1
|
Morin C, Paraqindes H, Van Long FN, Isaac C, Thomas E, Pedri D, Pulido-Vicuna CA, Morel AP, Marchand V, Motorin Y, Carrere M, Auclair J, Attignon V, Pommier RM, Ruiz E, Bourdelais F, Catez F, Durand S, Ferrari A, Viari A, Marine JC, Puisieux A, Diaz JJ, Moyret-Lalle C, Marcel V. Specific modulation of 28S_Um2402 rRNA 2'- O-ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts. NAR Cancer 2025; 7:zcaf001. [PMID: 39877292 PMCID: PMC11773364 DOI: 10.1093/narcan/zcaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA). Overexpression of ZEB1 and ZEB2, but not TWIST1, decreased the level of 2'-O-ribose methylation (2'Ome) of 28S rRNA at position Um2402. ZEB1 overexpression specifically reduced the expression of the corresponding C/D box small nucleolar RNAs (snoRNAs) SNORD143/144, which guide the rRNA 2'Ome complex at the 28S_Um2402 site. During ZEB1-induced EMT induction/reversion, the levels of both 2'Ome at 28S_Um2402 and SNORD143/144 were dynamically comodulated. Taken together, these data demonstrate that 2'Ome rRNA epitranscriptomics is a novel marker of ZEB1-induced EMT.
Collapse
Affiliation(s)
- Chloé Morin
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Hermes Paraqindes
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Bioinformatics Platform Gilles Thomas, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Synergie Lyon Cancer Fondation, 69008 Lyon, France
| | - Flora Nguyen Van Long
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Caroline Isaac
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Emilie Thomas
- Bioinformatics Platform Gilles Thomas, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Synergie Lyon Cancer Fondation, 69008 Lyon, France
| | - Dennis Pedri
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3001 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuna
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3001 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU 3000 Leuven, Belgium
| | - Anne-Pierre Morel
- EMT and Cancer Cell Plasticity Team, Centre Léon Bérard, 69008 Lyon, France
| | - Virginie Marchand
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
- IMoPA, UMR 7365 CNRS-UL, Biopole UL, 54500 Vandoeuvre-les-Nancy, France
| | - Marjorie Carrere
- Cancer Genomic Platform, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Jessie Auclair
- Cancer Genomic Platform, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Valéry Attignon
- Cancer Genomic Platform, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Roxane M Pommier
- Bioinformatics Platform Gilles Thomas, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Synergie Lyon Cancer Fondation, 69008 Lyon, France
| | - Emmanuelle Ruiz
- Department of Pathobiological Sciences, School of Veterinary and Medicine, Louisiana State University, 70802 Baton Rouge, LA, United States
| | - Fleur Bourdelais
- RibosOMICS Platform, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Frédéric Catez
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Sébastien Durand
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- RibosOMICS Platform, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Anthony Ferrari
- Bioinformatics Platform Gilles Thomas, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Synergie Lyon Cancer Fondation, 69008 Lyon, France
| | - Alain Viari
- Bioinformatics Platform Gilles Thomas, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Synergie Lyon Cancer Fondation, 69008 Lyon, France
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin 38334, France
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3001 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU 3000 Leuven, Belgium
| | - Alain Puisieux
- Institut Curie, PSL Research University, 75005 Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR3666, INSERM U1143, Paris, France
| | - Jean-Jacques Diaz
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Caroline Moyret-Lalle
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Virginie Marcel
- Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- RibosOMICS Platform, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| |
Collapse
|
2
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
3
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Morin C, Moyret-Lalle C, Mertani HC, Diaz JJ, Marcel V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188718. [PMID: 35304296 DOI: 10.1016/j.bbcan.2022.188718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence exposes translation and its translational machinery as key players in establishing and maintaining physiological and pathological biological processes. Examining translation may not only provide new biological insight but also identify novel innovative therapeutic targets in several fields of biology, including that of epithelial-to-mesenchymal transition (EMT). EMT is currently considered as a dynamic and reversible transdifferentiation process sustaining the transition from an epithelial to mesenchymal phenotype, known to be mainly driven by transcriptional reprogramming. However, it seems that the characterization of EMT plasticity is challenging, relying exclusively on transcriptomic and epigenetic approaches. Indeed, heterogeneity in EMT programs was reported to depend on the biological context. Here, by reviewing the involvement of translational control, translational machinery and ribosome biogenesis characterizing the different types of EMT, from embryonic and adult physiological to pathological contexts, we discuss the added value of integrating translational control and its machinery to depict the heterogeneity and dynamics of EMT programs.
Collapse
Affiliation(s)
- Chloé Morin
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Caroline Moyret-Lalle
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Hichem C Mertani
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France.
| |
Collapse
|
5
|
Karki P, Carney TD, Maracci C, Yatsenko AS, Shcherbata HR, Rodnina MV. Tissue-specific regulation of translational readthrough tunes functions of the traffic jam transcription factor. Nucleic Acids Res 2021; 50:6001-6019. [PMID: 34897510 PMCID: PMC9226519 DOI: 10.1093/nar/gkab1189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Translational readthrough (TR) occurs when the ribosome decodes a stop codon as a sense codon, resulting in two protein isoforms synthesized from the same mRNA. TR has been identified in several eukaryotic organisms; however, its biological significance and mechanism remain unclear. Here, we quantify TR of several candidate genes in Drosophila melanogaster and characterize the regulation of TR in the large Maf transcription factor Traffic jam (Tj). Using CRISPR/Cas9-generated mutant flies, we show that the TR-generated Tj isoform is expressed in a subset of neural cells of the central nervous system and is excluded from the somatic cells of gonads. Control of TR in Tj is critical for preservation of neuronal integrity and maintenance of reproductive health. The tissue-specific distribution of a release factor splice variant, eRF1H, plays a critical role in modulating differential TR of leaky stop codon contexts. Fine-tuning of gene regulatory functions of transcription factors by TR provides a potential mechanism for cell-specific regulation of gene expression.
Collapse
Affiliation(s)
- Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Travis D Carney
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
6
|
Gillen SL, Waldron JA, Bushell M. Codon optimality in cancer. Oncogene 2021; 40:6309-6320. [PMID: 34584217 PMCID: PMC8585667 DOI: 10.1038/s41388-021-02022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1QH.
| |
Collapse
|
7
|
Parfenyev SE, Shabelnikov SV, Pozdnyakov DY, Gnedina OO, Adonin LS, Barlev NA, Mittenberg AG. Proteomic Analysis of Zeb1 Interactome in Breast Carcinoma Cells. Molecules 2021; 26:molecules26113143. [PMID: 34074001 PMCID: PMC8197395 DOI: 10.3390/molecules26113143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.
Collapse
Affiliation(s)
- Sergey E. Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Sergey V. Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Danila Y. Pozdnyakov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Olga O. Gnedina
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Leonid S. Adonin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Alexey G. Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Correspondence: or
| |
Collapse
|
8
|
Sreekumar R, Al-Saihati H, Emaduddin M, Moutasim K, Mellone M, Patel A, Kilic S, Cetin M, Erdemir S, Navio MS, Lopez MA, Curtis N, Yagci T, Primrose JN, Price BD, Berx G, Thomas GJ, Tulchinsky E, Mirnezami A, Sayan AE. The ZEB2-dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes ERCC1 and ERCC4 in colorectal cancer. Mol Oncol 2021; 15:2065-2083. [PMID: 33931939 PMCID: PMC8333771 DOI: 10.1002/1878-0261.12965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Resistance to adjuvant chemotherapy is a major clinical problem in the treatment of colorectal cancer (CRC). The aim of this study was to elucidate the role of an epithelial to mesenchymal transition (EMT)‐inducing protein, ZEB2, in chemoresistance of CRC, and to uncover the underlying mechanism. We performed IHC for ZEB2 and association analyses with clinical outcomes on primary CRC and matched CRC liver metastases in compliance with observational biomarker study guidelines. ZEB2 expression in primary tumours was an independent prognostic marker of reduced overall survival and disease‐free survival in patients who received adjuvant FOLFOX chemotherapy. ZEB2 expression was retained in 96% of liver metastases. The ZEB2‐dependent EMT transcriptional programme activated nucleotide excision repair (NER) pathway largely via upregulation of the ERCC1 gene and other components in NER pathway, leading to enhanced viability of CRC cells upon oxaliplatin treatment. ERCC1‐overexpressing CRC cells did not respond to oxaliplatin in vivo, as assessed using a murine orthotopic model in a randomised and blinded preclinical study. Our findings show that ZEB2 is a biomarker of tumour response to chemotherapy and risk of recurrence in CRC patients. We propose that the ZEB2‐ERCC1 axis is a key determinant of chemoresistance in CRC.
Collapse
Affiliation(s)
| | - Hajir Al-Saihati
- Cancer Sciences Division, University of Southampton, UK.,College of Applied Medical Sciences, University of Hafr Al-Batin, Saudi Arabia
| | | | | | | | - Ashish Patel
- Cancer Sciences Division, University of Southampton, UK
| | - Seval Kilic
- Cancer Sciences Division, University of Southampton, UK
| | - Metin Cetin
- Department of Molecular Biology and Genetics, Gebze Technical University, Turkey
| | - Sule Erdemir
- Department of Molecular Biology and Genetics, Gebze Technical University, Turkey
| | | | | | - Nathan Curtis
- Department of Surgery, Southampton University Hospital NHS Trust, UK
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Gebze Technical University, Turkey
| | - John N Primrose
- Cancer Sciences Division, University of Southampton, UK.,Department of Surgery, Southampton University Hospital NHS Trust, UK
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Geert Berx
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Belgium.,Cancer Research Institute Ghent (CRIG), Belgium
| | | | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Alex Mirnezami
- Cancer Sciences Division, University of Southampton, UK.,College of Applied Medical Sciences, University of Hafr Al-Batin, Saudi Arabia
| | - A Emre Sayan
- Cancer Sciences Division, University of Southampton, UK
| |
Collapse
|
9
|
Cheng H, Zhao H, Xiao X, Huang Q, Zeng W, Tian B, Ma T, Lu D, Jin Y, Li Y. Long Non-coding RNA MALAT1 Upregulates ZEB2 Expression to Promote Malignant Progression of Glioma by Attenuating miR-124. Mol Neurobiol 2021; 58:1006-1016. [PMID: 33078370 DOI: 10.1007/s12035-020-02165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/09/2020] [Indexed: 02/02/2023]
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to play a critical role in the development of several malignancies. However, the potential molecular mechanism of MALAT1 in glioma remains unclear. In the present study, we found that the expression of MALAT1 was aberrantly increased in both human glioma tissues and cells and associated with poor prognosis in glioma patients. We further found that MALAT1 silencing significantly inhibited glioma cell proliferation while induced cell cycle arrest and apoptosis. In parallel, knockdown of MALAT1 decreased tumor volume in vivo. These results suggested that MALAT1 acts as a functional oncogene, resulting in the oncogenicity in glioma. Nevertheless, the tumor-suppressive effect of MALAT1 silencing was reversed by miR-124. Besides, the relevance of ZEB2 in tumor progression has been studied in several forms of human cancer, and ZEB2 was identified as a target of miR-124 and negatively regulated by miR-124. MALAT1 overexpression or miR-124 inhibitor led to increased expression of ZEB2. In summary, our study depicts a novel pathway of MALAT1/miR-124/ZEB2 that regulates the progression of glioma and might provide a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Hongyu Cheng
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Hospital Affiliated of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qian Huang
- College of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wen Zeng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Bo Tian
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Tao Ma
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dan Lu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yulong Jin
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, 430030, Hubei, China.
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Qi L, Sun B, Yang B, Lu S. CircMMP11 regulates proliferation, migration, invasion, and apoptosis of breast cancer cells through miR-625-5p/ZEB2 axis. Cancer Cell Int 2021; 21:133. [PMID: 33632213 PMCID: PMC7905581 DOI: 10.1186/s12935-021-01816-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs (circRNAs) have been demonstrated to play significant roles in regulating gene expression in tumorigenesis, including breast cancer (BC). This study was designed to explore the role and underlying molecular mechanisms of circMMP11 in BC. Methods The real-time quantitative polymerase chain reaction (RT-qPCR) assay was used for examining expression of circMMP11, microRNA-625-5p (miR-625-5p), and Zinc finger E-box binding homeobox-2 (ZEB2). The protein expression of ZEB2, Vimentin, and E-cadherin was assessed by western blot assay. The proliferation ability of BC cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and colony-forming assays. The transwell assay was used to measure migration and invasion of BC cells. The apoptotic cells were examined by flow cytometry assay. The interaction association among circMMP11, miR-625-5p, and ZEB2 was confirmed by RNA pull-down and dual-luciferase report assays. A xenograft experiment was established to clarify the role of circMMP11 silencing in vivo. Results We found that circMMP11 and ZEB2 were overexpressed in BC tissues and cells compared with controls. The suppression of circMMP11 or ZEB2 repressed proliferation, migration, and invasion while induced apoptosis of BC cells. Additionally, miR-625-5p, interacted with ZEB2, was a target of circMMP11 in BC cells. CircMMP11 regulated the expression of ZEB2 by targeting miR-625-5p. Knockdown of circMMP11-mediated effects on BC cells could be abolished by overexpression of ZEB2. Consistently, silencing of circMMP11 impeded the tumor growth in vivo. Conclusions CircMMP11/miR-625-5p/ZEB2 axis affected proliferation, migration, invasion, and apoptosis of BC cells through the mechanism of competing endogenous RNAs (ceRNA), indicating that circMMP11 was an oncogenic circRNA in BC.
Collapse
Affiliation(s)
- Liqiang Qi
- Department of Breast Surgical Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Bo Sun
- The 2nd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Beibei Yang
- The 2nd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Lu
- The 2nd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
11
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
12
|
Lee LJ, Papadopoli D, Jewer M, Del Rincon S, Topisirovic I, Lawrence MG, Postovit LM. Cancer Plasticity: The Role of mRNA Translation. Trends Cancer 2020; 7:134-145. [PMID: 33067172 PMCID: PMC8023421 DOI: 10.1016/j.trecan.2020.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is associated with dedifferentiated histopathologies concomitant with cancer cell survival within a changing, and often hostile, tumor microenvironment. These processes are enabled by cellular plasticity, whereby intracellular cues and extracellular signals are integrated to enable rapid shifts in cancer cell phenotypes. Cancer cell plasticity, at least in part, fuels tumor heterogeneity and facilitates metastasis and drug resistance. Protein synthesis is frequently dysregulated in cancer, and emerging data suggest that translational reprograming collaborates with epigenetic and metabolic programs to effectuate phenotypic plasticity of neoplasia. Herein, we discuss the potential role of mRNA translation in cancer cell plasticity, highlight emerging histopathological correlates, and deliberate on how this is related to efforts to improve understanding of the complex tumor ecology.
Collapse
Affiliation(s)
- Laura J Lee
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - David Papadopoli
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Jewer
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Sonia Del Rincon
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Mitchell G Lawrence
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Lynne-Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
13
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Shi X, Ma W, Li Y, Wang H, Pan S, Pan Y, Xu C, Li L. CircPRKCI relieves lipopolysaccharide-induced HK2 cell injury by upregulating the expression of miR-545 target gene ZEB2. Biofactors 2020; 46:475-486. [PMID: 32104945 DOI: 10.1002/biof.1620] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the possible influences of circPRKCI abnormal expression on lipopolysaccharide (LPS)-induced HK2 cell injury and its mechanism. The circPRKCI level was identified in serum samples from patients with urosepsis and healthy subjects, as well as LPS-treated HK2 cells by qRT-PCR. Cell viability, apoptosis, expression of proteins associated with apoptosis, and expression of pro-inflammatory cytokines in LPS-treated HK2 cells were measured. Effects of circPRKCI abnormal expression on LPS-induced HK2 cell injury were then evaluated. Afterward, the binding miRNA of circPRKCI and target gene of miRNA were identified, and the involvements of NF-kB pathway signaling pathway with the effects of circPRKCI were finally studied. CircPRKCI was significantly down-regulated in serum samples from patients with urosepsis and LPS-treated HK2 cells. LPS-induced decrease of cell viability, increase of cell apoptosis, as well as elevated productions of tumor necrosis factor (TNF)-α, interleukins (IL)-1β, IL-6, and IL-8 in HK2 cells were attenuated by overexpressed circPRKCI. In addition, circPRKCI negatively regulated the expression of miR-545, and miR-545 up-regulation reversed the inhibiting effects of circPRKCI overexpression on LPS-induced HK2 cell injury. Moreover, zinc finger E-box-binding homeobox 2 (ZEB2) was identified as a target gene of miR-545, and ZEB2 overexpression partly reversed the effects of miR-545 up-regulation on LPS-induced HK2 cell injury. Furthermore, NF-kB pathway was revealed to be associated to the effects of circPRKCI on LPS-induced HK2 cell injury. This research indicated that the highly expressed circPRKCI relieved inflammatory injury induced by LPS in HK2 cells by suppressing miR-545/ZEBs and depressing the briskness of NF-kB pathway.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Emergency, Tianjin First Center Hospital, Tianjin, China
| | - Wei Ma
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China
| | - Yongqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Han Wang
- Department of Vascular Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Shuang Pan
- Department of Physiology, School of Basic Medicine, Jinzhou Medicine University, Jinzhou, Liaoning, China
| | - Yongquan Pan
- Department of Vascular Surgery, The second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Lei Li
- Department of Vascular Surgery, The second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
15
|
Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F, Pöhlmann S, Rodnina MV. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res 2019; 47:5210-5222. [PMID: 30968122 PMCID: PMC6547452 DOI: 10.1093/nar/gkz202] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a –1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNALeu that reads the UUA codon at the mRNA slippery site. This tRNALeu isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support –1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant –1-frameshifting efficiency to ensure successful virus propagation.
Collapse
Affiliation(s)
- Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.,Faculty of Biology and Psychology, University of Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Fardi M, Alivand M, Baradaran B, Farshdousti Hagh M, Solali S. The crucial role of ZEB2: From development to epithelial-to-mesenchymal transition and cancer complexity. J Cell Physiol 2019; 234:14783-14799. [PMID: 30773635 DOI: 10.1002/jcp.28277] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Zinc finger E-box binding homeobox 2 (ZEB2) is a DNA-binding transcription factor, which is mainly involved in epithelial-to-mesenchymal transition (EMT). EMT is a conserved process during which mature and adherent epithelial-like state is converted into a mobile mesenchymal state. Emerging data indicate that ZEB2 plays a pivotal role in EMT-induced processes such as development, differentiation, and malignant mechanisms, for example, drug resistance, cancer stem cell-like traits, apoptosis, survival, cell cycle arrest, tumor recurrence, and metastasis. In this regard, the understanding of mentioned subjects in the development of normal and cancerous cells could be helpful in cancer complexity of diagnosis and therapy. In this study, we review recent findings about the biological properties of ZEB2 in healthy and cancerous states to find new approaches for cancer treatment.
Collapse
Affiliation(s)
- Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Solali
- Immunology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
ZEB2 in T-cells and T-ALL. Adv Biol Regul 2019; 74:100639. [PMID: 31383581 DOI: 10.1016/j.jbior.2019.100639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
The identification of the rare but recurrent t(2; 14)(q22; q32) translocation involving the ZEB2 locus in T-cell acute lymphoblastic leukemia, suggested that ZEB2 is an oncogenic driver of this high-risk subtype of leukemia. ZEB2, a zinc finger E-box homeobox binding transcription factor, is a master regulator of cellular plasticity and its expression is correlated with poor overall survival of cancer patients. Recent loss- and gain-of-function in the mouse revealed important roles of ZEB2 during different stages of hematopoiesis, including the T-cell lineage. Here, we summarize the roles of ZEB2 in T-cells, their development, and malignant transformation to T-ALL.
Collapse
|
18
|
Al-Ismaeel Q, Neal CP, Al-Mahmoodi H, Almutairi Z, Al-Shamarti I, Straatman K, Jaunbocus N, Irvine A, Issa E, Moreman C, Dennison AR, Emre Sayan A, McDearmid J, Greaves P, Tulchinsky E, Kriajevska M. ZEB1 and IL-6/11-STAT3 signalling cooperate to define invasive potential of pancreatic cancer cells via differential regulation of the expression of S100 proteins. Br J Cancer 2019; 121:65-75. [PMID: 31123345 PMCID: PMC6738112 DOI: 10.1038/s41416-019-0483-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background S100 proteins have been implicated in various aspects of cancer, including epithelial-mesenchymal transitions (EMT), invasion and metastasis, and also in inflammatory disorders. Here we examined the impact of individual members of this family on the invasion of pancreatic ductal adenocarcinoma (PDAC) cells, and their regulation by EMT and inflammation. Methods Invasion of PDAC cells was analysed in zebrafish embryo xenografts and in transwell invasion assays. Expression and regulation of S100 proteins was studied in vitro by immunoblotting, quantitative PCR and immunofluorescence, and in pancreatic lesions by immunohistochemistry. Results Whereas the expression of most S100 proteins is characteristic for epithelial PDAC cell lines, S100A4 and S100A6 are strongly expressed in mesenchymal cells and upregulated by ZEB1. S100A4/A6 and epithelial protein S100A14 respectively promote and represses cell invasion. IL-6/11-STAT3 pathway stimulates expression of most S100 proteins. ZEB1 synergises with IL-6/11-STAT3 to upregulate S100A4/A6, but nullifies the effect of inflammation on S100A14 expression. Conclusion EMT/ZEB1 and IL-6/11-STAT3 signalling act independently and congregate to establish the expression pattern of S100 proteins, which drives invasion. Although ZEB1 regulates expression of S100 family members, these effects are masked by IL-6/11-STAT3 signalling, and S100 proteins cannot be considered as bona fide EMT markers in PDAC.
Collapse
Affiliation(s)
- Qais Al-Ismaeel
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,College of Medicine, University of Duhokl, Kurdistan region, Duhok, Iraq
| | - Christopher P Neal
- University Hospitals of Leicester NHS Trust Hepato-Pancreato-Biliary Unit, Leicester, UK
| | - Hanaa Al-Mahmoodi
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Zamzam Almutairi
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | - Kees Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Nabil Jaunbocus
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Andrew Irvine
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Eyad Issa
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Catherine Moreman
- Department of Cellular Pathology, Leicester Royal Infirmary, Leicester, UK
| | - Ashley R Dennison
- University Hospitals of Leicester NHS Trust Hepato-Pancreato-Biliary Unit, Leicester, UK
| | - A Emre Sayan
- Cancer Sciences Division, University of Southampton, Southampton, UK
| | - Jonathan McDearmid
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Peter Greaves
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Eugene Tulchinsky
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia. .,Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan.
| | - Marina Kriajevska
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
19
|
Zhang G, Li H, Sun R, Li P, Yang Z, Liu Y, Wang Z, Yang Y, Yin C. Long non-coding RNA ZEB2-AS1 promotes the proliferation, metastasis and epithelial mesenchymal transition in triple-negative breast cancer by epigenetically activating ZEB2. J Cell Mol Med 2019; 23:3271-3279. [PMID: 30825262 PMCID: PMC6484319 DOI: 10.1111/jcmm.14213] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/21/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target.
Collapse
Affiliation(s)
- Guoxin Zhang
- College of Biological Science and Technology, Weifang Medical University, Weifang, China
| | - Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang, China
| | - Ruimei Sun
- Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Peirui Li
- Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Zhiyi Yang
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Yuanyuan Liu
- College of Nursing, Weifang Medical University, Weifang, China
| | - Zhaoyan Wang
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Yuling Yang
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
DaSilva-Arnold SC, Kuo CY, Davra V, Remache Y, Kim PCW, Fisher JP, Zamudio S, Al-Khan A, Birge RB, Illsley NP. ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation. Mol Hum Reprod 2019; 25:61-75. [PMID: 30462321 PMCID: PMC6497037 DOI: 10.1093/molehr/gay053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/09/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Does the upregulation of the zinc finger E-box binding homeobox 2 (ZEB2) transcription factor in human trophoblast cells lead to alterations in gene expression consistent with an epithelial-mesenchymal transition (EMT) and a consequent increase in invasiveness? SUMMARY ANSWER Overexpression of ZEB2 results in an epithelial-mesenchymal shift in gene expression accompanied by a substantial increase in the invasive capacity of human trophoblast cells. WHAT IS KNOWN ALREADY In-vivo results have shown that cytotrophoblast differentiation into extravillous trophoblast involves an epithelial-mesenchymal transition. The only EMT master regulatory factor which shows changes consistent with extravillous trophoblast EMT status and invasive capacity is the ZEB2 transcription factor. STUDY DESIGN, SIZE, DURATION This study is a mechanistic investigation of the role of ZEB2 in trophoblast differentiation. We generated stable ZEB2 overexpression clones using the epithelial BeWo and JEG3 choriocarcinoma lines. Using these clones, we investigated the effects of ZEB2 overexpression on the expression of EMT-associated genes and proteins, cell morphology and invasive capability. PARTICIPANTS/MATERIALS, SETTING, METHODS We used lentiviral transduction to overexpress ZEB2 in BeWo and JEG3 cells. Stable clones were selected based on ZEB2 expression and morphology. A PCR array of EMT-associated genes was used to probe gene expression. Protein measurements were performed by western blotting. Gain-of-function was assessed by quantitatively measuring cell invasion rates using a Transwell assay, a 3D bioprinted placenta model and the xCelligenceTM platform. MAIN RESULTS AND THE ROLE OF CHANCE The four selected clones (2 × BeWo, 2 × JEG3, based on ZEB2 expression and morphology) all showed gene expression changes indicative of an EMT. The two clones (1 × BeWo, 1 × JEG3) showing >40-fold increase in ZEB2 expression also displayed increased ZEB2 protein; the others, with increases in ZEB2 expression <14-fold did not. The two high ZEB2-expressing clones demonstrated robust increases in invasive capacity, as assessed by three types of invasion assay. These data identify ZEB2-mediated transcription as a key mechanism transforming the epithelial-like trophoblast into cells with a mesenchymal, invasive phenotype. LARGE SCALE DATA PCR array data have been deposited in the GEO database under accession number GSE116532. LIMITATIONS, REASONS FOR CAUTION These are in-vitro studies using choriocarcinoma cells and so the results should be interpreted in view of these limitations. Nevertheless, the data are consistent with in-vivo findings and are replicated in two different cell lines. WIDER IMPLICATIONS OF THE FINDINGS The combination of these data with the in-vivo findings clearly identify ZEB2-mediated EMT as the mechanism for cytotrophoblast differentiation into extravillous trophoblast. Having characterized these cellular mechanisms, it will now be possible to identify the intracellular and extracellular regulatory components which control ZEB2 and trophoblast differentiation. It will also be possible to identify the aberrant factors which alter differentiation in invasive pathologies such as preeclampsia and abnormally invasive placenta (AKA accreta, increta, percreta). STUDY FUNDING AND COMPETING INTEREST(s) Funding was provided by the Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Surgery at Hackensack Meridian Health, Hackensack, NJ. The 3D bioprinted placental model work done in Drs Kim and Fisher's labs was supported by the Children's National Medical Center. The xCELLigence work done in Dr Birge's lab was supported by NIH CA165077. The authors declare no competing interests.
Collapse
Affiliation(s)
- Sonia C DaSilva-Arnold
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine and Surgery and Center for Abnormal Placentation, Hackensack University Medical Center, Hackensack, NJ, USA
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Che-Ying Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, MD, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, USA
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yvonne Remache
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine and Surgery and Center for Abnormal Placentation, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Peter C W Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- NIH Center for Engineering Complex Tissues, University of Maryland, College Park, MD, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington DC, USA
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine and Surgery and Center for Abnormal Placentation, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Abdulla Al-Khan
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine and Surgery and Center for Abnormal Placentation, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine and Surgery and Center for Abnormal Placentation, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
21
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
22
|
Chen L, Tian X, Gong W, Sun B, Li G, Liu D, Guo P, He Y, Chen Z, Xia Y, Song T, Guo H. Periostin mediates epithelial-mesenchymal transition through the MAPK/ERK pathway in hepatoblastoma. Cancer Biol Med 2019; 16:89-100. [PMID: 31119049 PMCID: PMC6528457 DOI: 10.20892/j.issn.2095-3941.2018.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective The aim of the present study was to analyze the prognostic factors in patients with hepatoblastoma (HB) in our single center and to evaluate periostin (POSTN) expression in HB and its association with clinicopathological variables. In addition, the underlying mechanism of how POSTN promotes HB progression was discussed. Methods POSTN expression was investigated in HB tumors by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB). The association among POSTN expression, clinicopathological features and overall survival (OS) was also evaluated. The migration and adhesion ability of HB cells were measured using chemotaxis and cell-matrix adhesion assays, respectively. Epithelial-mesenchymal transition (EMT)-associated markers and activation of the ERK pathway were detected by WB. Results HB patients had poor prognosis which displayed lymph node metastasis, vascular invasion, POSTN and vimentin expression. POSTN expression was also associated with lymph node metastasis. Furthermore, overexpressed POSTN promoted migration and the adhesive ability of HB cells in vitro. In addition, we demonstrated that POSTN activated the MAPK/ERK pathway, upregulated the expression of Snail and decreased the expression of OVOL2. Finally, POSTN promoted the expression of EMT-associated markers. Conclusions POSTN might modulate EMT via the ERK signaling pathway, thereby promoting cellular migration and invasion. Our study also suggests that POSTN may serve as a therapeutic biomarker in HB patients.
Collapse
Affiliation(s)
- Lu Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangdong Tian
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenchen Gong
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Sun
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guangtao Li
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Dongming Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Piao Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ziye Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuren Xia
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tianqiang Song
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|