1
|
Houston BJ, Merriner DJ, Stathatos GG, Nguyen JH, O'Connor AE, Lopes AM, Conrad DF, Baker M, Dunleavy JE, O'Bryan MK. Genetic mutation of Cep76 results in male infertility due to abnormal sperm tail composition. Life Sci Alliance 2024; 7:e202302452. [PMID: 38570187 PMCID: PMC10992998 DOI: 10.26508/lsa.202302452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The transition zone is a specialised gate at the base of cilia/flagella, which separates the ciliary compartment from the cytoplasm and strictly regulates protein entry. We identified a potential new regulator of the male germ cell transition zone, CEP76. We demonstrated that CEP76 was involved in the selective entry and incorporation of key proteins required for sperm function and fertility into the ciliary compartment and ultimately the sperm tail. In the mutant, sperm tails were shorter and immotile as a consequence of deficits in essential sperm motility proteins including DNAH2 and AKAP4, which accumulated at the sperm neck in the mutant. Severe annulus, fibrous sheath, and outer dense fibre abnormalities were also detected in sperm lacking CEP76. Finally, we identified that CEP76 dictates annulus positioning and structure. This study suggests CEP76 as a male germ cell transition zone protein and adds further evidence to the hypothesis that the spermatid transition zone and annulus are part of the same functional structure.
Collapse
Affiliation(s)
- Brendan J Houston
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - D Jo Merriner
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - G Gemma Stathatos
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Joseph H Nguyen
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Anne E O'Connor
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal
| | - Donald F Conrad
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Mark Baker
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Jessica Em Dunleavy
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Demir AB, Benvenuto D, Karacicek B, Erac Y, Spoto S, Angeletti S, Ciccozzi M, Tosun M. Implications of Possible HBV-Driven Regulation of Gene Expression in Stem Cell-like Subpopulation of Huh-7 Hepatocellular Carcinoma Cell Line. J Pers Med 2022; 12:jpm12122065. [PMID: 36556285 PMCID: PMC9786676 DOI: 10.3390/jpm12122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated levels of STIM1, an endoplasmic reticulum Ca2+ sensor/buffering protein, appear to be correlated with poor cancer prognosis in which microRNAs are also known to play critical roles. The purpose of this study is to investigate possible HBV origins of specific microRNAs we identified in a stem cell-like subpopulation of Huh-7 hepatocellular carcinoma (HCC) cell lines with enhanced STIM1 and/or Orai1 expression that mimicked poor cancer prognosis. Computational strategies including phylogenetic analyses were performed on miRNome data we obtained from an EpCAM- and CD133-expressing Huh-7 HCC stem cell-like subpopulation with enhanced STIM1 and/or Orai1 expression originally cultured in the present work. Results revealed two putative regions in the HBV genome based on the apparent clustering pattern of stem loop sequences of microRNAs, including miR3653. Reciprocal analysis of these regions identified critical human genes, of which their transcripts are among the predicted targets of miR3653, which was increased significantly by STIM1 or Orai1 enhancement. Briefly, this study provides phylogenetic evidence for a possible HBV-driven epigenetic remodeling that alters the expression pattern of Ca2+ homeostasis-associated genes in STIM1- or Orai1 overexpressing liver cancer stem-like cells for a possible mutual survival outcome. A novel region on HBV-X protein may affect liver carcinogenesis in a genotype-dependent manner. Therefore, detection of the viral genotype would have a clinical impact on prognosis of HBV-induced liver cancers.
Collapse
Affiliation(s)
- Ayse Banu Demir
- Department of Medical Biology, Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
| | - Domenico Benvenuto
- Faculty of Medicine, University Campus Bio-Medico of Rome (UCBM), 200 Rome, Italy
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, 35340 Izmir, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey
| | - Silvia Spoto
- Diagnostic and Therapeutic Medicine Division, Fondazione Policlinico Universitario Campus Bio-Medico, 200 Rome, Italy
| | - Silvia Angeletti
- Clinical Laboratory Science Unit, Faculty of Medicine, University Campus Bio-Medico of Rome (UCBM), 200 Rome, Italy
- Clinical Laboratory Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico Via Alvaro del Portillo, 200 Rome, Italy
- Correspondence: (S.A.); (M.T.); Tel.: +39-06225411461 (S.A.); +90-2324889843 (M.T.)
| | - Massimo Ciccozzi
- Medical Statistics and Molecular Epidemiology Unit, Faculty of Medicine, University Campus Bio-Medico of Rome (UCBM), 200 Rome, Italy
| | - Metiner Tosun
- Department of Medical Pharmacology, Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Correspondence: (S.A.); (M.T.); Tel.: +39-06225411461 (S.A.); +90-2324889843 (M.T.)
| |
Collapse
|
3
|
Takeda Y, Yamazaki K, Hashimoto K, Watanabe K, Chinen T, Kitagawa D. The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression. J Cell Sci 2020; 133:jcs241281. [PMID: 32878946 DOI: 10.1242/jcs.241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/24/2020] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) dynamically changes its localization and plays important roles in proper mitotic progression. In particular, strict control of cytoplasmic PLK1 is needed to prevent mitotic defects. However, the regulation of cytoplasmic PLK1 is not fully understood. In this study, we show that CEP76, a centriolar protein, physically interacts with PLK1 and tightly controls the activation of cytoplasmic PLK1 during mitosis in human cells. We found that removal of centrosomes induced ectopic aggregation of PLK1, which is highly phosphorylated, in the cytoplasm during mitosis. Importantly, a targeted RNAi screen revealed that depletion of CEP76 resulted in a similar phenotype. In addition, depletion of CEP76 caused defective spindle orientation and mitotic delay. Moreover, the formation of ectopic PLK1 aggregates and defective spindle orientation were significantly suppressed by the inhibition of PLK1 kinase activity. Overall, these results demonstrate that CEP76 suppresses the aberrant activation of cytoplasmic PLK1 for proper mitotic progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yutaka Takeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kaho Yamazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kaho Hashimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Wang T, Zou Y, Huang N, Teng J, Chen J. CCDC84 Acetylation Oscillation Regulates Centrosome Duplication by Modulating HsSAS-6 Degradation. Cell Rep 2020; 29:2078-2091.e5. [PMID: 31722219 DOI: 10.1016/j.celrep.2019.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 01/14/2023] Open
Abstract
In animal cells, centriole number is strictly controlled in order to guarantee faithful cell division and genetic stability, but the mechanism by which the accuracy of centrosome duplication is maintained is not fully understood. Here, we show that CCDC84 constrains centriole number by modulating APC/CCdh1-mediated HsSAS-6 degradation. More importantly, CCDC84 acetylation oscillates throughout the cell cycle, and the acetylation state of CCDC84 at lysine 31 is regulated by the deacetylase SIRT1 and the acetyltransferase NAT10. Deacetylated CCDC84 is responsible for its centrosome targeting, and acetylated CCDC84 promotes HsSAS-6 ubiquitination by enhancing the binding affinity of HsSAS-6 for Cdh1. Our findings shed new light on the function of (de)acetylation in centriole number regulation as well as refine the established centrosome duplication model.
Collapse
Affiliation(s)
- Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhong Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Wang C, Zhou Z, Subhramanyam CS, Cao Q, Heng ZSL, Liu W, Fu X, Hu Q. SRPK1 acetylation modulates alternative splicing to regulate cisplatin resistance in breast cancer cells. Commun Biol 2020; 3:268. [PMID: 32461560 PMCID: PMC7253463 DOI: 10.1038/s42003-020-0983-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cisplatin and other platinum-based compounds are frequently used to treat breast cancer, but their utility is severely compromised by drug resistance. Many genes dictating drug responsiveness are subject to pre-mRNA alternative splicing which is regulated by key kinases such as the serine-arginine protein kinase 1 (SRPK1). However, its contribution to drug resistance remains controversial. In this study, we have identified that Tip60-mediated acetylation of SRPK1 is closely associated with chemotherapy sensitivity. In breast cancer cells, cisplatin induced SRPK1 acetylation but in the corresponding resistant cells, it reduced acetylation yet increased phosphorylation and kinase activity of SRPK1, favouring the splicing of some anti-apoptotic variants. Significantly, the cisplatin-resistant cells could be re-sensitized by enhancing SRPK1 acetylation or inhibiting its kinase activity. Hence, our study reveals a key role of SRPK1 in the development of cisplatin resistance in breast cancer cells and suggests a potential therapeutic avenue for overcoming chemotherapy resistance. Wang et al. find that the therapeutic agent cisplatin has opposite effect on acetylation of serine-arginine protein kinase 1 (SRPK1) in cisplatin-resistant versus – sensitive breast cancer cells. Inhibiting SRPK1 activity or enhancing its acetylation re-sensitises cells to cisplatin, suggesting a potential strategy to treat cancers resistant to platinum-based therapy.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, Singapore, 117593
| | | | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Xiangdong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0651, USA
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, Singapore, 117594.
| |
Collapse
|
6
|
Hossain D, Shih SYP, Xiao X, White J, Tsang WY. Cep44 functions in centrosome cohesion by stabilizing rootletin. J Cell Sci 2020; 133:jcs239616. [PMID: 31974111 PMCID: PMC7044459 DOI: 10.1242/jcs.239616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
The centrosome linker serves to hold the duplicated centrosomes together until they separate in late G2/early mitosis. Precisely how the linker is assembled remains an open question. In this study, we identify Cep44 as a novel component of the linker in human cells. Cep44 localizes to the proximal end of centrioles, including mother and daughter centrioles, and its ablation leads to loss of centrosome cohesion. Cep44 does not impinge on the stability of C-Nap1 (also known as CEP250), LRRC45 or Cep215 (also known as CDK5RAP2), and vice versa, and these proteins are independently recruited to the centrosome. Rather, Cep44 associates with rootletin and regulates its stability and localization to the centrosome. Our findings reveal a role of the previously uncharacterized protein Cep44 for centrosome cohesion and linker assembly.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Sunny Y-P Shih
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Xintong Xiao
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Julia White
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - William Y Tsang
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Faculté de Médecine, Département de pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
7
|
Abstract
Acetylation is among the most prevalent posttranslational modifications in cells and regulates a number of physiological processes such as gene transcription, cell metabolism, and cell signaling. Although initially discovered on nuclear histones, many non-nuclear proteins have subsequently been found to be acetylated as well. The centrosome is the major microtubule-organizing center in most metazoans. Recent proteomic data indicate that a number of proteins in this subcellular compartment are acetylated. This review gives an overview of our current knowledge on protein acetylation at the centrosome and its functional relevance in organelle biology.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada. .,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada. .,Department of Pathology and Cell Biology, Universite de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Aziz K, Sieben CJ, Jeganathan KB, Hamada M, Davies BA, Velasco ROF, Rahman N, Katzmann DJ, van Deursen JM. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J Clin Invest 2018; 128:3517-3534. [PMID: 30035751 PMCID: PMC6063474 DOI: 10.1172/jci120316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.
Collapse
Affiliation(s)
- Khaled Aziz
- Department of Biochemistry and Molecular Biology and
| | | | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Nazneen Rahman
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | | | - Jan M. van Deursen
- Department of Biochemistry and Molecular Biology and
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2017; 217:823-835. [PMID: 29284667 PMCID: PMC5839779 DOI: 10.1083/jcb.201704093] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
Loncarek and Bettencourt-Dias review molecular mechanisms of centriole biogenesis amongst different organisms and cell types. The centriole is a multifunctional structure that organizes centrosomes and cilia and is important for cell signaling, cell cycle progression, polarity, and motility. Defects in centriole number and structure are associated with human diseases including cancer and ciliopathies. Discovery of the centriole dates back to the 19th century. However, recent advances in genetic and biochemical tools, development of high-resolution microscopy, and identification of centriole components have accelerated our understanding of its assembly, function, evolution, and its role in human disease. The centriole is an evolutionarily conserved structure built from highly conserved proteins and is present in all branches of the eukaryotic tree of life. However, centriole number, size, and organization varies among different organisms and even cell types within a single organism, reflecting its cell type–specialized functions. In this review, we provide an overview of our current understanding of centriole biogenesis and how variations around the same theme generate alternatives for centriole formation and function.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Cell Cycle Regulation Lab, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD
| |
Collapse
|
10
|
Walz G. Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res 2017; 369:11-25. [PMID: 28361305 PMCID: PMC5487853 DOI: 10.1007/s00441-017-2599-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
The essential role of primary (non-motile) cilia during the development of multi-cellular tissues and organs is well established and is underlined by severe disease manifestations caused by mutations in cilia-associated molecules that are collectively termed ciliopathies. However, the role of primary cilia in non-dividing and terminally differentiated, post-mitotic cells is less well understood. Although the prevention of cells from re-entering the cell cycle may represent a major chore, primary cilia have recently been linked to DNA damage responses, autophagy and mitochondria. Given this connectivity, primary cilia in non-dividing cells are well positioned to form a signaling hub outside of the nucleus. Such a center could integrate information to initiate responses and to maintain cellular homeostasis if cell survival is jeopardized. These more discrete functions may remain undetected until differentiated cells are confronted with emergencies.
Collapse
Affiliation(s)
- Gerd Walz
- Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
11
|
Das A, Qian J, Tsang WY. USP9X counteracts differential ubiquitination of NPHP5 by MARCH7 and BBS11 to regulate ciliogenesis. PLoS Genet 2017; 13:e1006791. [PMID: 28498859 PMCID: PMC5446187 DOI: 10.1371/journal.pgen.1006791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/26/2017] [Accepted: 05/01/2017] [Indexed: 11/19/2022] Open
Abstract
Ciliogenesis is a fundamental biological process central to human health. Precisely how this process is coordinated with the cell cycle remains an open question. We report that nephrocystin-5 (NPHP5/IQCB1), a positive regulator of ciliogenesis, is a stable and low turnover protein subjected to cycles of ubiquitination and deubiquitination. NPHP5 directly binds to a deubiquitinating enzyme USP9X/FAM and two E3 ubiquitin ligases BBS11/TRIM32 and MARCH7/axotrophin. NPHP5 undergoes K63 ubiquitination in a cell cycle dependent manner and K48/K63 ubiquitination upon USP9X depletion or inhibition. In the G0/G1/S phase, a pool of cytoplasmic USP9X recruited to the centrosome by NPHP5 protects NPHP5 from ubiquitination, thus favouring cilia assembly. In the G2/M phase, USP9X dissociation from the centrosome allows BBS11 to K63 ubiquitinate NPHP5 which triggers protein delocalization and loss of cilia. BBS11 is a resident centrosomal protein, whereas cytoplasmic USP9X sequesters the majority of MARCH7 away from the centrosome during interphase. Depletion or inhibition of USP9X leads to an accumulation of centrosomal MARCH7 which K48 ubiquitinates NPHP5, triggering protein degradation and cilia loss. At the same time, BBS11 K63 ubiquitinates NPHP5. Our data suggest that dynamic ubiquitination and deubiquitination of NPHP5 plays a crucial role in the regulation of ciliogenesis. Centrosomes are non-membrane bound organelles that modulate a variety of cellular processes including cell division and formation of hair-like protrusions called primary cilia. Primary cilia function as cellular antennae to sense a wide variety of signals important for growth, development and differentiation. Defects in cilia formation or ciliogenesis can give rise to a bewildering array of human ciliary diseases collectively known as ciliopathies. Ciliogenesis is controlled in part by nephrocystin-5 (NPHP5/IQCB1), and NPHP5 dysfunction causes ciliopathies in humans, mice and dogs. We are interested in studying how the stability, localization and biological activity of NPHP5 are regulated at the molecular level. We present here that NPHP5 directly interacts with, and is a substrate of, one deubiquitinase (USP9X/FAM) and two ubiquitin ligases (BBS11/TRIM32 and MARCH7/axotrophin), enzymes involved in controlling protein stability, localization and activity. Our results suggest that timely ubiquitination and deubiquitination of NPHP5 is critical for the regulation of ciliogenesis.
Collapse
Affiliation(s)
- Arindam Das
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Jin Qian
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - William Y. Tsang
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
12
|
Hossain D, Javadi Esfehani Y, Das A, Tsang WY. Cep78 controls centrosome homeostasis by inhibiting EDD-DYRK2-DDB1 VprBP. EMBO Rep 2017; 18:632-644. [PMID: 28242748 PMCID: PMC5376967 DOI: 10.15252/embr.201642377] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/13/2017] [Accepted: 02/03/2017] [Indexed: 01/08/2023] Open
Abstract
The centrosome plays a critical role in various cellular processes including cell division and cilia formation, and deregulation of centrosome homeostasis is a hallmark feature of many human diseases. Here, we show that centrosomal protein of 78 kDa (Cep78) localizes to mature centrioles and directly interacts with viral protein R binding protein (VprBP). Although VprBP is a component of two distinct E3 ubiquitin ligases, EDD-DYRK2-DDB1VprBP and CRL4VprBP, Cep78 binds specifically to EDD-DYRK2-DDB1VprBP and inhibits its activity. A pool of EDD-DYRK2-DDB1VprBP is active at the centrosome and mediates ubiquitination of CP110, a novel centrosomal substrate. Deregulation of Cep78 or EDD-DYRK2-DDB1VprBP perturbs CP110 ubiquitination and protein stability, thereby affecting centriole length and cilia assembly. Mechanistically, ubiquitination of CP110 entails its phosphorylation by DYRK2 and binding to VprBP Cep78 specifically impedes the transfer of ubiquitin from EDD to CP110 without affecting CP110 phosphorylation and binding to VprBP Thus, we identify Cep78 as a new player that regulates centrosome homeostasis by inhibiting the final step of the enzymatic reaction catalyzed by EDD-DYRK2-DDB1VprBP.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Yalda Javadi Esfehani
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Arindam Das
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Lazo PA. Is Centrosomal Protein 70, a Centrosomal Protein with New Roles in Breast Cancer Dissemination and Metastasis, a Facilitator of Epithelial-Mesenchymal Transition? THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:494-497. [PMID: 28109768 DOI: 10.1016/j.ajpath.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
This commentary highlights the article by Shi et al that identified centrosomal protein 70 as a key mediator of breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca; and the Salamanca Institute of Biomedical Research, Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
14
|
Morlon-Guyot J, Francia ME, Dubremetz JF, Daher W. Towards a molecular architecture of the centrosome in Toxoplasma gondii. Cytoskeleton (Hoboken) 2017; 74:55-71. [PMID: 28026138 DOI: 10.1002/cm.21353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. The successful completion of endodyogeny relies on the temporal and spatial coordination of a plethora of simultaneous events. It has been shown that the Toxoplasma centrosome serves as signaling hub which nucleates spindle microtubules during mitosis and organizes the scaffolding of daughter cells components during cytokinesis. In addition, the centrosome is essential for inheriting both the apicoplast (a chloroplast-like organelle) and the Golgi apparatus. A growing body of evidence supports the notion that the T. gondii centrosome diverges in protein composition, structure and organization from its counterparts in higher eukaryotes making it an attractive source of potentially druggable targets. Here, we summarize the current knowledge on T. gondii centrosomal proteins and extend the putative centrosomal protein repertoire by in silico identification of mammalian centrosomal protein orthologs. We propose a working model for the organization and architecture of the centrosome in Toxoplasma parasites. Experimental validation of our proposed model will uncover how each predicted protein translates into the biology of centrosome, cytokinesis, karyokinesis, and organelle inheritance in Toxoplasma parasites.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|