1
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
2
|
Reuven N, Barnea-Zohar M, Elson A. Osteoclast Methods in Protein Phosphatase Research. Methods Mol Biol 2024; 2743:57-79. [PMID: 38147208 DOI: 10.1007/978-1-0716-3569-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Osteoclasts are specialized cells that degrade bone and are essential for bone formation and maintaining bone homeostasis. Excess or deficient activity of these cells can significantly alter bone mass, structure, and physical strength, leading to significant morbidity, as in osteoporosis or osteopetrosis, among many other diseases. Protein phosphorylation in osteoclasts plays critical roles in the signaling pathways that govern the production of osteoclasts and regulate their bone-resorbing activity. In this chapter, we describe the isolation of mouse splenocytes and their differentiation into mature osteoclasts on resorptive (e.g., bone) and non-resorptive (e.g., plastic or glass) surfaces, examining matrix resorption by osteoclasts, immunofluorescence staining of these cells, and knocking out genes by CRISPR in the mouse osteoclastogenic cell line RAW264.7.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Xie F, Dong H, Zhang H. Regulatory Functions of Protein Tyrosine Phosphatase Receptor Type O in Immune Cells. Front Immunol 2021; 12:783370. [PMID: 34880876 PMCID: PMC8645932 DOI: 10.3389/fimmu.2021.783370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
The members of the protein tyrosine phosphatase (PTP) family are key regulators in multiple signal transduction pathways and therefore they play important roles in many cellular processes, including immune response. As a member of PTP family, protein tyrosine phosphatase receptor type O (PTPRO) belongs to the R3 receptor-like protein tyrosine phosphatases. The expression of PTPRO isoforms is tissue-specific and the truncated PTPRO (PTPROt) is mainly observed in hematopoietic cells, including B cells, T cells, macrophages and other immune cells. Therefore, PTPROt may play an important role in immune cells by affecting their growth, differentiation, activation and immune responses. In this review, we will focus on the regulatory roles and underlying molecular mechanisms of PTPRO/PTPROt in immune cells, including B cells, T cells, and macrophages.
Collapse
Affiliation(s)
- Feiling Xie
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Montresor A, Toffali L, Fumagalli L, Constantin G, Rigo A, Ferrarini I, Vinante F, Laudanna C. Activation of Protein Tyrosine Phosphatase Receptor Type γ Suppresses Mechanisms of Adhesion and Survival in Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:671-684. [PMID: 34162728 DOI: 10.4049/jimmunol.2001462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/04/2021] [Indexed: 01/29/2023]
Abstract
The regulatory role of protein tyrosine kinases in β1- and β2-integrin activation and in the survival of chronic lymphocytic leukemia (CLL) cells is well established. In contrast, the involvement of protein tyrosine phosphatases in CLL biology was less investigated. We show that selective activation of the protein tyrosine phosphatase receptor type γ (PTPRG) strongly suppresses integrin activation and survival in leukemic B cells isolated from patients with CLL. Activation of PTPRG specifically inhibits CXCR4- as well as BCR-induced triggering of LFA-1 and VLA-4 integrins and mediated rapid adhesion. Triggering of LFA-1 affinity is also prevented by PTPRG activity. Analysis of signaling mechanisms shows that activation of PTPRG blocks chemokine-induced triggering of JAK2 and Bruton's tyrosine kinase protein tyrosine kinases and of the small GTP-binding protein RhoA. Furthermore, activated PTPRG triggers rapid and robust caspase-3/7-mediated apoptosis in CLL cells in a manner quantitatively comparable to the Bruton's tyrosine kinase inhibitor ibrutinib. However, in contrast to ibrutinib, PTPRG-triggered apoptosis is insensitive to prosurvival signals generated by CXCR4 and BCR signaling. Importantly, PTPRG activation does not trigger apoptosis in healthy B lymphocytes. The data show that activated PTPRG inhibits, at once, the signaling pathways controlling adhesion and survival of CLL cells, thus emerging as a negative regulator of CLL pathogenesis. These findings suggest that pharmacological potentiation of PTPRG tyrosine-phosphatase enzymatic activity could represent a novel approach to CLL treatment.
Collapse
Affiliation(s)
- Alessio Montresor
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Lara Toffali
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Laura Fumagalli
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, Laboratory of Neuroimmunology and Neuroinflammation, University of Verona, Verona, Italy; and
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Isacco Ferrarini
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Carlo Laudanna
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy;
| |
Collapse
|
5
|
TCL1A, B Cell Regulation and Tolerance in Renal Transplantation. Cells 2021; 10:cells10061367. [PMID: 34206047 PMCID: PMC8230170 DOI: 10.3390/cells10061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Despite much progress in the management of kidney transplantation, the need for life-long immunosuppressive therapies remains a major issue representing many risks for patients. Operational tolerance, defined as allograft acceptance without immunosuppression, has logically been subject to many investigations with the aim of a better understanding of post-transplantation mechanisms and potentially how it would be induced in patients. Among proposed biomarkers, T-cell Leukemia/Lymphoma protein 1A (TCL1A) has been observed as overexpressed in the peripheral blood of operational tolerant patients in several studies. TCL1A expression is restricted to early B cells, also increased in the blood of tolerant patients, and showing regulatory properties, notably through IL-10 secretion for some subsets. TCL1A has first been identified as an oncogene, overexpression of which is associated to the development of T and B cell cancer. TCL1A acts as a coactivator of the serine threonine kinase Akt and through other interactions favoring cell survival, growth, and proliferation. It has also been identified as interacting with others major actors involved in B cells differentiation and regulation, including IL-10 production. Herein, we reviewed known interactions and functions of TCL1A in B cells which could involve its potential role in the set up and maintenance of renal allograft tolerance.
Collapse
|
6
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Roth L, Wakim J, Wasserman E, Shalev M, Arman E, Stein M, Brumfeld V, Sagum CA, Bedford MT, Tuckermann J, Elson A. Phosphorylation of the phosphatase PTPROt at Tyr 399 is a molecular switch that controls osteoclast activity and bone mass in vivo. Sci Signal 2019; 12:12/563/eaau0240. [PMID: 30622194 DOI: 10.1126/scisignal.aau0240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone resorption by osteoclasts is essential for bone homeostasis. The kinase Src promotes osteoclast activity and is activated in osteoclasts by the receptor-type tyrosine phosphatase PTPROt. In other contexts, however, PTPROt can inhibit Src activity. Through in vivo and in vitro experiments, we show that PTPROt is bifunctional and can dephosphorylate Src both at its inhibitory residue Tyr527 and its activating residue Tyr416 Whereas wild-type and PTPROt knockout mice exhibited similar bone masses, mice in which a putative C-terminal phosphorylation site, Tyr399, in endogenous PTPROt was replaced with phenylalanine had increased bone mass and reduced osteoclast activity. Osteoclasts from the knock-in mice also showed reduced Src activity. Experiments in cultured cells and in osteoclasts derived from both mouse strains demonstrated that the absence of phosphorylation at Tyr399 caused PTPROt to dephosphorylate Src at the activating site pTyr416 In contrast, phosphorylation of PTPROt at Tyr399 enabled PTPROt to recruit Src through Grb2 and to dephosphorylate Src at the inhibitory site Tyr527, thus stimulating Src activity. We conclude that reversible phosphorylation of PTPROt at Tyr399 is a molecular switch that selects between its opposing activities toward Src and maintains a coherent signaling output, and that blocking this phosphorylation event can induce physiological effects in vivo. Because most receptor-type tyrosine phosphatases contain potential phosphorylation sites at their C termini, we propose that preventing phosphorylation at these sites or its consequences may offer an alternative to inhibiting their catalytic activity to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Lee Roth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jean Wakim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Wasserman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Shalev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
8
|
Shalev M, Elson A. The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:114-123. [PMID: 30026076 DOI: 10.1016/j.bbamcr.2018.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Maintaining the proper balance between osteoblast-mediated production of bone and its degradation by osteoclasts is essential for health. Osteoclasts are giant phagocytic cells that are formed by fusion of monocyte-macrophage precursor cells; mature osteoclasts adhere to bone tightly and secrete protons and proteases that degrade its matrix. Phosphorylation of tyrosine residues in proteins, which is regulated by the biochemically-antagonistic activities of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is central in regulating the production of osteoclasts and their bone-resorbing activity. Here we review the roles of individual PTPs of the classical and dual-specificity sub-families that are known to support these processes (SHP2, cyt-PTPe, PTPRO, PTP-PEST, CD45) or to inhibit them (SHP1, PTEN, MKP1). Characterizing the functions of PTPs in osteoclasts is essential for complete molecular level understanding of bone resorption and for designing novel therapeutic approaches for treating bone disease.
Collapse
Affiliation(s)
- Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
9
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|