1
|
Huang SH, Hsieh HC, Shieh JM, Su WC, Wang YC. Downregulation of microRNA-326 enhances ZNF322A expression, transcriptional activity and tumorigenic effects in lung cancer. Biofactors 2024; 50:214-227. [PMID: 37647209 DOI: 10.1002/biof.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Zinc finger protein ZNF322A is an oncogenic transcription factor. Overexpression of ZNF322A activates pro-metastasis, cancer stemness, and neo-angiogenesis-related genes to enhance lung cancer progression. However, the upstream regulator of ZNF322A is not well defined. Dysregulation of microRNAs (miRNAs) can mediate cancer cell growth, migration, and invasion to promote tumorigenesis. Here, we uncover the mechanism of miRNA-mediated transcriptional regulation in ZNF322A-driven oncogenic events. ZNF322A harbors several putative miRNA-binding sites in the 3'-untranslated region (UTR). We validated that miR-326 downregulated ZNF322A-3'-UTR luciferase activity and mRNA expression. Furthermore, miR-326 suppressed the expression of ZNF322A-driven cancer-associated genes such as cyclin D1 and alpha-adducin. Reconstitution experiments by ectopic overexpression of ZNF322A abolished miR-326-suppressed cancer cell proliferation and cell migration capacity. Moreover, miR-326 attenuated ZNF322A-induced tumor growth and lung tumor metastasis in vivo. Clinically, the expression of miR-326 negatively correlated with ZNF322A mRNA expression in surgically resected tissues from 120 non-small cell lung cancer (NSCLC) patients. Multivariate Cox regression analysis demonstrated that NSCLC patients with low miR-326/high ZNF322A profile showed poor overall survival. Our results reveal that the deregulated expression of miR-326 leads to hyperactivation of ZNF322A-driven oncogenic signaling. Targeting the miR-326/ZNF322A axis would provide new therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Shih-Hsuan Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chia Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Min Shieh
- Division of Chest Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- The Center of General Education, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Wou-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
3
|
Zhang H, Liu R, Zhang B, Huo H, Song Z. Advances in the Study of Circadian Genes in Non-Small Cell Lung Cancer. Integr Cancer Ther 2022; 21:15347354221096080. [PMID: 35575281 PMCID: PMC9121494 DOI: 10.1177/15347354221096080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Circadian genes regulate several physiological functions such as circadian rhythm
and metabolism and participate in the cytogenesis and progression of various
malignancies. The abnormal expression of these genes in non-small cell lung
cancer (NSCLC) is closely related to the clinicopathological features of NSCLC
and may promote or inhibit NSCLC progression. Circadian rhythm disorders and
clock gene abnormalities may increase the risk of lung cancer in some
populations. We collected 15 circadian genes in NSCLC, namely PER1,
PER2, PER3, TIMELESS, Cry1, Cry2, CLOCK, BMAL1/ARNTL-1, ARNTL2, NPAS2,
NR1D1(REV-ERB), DEC1, DEC2, RORα, and RORγ, and
determined their relationships with the clinicopathological features of patients
and the potential mechanisms promoting or inhibiting NSCLC progression. We also
summarized the studies on circadian rhythm disorders and circadian genes
associated with lung cancer risk. The present study aimed to provide theoretical
support for the future exploration of new therapeutic targets and for the
primary prevention of NSCLC from the perspective of circadian genes.
Interpretation of circadian rhythms in lung cancer could guide further lung
cancer mechanism research and drug development that could lead to more effective
treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Hao Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Renwang Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Huandong Huo
- Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Lan H, Sun Y. Tumor Suppressor FBXW7 and Its Regulation of DNA Damage Response and Repair. Front Cell Dev Biol 2021; 9:751574. [PMID: 34760892 PMCID: PMC8573206 DOI: 10.3389/fcell.2021.751574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
The proper DNA damage response (DDR) and repair are the central molecular mechanisms for the maintenance of cellular homeostasis and genomic integrity. The abnormality in this process is frequently observed in human cancers, and is an important contributing factor to cancer development. FBXW7 is an F-box protein serving as the substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase. By selectively targeting many oncoproteins for proteasome-mediated degradation, FBXW7 acts as a typical tumor suppressor. Recent studies have demonstrated that FBXW7 also plays critical roles in the process of DDR and repair. In this review, we first briefly introduce the processes of protein ubiquitylation by SCFFBXW7 and DDR/repair, then provide an overview of the molecular characteristics of FBXW7. We next discuss how FBXW7 regulates the process of DDR and repair, and its translational implication. Finally, we propose few future perspectives to further elucidate the role of FBXW7 in regulation of a variety of biological processes and tumorigenesis, and to design a number of approaches for FBXW7 reactivation in a subset of human cancers for potential anticancer therapy.
Collapse
Affiliation(s)
- Huiyin Lan
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Liu L, Xu K, Zhou Y. Development of a novel embryonic germline gene-related prognostic model of lung adenocarcinoma. PeerJ 2021; 9:e12257. [PMID: 34721973 PMCID: PMC8542372 DOI: 10.7717/peerj.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Emerging evidence implicates the correlation of embryonic germline genes with the tumor progress and patient's outcome. However, the prognostic value of these genes in lung adenocarcinoma (LUAD) has not been fully studied. Here we systematically evaluated this issue, and constructed a novel signature and a nomogram associated with embryonic germline genes for predicting the outcomes of lung adenocarcinoma. METHODS The LUAD cohorts retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were used as training set and testing set, respectively. The embryonic germline genes were downloaded from the website https://venn.lodder.dev. Then, the differentially expressed embryonic germline genes (DEGGs) between the tumor and normal samples were identified by limma package. The functional enrichment and pathway analyses were also performed by clusterProfiler package. The prognostic model was constructed by the least absolute shrinkage and selection operator (LASSO)-Cox regression method. Survival and Receiver Operating Characteristic (ROC) analyses were performed to validate the model using training set and four testing GEO datasets. Finally, a prognostic nomogram based on the signature genes was constructed using multivariate regression method. RESULTS Among the identified 269 DEGGs, 249 were up-regulated and 20 were down-regulated. GO and KEGG analyses revealed that these DEGGs were mainly enriched in the process of cell proliferation and DNA damage repair. Then, 103 DEGGs with prognostic value were identified by univariate Cox regression and further filtered by LASSO method. The resulting sixteen DEGGs were included in step multivariate Cox regression and an eleven embryonic germline gene related signature (EGRS) was constructed. The model could robustly stratify the LUAD patients into high-risk and low-risk groups in both training and testing sets, and low-risk patients had much better outcomes. The multi-ROC analysis also showed that the EGRS model had the best predictive efficacy compared with other common clinicopathological factors. The EGRS model also showed robust predictive ability in four independent external datasets, and the area under curve (AUC) was 0.726 (GSE30219), 0.764 (GSE50081), 0.657 (GSE37745) and 0.668 (GSE72094). More importantly, the expression level of some genes in EGRS has a significant correlation with the progression of LUAD clinicopathology, suggesting these genes might play an important role in the progression of LUAD. Finally, based on EGRS genes, we built and calibrated a nomogram for conveniently evaluating patients' outcomes.
Collapse
Affiliation(s)
- Linjun Liu
- Department of Biotechnology, College of Life Science & Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, China CDC, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science & Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|
6
|
Lin CC, Kuo IY, Wu LT, Kuan WH, Liao SY, Jen J, Yang YE, Tang CW, Chen YR, Wang YC. Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression. Am J Cancer Res 2020; 10:10001-10015. [PMID: 32929330 PMCID: PMC7481419 DOI: 10.7150/thno.47491] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis enhances cancer metastasis and progression, however, the roles of transcription regulation in angiogenesis are not fully defined. ZNF322A is an oncogenic zinc-finger transcription factor. Here, we demonstrate a new mechanism of Kras mutation-driven ZNF322A transcriptional activation and elucidate the interplay between ZNF322A and its upstream transcriptional regulators and downstream transcriptional targets in promoting neo-angiogenesis. Methods: Luciferase activity, RT-qPCR and ChIP-qPCR assays were used to examine transcription regulation in cell models. In vitro and in vivo angiogenesis assays were conducted. Immunohistochemistry, Kaplan-Meier method and multivariate Cox regression assays were performed to examine the clinical correlation in tumor specimens from lung cancer patients. Results: We validated that Yin Yang 1 (YY1) upregulated ZNF322A expression through targeting its promoter in the context of Kras mutation. Reconstitution experiments by knocking down YY1 under KrasG13V activation decreased KrasG13V-promoted cancer cell migration, proliferation and ZNF322A promoter activity. Knockdown of YY1 or ZNF322A attenuated angiogenesis in vitro and in vivo. Notably, we validated that ZNF322A upregulated the expression of sonic hedgehog (Shh) gene which encodes a secreted factor that activates pro-angiogenic responses in endothelial cells. Clinically, ZNF322A protein expression positively correlated with Shh and CD31, an endothelial cell marker, in 133 lung cancer patient samples determined using immunohistochemistry analysis. Notably, patients with concordantly high expression of ZNF322A, Shh and CD31 correlated with poor prognosis. Conclusions: These findings highlight the mechanism by which dysregulation of Kras/YY1/ZNF322/Shh transcriptional axis enhances neo-angiogenesis and cancer progression in lung cancer. Therapeutic strategies that target Kras/YY1/ZNF322A/Shh signaling axis may provide new insight on targeted therapy for lung cancer patients.
Collapse
|
7
|
ZNF322A-mediated protein phosphorylation induces autophagosome formation through modulation of IRS1-AKT glucose uptake and HSP-elicited UPR in lung cancer. J Biomed Sci 2020; 27:75. [PMID: 32576196 PMCID: PMC7310457 DOI: 10.1186/s12929-020-00668-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background ZNF322A is an oncogenic transcription factor that belongs to the Cys2His2-type zinc-finger protein family. Accumulating evidence suggests that ZNF322A may contribute to the tumorigenesis of lung cancer, however, the ZNF322A-mediated downstream signaling pathways remain unknown. Methods To uncover ZNF322A-mediated functional network, we applied phosphopeptide enrichment and isobaric labeling strategies with mass spectrometry-based proteomics using A549 lung cancer cells, and analyzed the differentially expressed proteins of phosphoproteomic and proteomic profiles to determine ZNF322A-modulated pathways. Results ZNF322A highlighted a previously unidentified insulin signaling, heat stress, and signal attenuation at the post-translational level. Consistently, protein-phosphoprotein-kinase interaction network analysis revealed phosphorylation of IRS1 and HSP27 were altered upon ZNF322A-silenced lung cancer cells. Thus, we further investigated the molecular regulation of ZNF322A, and found the inhibitory transcriptional regulation of ZNF322A on PIM3, which was able to phosphorylate IRS1 at serine1101 in order to manipulate glucose uptake via the PI3K/AKT/mTOR signaling pathway. Moreover, ZNF322A also affects the unfolded protein response by phosphorylation of HSP27S82 and eIF2aS51, and triggers autophagosome formation in lung cancer cells. Conclusions These findings not only give new information about the molecular regulation of the cellular proteins through ZNF322A at the post-translational level, but also provides a resource for the study of lung cancer therapy.
Collapse
|
8
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Liao SY, Kuo IY, Chen YT, Liao PC, Liu YF, Wu HY, Lai WW, Wang YC. AKT-mediated phosphorylation enhances protein stability and transcription activity of ZNF322A to promote lung cancer progression. Oncogene 2019; 38:6723-6736. [PMID: 31399647 DOI: 10.1038/s41388-019-0928-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
ZNF322A is an oncogenic zinc-finger transcription factor. Our published results show that ZNF322A positively regulates transcription of alpha-adducin (ADD1) and cyclin D1 (CCND1) to promote tumorgenicity of lung cancer. However, the upstream regulatory mechanisms of ZNF322A protein function remain elusive. Here, we demonstrate that AKT could phosphorylate ZNF322A by in vitro kinase assay and cell-based mass spectrometry analysis. Overexpression of AKT promoted ZNF322A protein stability and transcriptional activity, whereas these effects were inhibited by knockdown of AKT or treating with AKT inhibitor. We studied AKT-mediated phosphorylation sites, viz. Thr-150, Ser-224, Thr-234, and Thr-262. ZNF322A phosphorylation at Thr-262 by AKT promoted ZNF322A protein stability thus increased ADD1 promoter activity. Interestingly, phosphorylation at Thr-150, Ser-224, and Thr-234 enhanced transcription activity without affecting protein stability of ZNF322A. Chromatin immunoprecipitation and DNA affinity precipitation assays showed that ZNF322A phosphorylation defective mutants Thr-150A, Ser-224A, and Thr-234A attenuated chromatin binding and DNA binding affinity to ADD1 and CCND1 promoters compared with wild-type ZNF322A. Furthermore, AKT-mediated Thr-150, Ser-224, Thr-234, and Thr-262 phosphorylation promoted lung cancer cell growth and metastasis in vitro and in vivo. Clinically, expression of phosphorylated ZNF322A (p-ZNF) correlated with actively phosphorylated AKT (p-AKT) in tumor specimens from 150 lung cancer patients. Multivariate Cox regression analysis indicated that combined p-AKT and p-ZNF expression profile was an independent factor to predict the clinical outcome in lung cancer patients. Our results reveal a new mechanism of AKT signaling in promoting ZNF322A protein stability and transcriptional activity in lung cancer cell, xenograft, and clinical models.
Collapse
Affiliation(s)
- Sheng-You Liao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Ting Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Ya-Fen Liu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Tainan, 10617, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
10
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
11
|
Wang K, Qu X, Liu S, Yang X, Bie F, Wang Y, Huang C, Du J. Identification of aberrantly expressed F-box proteins in squamous-cell lung carcinoma. J Cancer Res Clin Oncol 2018; 144:1509-1521. [PMID: 29728763 DOI: 10.1007/s00432-018-2653-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/26/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE F-box proteins, as components of the Skp1-Cullin 1-F-box protein (SCF) E3 ubiquitin ligase, can specifically bind to substrates and regulate multiple tumor behaviors. However, the role of F-box proteins in squamous-cell lung carcinoma (SqCLC) has not been established. METHODS We identified the differentially expressed F-box protein-encoding genes in SqCLC by analyzing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Prognosis data were evaluated using the Kaplan-Meier (KM) plotter website. The FBXO5 and FBXO45 mRNA levels were analyzed by real time RT-PCR. The impact of the inhibition of these genes with si-RNA on apoptosis and migration was also investigated. RESULTS The FBXO45 and FBXO5 genes were significantly up-regulated in SqCLC compared with normal lung (p values = 0.002 and 0.025, respectively). FBXO45 was significantly elevated in each tumorigenic step, including dysplasia, in situ and SqCLC. The RT-PCR analysis results showed that FBXO5 and FBXO45 were elevated in cancer tissues (p values = 0.024 and 0.004, respectively). Overexpression of FBXO5 and FBXO45 was associated with shorter overall survival (OS) in the SqCLC patients from the K-M plotter database [FBXO5 HR: 1.53 (1.03-2.28), p = 0.036]; [FBXO45 HR: 1.47 (1.03-2.08), p = 0.030]. The GO and KEGG pathway analysis showed that FBXO5 and FBXO45 were associated with cell cycle and adhesion, respectively. Knockdown of FBXO5 leads to increased apoptosis, while knockdown of FBXO45 facilitates the process of epithelial-mesenchymal transition (EMT). CONCLUSIONS Our results provide evidence that FBXO45 and FBXO5 may play a key role in tumorigenesis and prognosis of SqCLC.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
- Department of Healthcare Respiratory, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Shaorui Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Xudong Yang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Fenglong Bie
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yu Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Cuicui Huang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|