nab-paclitaxel on pancreatic cancer both in vitro and in vivo. Oncotarget 2018; 9:15780-15791. [PMID: 29644009 PMCID: PMC5884664 DOI: 10.18632/oncotarget.24608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/25/2018] [Indexed: 01/05/2023] Open
Abstract
Background Chemotherapy with gemcitabine and nab-paclitaxel (gemcitabine/nab-paclitaxel) is recommended for unresectable pancreatic cancer. However, the therapeutic efficacy is attenuated by the antitumor agent-induced activation of nuclear factor-κB (NF-κB). Thalidomide inhibits NF-κB activation, therefore, we hypothesized that pomalidomide, a third-generation IMiD, would also inhibit NF-κB activation and enhance the antitumor effects of gemcitabine/nab-paclitaxel. Methods In vitro, we assessed NF-κB activity and apoptosis in response to pomalidomide alone, gemcitabine/nab-paclitaxel, or combination of pomalidomide and gemcitabine/nab-paclitaxel in human pancreatic cancer cell lines (PANC-1 and MIA PaCa-2). In vivo, we established orthotopic model and the animals were treated with oral pomalidomide and injection of gemcitabine/nab-paclitaxel. Results In pomalidomide and gemcitabine/nab-paclitaxel group, gemcitabine/nab-paclitaxel-induced NF-κB activation was inhibited and apoptosis was enhanced in comparison with those in the other groups both in vitro and in vivo. Especially, this study revealed for the first time that pomalidomide enhances p53 on pancreatic cancer cells. The tumor growth in the pomalidomide and gemcitabine/nab-paclitaxel group was significantly slower than that in the gemcitabine/nab-paclitaxel group. Moreover, pomalidomide induced G0/G1 cell cycle arrest and suppressed angiogenesis. Conclusions Pomalidomide enhanced the antitumor effect of gemcitabine/nab-paclitaxel by inhibition of NF-κB activation. This combination regimen would be a novel strategy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Nobuhiro Saito
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Sugano
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Li L, Wen XZ, Bu ZD, Cheng XJ, Xing XF, Wang XH, Zhang LH, Guo T, Du H, Hu Y, Fan B, Ji JF. Paclitaxel enhances tumoricidal potential of TRAIL via inhibition of MAPK in resistant gastric cancer cells. Oncol Rep 2016; 35:3009-17. [PMID: 26986870 DOI: 10.3892/or.2016.4666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/07/2016] [Indexed: 11/05/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promise for cancer therapy due to its unique capacity to selectively trigger apoptosis in cancer cells. However, TRAIL therapy is greatly hampered by its resistance. A preclinical successful strategy is to identify combination treatments that sensitize resistant cancers to TRAIL. In the present study, we fully assessed TRAIL sensitivity in 9 gastric cancer cell lines. We found combined administration of paclitaxel (PTX) markedly enhanced TRAIL-induced apoptosis in resistant cancer cells both in vitro and in vivo. The sensitization to TRAIL was accompanied by activation of mitochondrial apoptotic pathway, upregulation of TRAIL receptors and downregulation of anti-apoptotic proteins including C-IAP1, C-IAP2, Livin and Mcl-1. Noticeably, we found PTX could suppress the activation of mitogen-activated protein kinases (MAPKs). Inhibition of MAPKs using specific inhibitors (ERK inhibitor U0126, JNK inhibitor SP600125 and P38 inhibitor SB202190) facilitated TRAIL-mediated apoptosis and cytotoxicity. Additionally, SP600125 upregulated TRAL receptors as well as downregulated C-IAP2 and Mcl-1 suggesting the anti-apoptotic role of JNK. Thus, PTX-induced suppression of MAPKs may contribute to restoring TRAIL senstitivity. Collectively, our comprehensive analyses gave new insight into the role of PTX on enhancing TRAIL sensitivity, and provided theoretical references on the development of combination treatment in TRAIL-resistant gastric cancer.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Zhao-De Bu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiao-Hong Wang
- Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Lian-Hai Zhang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ying Hu
- Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Biao Fan
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| |
Collapse
|
8
|
Li L, Fan B, Zhang LH, Xing XF, Cheng XJ, Wang XH, Guo T, Du H, Wen XZ, Ji JF. Trichostatin A potentiates TRAIL-induced antitumor effects via inhibition of ERK/FOXM1 pathway in gastric cancer. Tumour Biol 2016; 37:10269-78. [PMID: 26831669 DOI: 10.1007/s13277-016-4816-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2016] [Indexed: 01/26/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an ideal apoptosis inducer and believed to have promise in cancer therapy, yet part of cancer cells exhibit resistance to TRAIL-mediated apoptosis. This necessitates the exploration of agents that resensitizes cancer cells to TRAIL. In our study, we found that Trichostatin A (TSA), an histone deacetylase (HDAC) inhibitor, augmented TRAIL-induced apoptosis in gastric cancer cells in a caspase-dependent manner. Besides, upregulation of DR5 and downregulation of anti-apoptotic proteins including XIAP, Mcl-1, Bcl-2 and Survivin also contributed to this synergism. Noticeably, TSA treatment inhibited Forkhead boxM1 (FOXM1), which expression level showed negative correlation with TRAIL sensitivity. Similarly, silencing of FOXM1 by small interfering RNA (siRNA) resensitized cancer cells to TRAIL and strengthened the TRAIL-augmenting effect of TSA. In addition, we demonstrated the depletion of FOXM1 was a consequence of the inactivation of ERK mediated by TSA. Collectively, it was first shown that TSA potentiated TRAIL sensitivity via ERK/FOXM1 pathway in gastric cancer cells. FOXM1 might serve as a biomarker for predicting sensitivity to TRAIL.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute Beijing, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Biao Fan
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute Beijing, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lian-Hai Zhang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute Beijing, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China.,The Tissue Bank, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Xiao-Hong Wang
- The Tissue Bank, Peking University Cancer Hospital & Institute, Fu-Cheng Road, Beijing, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China.
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute Beijing, #52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
9
|
Kocab AJ, Duckett CS. Inhibitor of apoptosis proteins as intracellular signaling intermediates. FEBS J 2015; 283:221-31. [PMID: 26462035 DOI: 10.1111/febs.13554] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 01/20/2023]
Abstract
Inhibitor of apoptosis (IAP) proteins have often been considered inhibitors of cell death due to early reports that described their ability to directly bind and inhibit caspases, the primary factors that implement apoptosis. However, a greater understanding is evolving regarding the vital roles played by IAPs as transduction intermediates in a diverse set of signaling cascades associated with functions ranging from the innate immune response to cell migration to cell-cycle regulation. In this review, we discuss the functions of IAPs in signaling, focusing primarily on the cellular IAP (c-IAP) proteins. The c-IAPs are important components in tumor necrosis factor receptor superfamily signaling cascades, which include activation of the NF-κB transcription factor family. As these receptors modulate cell proliferation and cell death, the involvement of the c-IAPs in these pathways provides an additional means of controlling cellular fate beyond simply inhibiting caspase activity. Additionally, IAP-binding proteins, such as Smac and caspases, which have been described as having cell death-independent roles, may affect c-IAP activity in intracellular signaling. Collectively, the multi-faceted functions and complex regulation of the c-IAPs illustrate their importance as intracellular signaling intermediates.
Collapse
Affiliation(s)
- Andrew J Kocab
- Graduate Program in Immunology, The University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
| | - Colin S Duckett
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|