1
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
2
|
Zou X, Shen J, Li X, Diao Y, Zhang L. The causal effects of 2,821 protein level ratios on non-small cell lung cancer: a two-sample Mendelian randomization study. Transl Cancer Res 2025; 14:1101-1110. [PMID: 40104726 PMCID: PMC11912077 DOI: 10.21037/tcr-24-1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
Background Non-small cell lung cancer (NSCLC) has a complex etiology, making early diagnosis difficult and leading to high mortality rates, thus necessitating personalized treatment strategies. While protein level ratios have shown potential as biomarkers or therapeutic targets, their causal relationship with NSCLC remains unclear. This study aimed to investigate these causal links using Mendelian randomization (MR), providing insights into potential biomarkers and therapeutic avenues. Methods We executed an intricate two-sample MR study to explore the stochastic causal links between 2,821 protein level ratios and NSCLC. The genome-wide association study (GWAS) statistics for NSCLC and protein level ratios were sourced from the Finnish Database (version 10) and the UK Biobank, respectively. For the instrumental variables (IVs) related to protein level ratios, we selected IVs with a P value <1.0×10-5. Throughout this analysis, we applied five established MR techniques. Results Our study identified causal relationships between 142 protein level ratios and NSCLC. Notably, the AKR1B1/SUGT1 protein level ratio and the PLPBP/STIP1 protein level ratio demonstrated the most significant negative correlations with NSCLC risk. On the other hand, the ARHGEF12/IRAK4 protein level ratio and the BANK1/LBR protein level ratio exhibited the most significant positive correlations. Furthermore, sensitivity analyses did not reveal any significant heterogeneity or horizontal pleiotropy. Conclusions Studying specific protein level ratios in patients can reveal the molecular mechanisms and pathological processes of NSCLC, which has certain clinical significance for early diagnosis of NSCLC, understanding drug resistance mechanisms and developing personalized treatment strategies. However, these findings necessitate further validation through extensive clinical research.
Collapse
Affiliation(s)
- Xinyun Zou
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jinlan Shen
- Department of Laboratory Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaokai Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, China
| | - Yong Diao
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, China
| | - Ling Zhang
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
3
|
Ge L, Liu X, Zhang L, Zhang J, Song G. SUGT1 is a prognostic biomarker and is associated with immune infiltrates in ovarian cancer. Eur J Med Res 2025; 30:21. [PMID: 39794869 PMCID: PMC11724497 DOI: 10.1186/s40001-024-02232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a prevalent gynecological malignancy with a relatively dismal prognosis. The SGT1 homolog (SUGT1) protein, which interacts with heat shock protein 90 and is essential for the G1/S and G2/M transitions, was formerly thought to be a cancer promoter, but its precise role in OC remains unknown. METHODS We conducted a comprehensive bioinformatics analysis of SUGT1 expression in patients with OC compared with their normal controls, including the data from the cancer genome atlas (TCGA), genotype-tissue expression (GTEx) databases, gene ontology (GO) analysis, Kyoto Encylopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), single sample gene set enrichment analysis (ssGSEA). In addition, Kaplan-Meier (KM) analysis, univariate and multivariate Cox analyses were applied to investigate the prognostic role of SUGT1 in ovarian cancer. Furthermore, we validated the expression of SUGT1 in OC and normal tissues through immunohistochemistry. RESULTS SUGT1 was significantly overexpressed in OC than in normal tissues. In addition, the GO, KEGG and GSEA analysis revealed that SUGT1 was associated with the functions related to immunoglobulin complex, antigen binding, immunoglobulin receptor binding, among others. Besides, ssGSEA demonstrated a positive correlation between SUGT1 expression and the abundance of T central memory cells, natural killer cells, and T gamma delta cells, although it showed a negative association with activated dendritic cells, cytotoxic cells, T cells, and T helper 1 cells. Subsequently, KM survival analysis revealed that high SUGT1 expression indicated a shorter overall survival, disease specific survival and progression free interval in OC patients. Univariate and multivariate Cox regression revealed that SUGT1 could serve as an independent risk factor for prognosis of patients with OC. CONCLUSIONS All these results of this study show that SUGT1 is an important molecular component in immune infiltration in OC and may have a new significant prognostic role in OC.
Collapse
Affiliation(s)
- Linyan Ge
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China
| | - Xiu Liu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingyan Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China
| | - Jiaren Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanghui Song
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Lu S, Wang L, Liao L, Niu S, Xiong K, Yan J, Yan W. The Role of Sgt1 in Methamphetamine/Hyperthermia-induced Necroptosis. Curr Med Chem 2025; 32:1195-1207. [PMID: 38204230 DOI: 10.2174/0109298673277649231127055610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is a synthetic drug widely abused globally and can result in hyperthermia (HT) and psychiatric symptoms. Our previous studies showed that heat shock protein 90 alpha (HSP90α) plays a vital role in METH/HT-elicited neuronal necroptosis; however, the detailed mechanism of HSP90α regulation remained obscure. METHODS Herein, we demonstrated a function of the suppressor of G-two allele of SKP1 (Sgt1) in METH/HT-induced necroptosis. Sgt1 was mainly expressed in neurons, co-located with HSP90α, and increased in rat striatum after METH treatment. METH/HT injury triggered necroptosis and increased Sgt1 expression in PC-12 cells. RESULTS Data from computer simulations indicated that Sgt1 might interact with HSP90α. Geldanamycin (GA), the specific inhibitor of HSP90α, attenuated the interaction between Sgt1 and HSP90α. Knockdown of Sgt1 expression did not affect the expression level of HSP90α. Still, it inhibited the expression of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), p-RIP3, and p-MLKL, as well as necroptosis induced by METH/HT injury. CONCLUSION In conclusion, Sgt1 may regulate the expression of RIP3, p-RIP3, MLKL, and p-MLKL by assisting HSP90α in affecting the METH/HT-induced necroptotic cell death.
Collapse
Affiliation(s)
- Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lewen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Shuliang Niu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Jie Yan
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
5
|
Ke M, Xu J, Ouyang Y, Chen J, Yuan D, Guo T. SUGT1 regulates the progression of ovarian cancer through the AKT/PI3K/mTOR signaling pathway. Transl Oncol 2024; 49:102088. [PMID: 39167956 PMCID: PMC11379980 DOI: 10.1016/j.tranon.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigates the expression and functional roles of SUGT1 in ovarian cancer, utilizing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Our analyses reveal that SUGT1 is significantly upregulated in ovarian cancer tissues compared to normal controls. We further explore the prognostic value of SUGT1, where elevated expression correlates with poorer patient outcomes, particularly in ovarian cancer. The functional implications of SUGT1 in cancer biology were assessed through in vitro and in vivo experiments. Gene Set Enrichment Analysis (GSEA) indicates a significant association between high SUGT1 expression and the activation of glycolytic pathways, suggesting a potential role in metabolic reprogramming. Inhibition of SUGT1 via siRNA in ovarian cancer cell lines results in decreased proliferation and increased apoptosis, along with reduced migration and invasion capabilities. Additionally, our study identifies the transcription factor ELF1 as a significant regulator of SUGT1 expression. Through promoter analysis and chromatin immunoprecipitation, we demonstrate that ELF1 directly binds to the SUGT1 promoter, enhancing its transcription. This regulatory mechanism underscores the importance of transcriptional control in cancer metabolism, providing insights into potential therapeutic targets. Our findings establish SUGT1 as a crucial player in the oncogenic processes of ovarian cancer, influencing both metabolic pathways and transcriptional regulation. This highlights its potential as a biomarker and therapeutic target in managing ovarian cancer.
Collapse
Affiliation(s)
- Miao Ke
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Xu
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ye Ouyang
- Graduate Management Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Junyu Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Donglan Yuan
- Department of Gynecology and Obstetrics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Ting Guo
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
6
|
Ye Z, Meng Q, Zhang W, He J, Zhao H, Yu C, Liang W, Li X, Wang H. Exploration of the Shared Gene and Molecular Mechanisms Between Endometriosis and Recurrent Pregnancy Loss. Front Vet Sci 2022; 9:867405. [PMID: 35601407 PMCID: PMC9120926 DOI: 10.3389/fvets.2022.867405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Endometriosis (EMs) is a common benign gynecological disease in women of childbearing age, which usually causes pelvic pain, secondary dysmenorrhea, and infertility. EMs has been linked to recurrent pregnancy loss (RPL) in epidemiological data. The relationship of both, however, remains unknown. The purpose of this study is to explore the underlying pathological mechanisms between EMs and RPL. We searched Gene Expression Omnibus (GEO) database to obtain omics data of EMs and RPL. Co-expression modules for EMs and RPL were investigated by using weighted gene co-expression network analysis (WGCNA). The intersections of gene modules with the strong correlation to EMs or RPL obtained by WGCNA analysis were considered as shared genes. MicroRNAs (miRNAs) and their corresponding target genes linked to EMs and RPL were found though the Human MicroRNA Disease Database (HMDD) and the miRTarbase database. Finally, we constructed miRNAs-mRNAs regulatory networks associated with the two disorders by using the intersection of previously obtained target genes and shared genes. We discovered as significant modules for EMs and RPL, respectively, by WGCNA. The energy metabolism might be the common pathogenic mechanism of EMs and RPL, according to the findings of a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We discovered several target genes that might be linked to these two disorders, as well as the potential mechanisms. RAB8B, GNAQ, H2AFZ, SUGT1, and LEO1 could be therapeutic candidates for RPL and EMs. The PI3K-Akt signaling pathway and platelet activation were potentially involved in the mechanisms of EM-induced RPL. Our findings for the first time revealed the underlying pathological mechanisms of EM-induced RPL and identified several useful biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Zhuang Ye
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Qingxue Meng
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Weiwen Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Huanyi Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengwei Yu
| | - Weizheng Liang
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
- Weizheng Liang
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
- Xiushen Li
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
- Hao Wang
| |
Collapse
|
7
|
Cao S, Huang S, Guo Y, Zhou L, Lu Y, Lai S. Proteomic-based identification of oocyte maturation-related proteins in mouse germinal vesicle oocytes. Reprod Domest Anim 2020; 55:1607-1618. [PMID: 32920902 DOI: 10.1111/rda.13819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Abstract
Oocyte proteins play an important role in oocyte maturation, fertilization and embryonic development. However, the protein composition of mouse germinal vesicle (GV) oocytes is still unclear. Using one-dimensional Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (1D SDS-PAGE) and Reverse-phase liquid chromatography tandem mass spectrometry (RP-LC-MS/MS), we constructed a protein profile of mouse GV oocytes. First, our proteomics profile identified 1,405 different proteins from 11,000 mouse GV oocytes lacking zona pellucida. Second, with detailed bioinformatics analysis, a group of proteins that play an essential role in oocyte maturation was screened. In addition, the expression and localization of suppressor of G2 allele of skp1(SUGT1, also called SGT1), heterogeneous nuclear ribonucleoprotein K (Hnrpk), Seruin, Cullin1(Clu1) and nuclear distribution protein C (Nudc) in mouse ovaries and early embryos were also captured and investigated in this study. Moreover, the protein profile was submitted to the Proteomics Identifications Database (PRIDE) and is available via ProteomeXchange with the identifier PXD014314. Our research provides valuable resources for the study of oocyte proteins and oocyte maturation and helps to clarify the mechanisms of oocyte maturation.
Collapse
Affiliation(s)
- Senyang Cao
- Center of Reproductive Medicine, Huai'an Maternity and Child Health Care Center, Huai'an, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shaoping Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Ying Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Huang S, Huang Z, Ma C, Luo L, Li YF, Wu YL, Ren Y, Feng C. Acidic leucine-rich nuclear phosphoprotein-32A expression contributes to adverse outcome in acute myeloid leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:345. [PMID: 32355789 PMCID: PMC7186738 DOI: 10.21037/atm.2020.02.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) is a novel regulator of histone H3 acetylation and promotes leukemogenesis in acute myeloid leukemia (AML). However, its prognostic value in AML remains unclear. Methods In this study, we evaluated the prognostic significance of ANP32A expression using two independent large cohorts of cytogenetically normal AML (CN-AML) patients. Multivariable analysis in CN-AML group was also presented. Based on the ANP32A expression, its related genes, dysregulation of pathways, interaction network analysis between microRNAs and target genes, as well as methylation analysis were performed to unveil the complex functions behind ANP32A. Results Here we demonstrated overexpression of ANP32A was notably associated with unfavorable outcome in two independent cohorts of CN-AML patients (OS: P=0.012, EFS: P=0.005, n=185; OS: P=0.041, n=232), as well as in European Leukemia Net (ELN) Intermediate-I group (OS: P=0.018, EFS: P=0.045, n=115), National Comprehensive Cancer Network (NCCN) Intermediate Risk AML group (OS: P=0.048, EFS: P=0.039, n=225), and non-M3 AML group (OS: P=0.034, EFS: P=0.011, n=435). Multivariable analysis further validated ANP32A as a high-risk factor in CN-AML group. Multi-omics analysis presented overexpression of ANP32A was associated with aberrant expression of oncogenes and tumor suppressor, up/down-regulation of metabolic and immune-related pathways, dysregulation of microRNAs, and hypomethylation on CpG island and 1st Exon regions. Conclusions We proved ANP32A as a novel, potential unfavorable prognosticator and therapeutic target for AML.
Collapse
Affiliation(s)
- Sai Huang
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Chao Ma
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lan Luo
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Fen Li
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Li Wu
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuan Ren
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Cong Feng
- Department of Emergency, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Costa-Martins AG, Lima L, Alves JMP, Serrano MG, Buck GA, Camargo EP, Teixeira MMG. Genome-wide identification of evolutionarily conserved Small Heat-Shock and eight other proteins bearing α-crystallin domain-like in kinetoplastid protists. PLoS One 2018; 13:e0206012. [PMID: 30346990 PMCID: PMC6197667 DOI: 10.1371/journal.pone.0206012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
Small Heat-Shock Proteins (sHSPs) and other proteins bearing alpha-crystallin domains (ACD) participate in defense against heat and oxidative stress and play important roles in cell cycle, cytoskeleton dynamics, and immunological and pathological mechanisms in eukaryotes. However, little is known about these proteins in early-diverging lineages of protists such as the kinetoplastids. Here, ACD-like proteins (ACDp) were investigated in genomes of 61 species of 12 kinetoplastid genera, including Trypanosoma spp. (23 species of mammals, reptiles and frogs), Leishmania spp. (mammals and lizards), trypanosomatids of insects, Phytomonas spp. of plants, and bodonids. Comparison of ACDps based on domain architecture, predicted tertiary structure, phylogeny and genome organization reveals a kinetoplastid evolutionarily conserved repertoire, which diversified prior to trypanosomatid adaptation to parasitic life. We identified 9 ACDp orthologs classified in 8 families of TryACD: four previously recognized (HSP20, Tryp23A, Tryp23B and ATOM69), and four characterized for the first time in kinetoplastids (TryACDP, TrySGT1, TryDYX1C1 and TryNudC). A single copy of each ortholog was identified in each genome alongside TryNudC1/TrypNudC2 homologs and, overall, ACDPs were under strong selection pressures at main phylogenetic lineages. Transcripts of all ACDPs were identified across the life stages of T. cruzi, T. brucei and Leishmania spp., but proteomic profiles suggested that most ACDPs may be species- and stage-regulated. Our findings establish the basis for functional studies, and provided evolutionary and structural support for an underestimated repertoire of ACDps in the kinetoplastids.
Collapse
Affiliation(s)
- André G Costa-Martins
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Myrna G Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| |
Collapse
|
10
|
Plasma miR-324-3p and miR-1285 as diagnostic and prognostic biomarkers for early stage lung squamous cell carcinoma. Oncotarget 2018; 7:59664-59675. [PMID: 27517633 PMCID: PMC5312339 DOI: 10.18632/oncotarget.11198] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Specific biomarkers for early detection and outcome prediction of lung squamous cell carcinoma (LSCC) are still lacking. This study assessed the differentially expressed miRNAs as potential biomarkers for early stage LSCC. RESULTS Base on the results of multi-phase study, we found that miR-324-3p was significantly up-regulated, whereas mir-1285 was significantly down-regulated in plasma of stage I LSCC patients compared to healthy controls. ROC analysis showed that AUC of miR-324-3p and miR-1285 were 0.79 and 0.85, respectively. The combination of these two miRNAs could further improve the diagnostic accuracy (AUC = 0.89). The multivariate analysis revealed that plasma miR-324-3p level was an independent prognostic predictor for early stage LSCC. METHODS 395 patients and 195 healthy controls were enrolled in this study. We screened the differentially expressed plasma miRNAs using TaqMan Low Density Arrays (TLDA) followed by three-phase qRT-PCR validation. We also evaluated the association of candidate miRNAs with overall survival of early stage LSCC patients. Finally, the target genes of the candidate miRNAs were analyzed using public available databases and bioinformatics methods. CONCLUSIONS The current study suggests that plasma miR-324-3p and miR-1285 levels could serve as LSCC early detection markers while miR-324-3p may serve as a prognostic marker for LSCC patients.
Collapse
|
11
|
Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J. The Plasticity of the Hsp90 Co-chaperone System. Mol Cell 2017; 67:947-961.e5. [PMID: 28890336 DOI: 10.1016/j.molcel.2017.08.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/10/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.
Collapse
Affiliation(s)
- Priyanka Sahasrabudhe
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Julia Rohrberg
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Maximillian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
12
|
Niikura Y, Kitagawa R, Ogi H, Kitagawa K. SGT1-HSP90 complex is required for CENP-A deposition at centromeres. Cell Cycle 2017; 16:1683-1694. [PMID: 28816574 PMCID: PMC5602426 DOI: 10.1080/15384101.2017.1325039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The centromere plays an essential role in accurate chromosome segregation, and defects in its function lead to aneuploidy and thus cancer. The centromere-specific histone H3 variant CENP-A is proposed to be the epigenetic mark of the centromere, as active centromeres require CENP-A–containing nucleosomes to direct the recruitment of multiple kinetochore proteins. CENP-A K124 ubiquitylation, mediated by CUL4A-RBX1-COPS8 E3 ligase activity, is required for CENP-A deposition at the centromere. However, the mechanism that controls the E3 ligase activity of the CUL4A-RBX1-COPS8 complex remains obscure. We have discovered that the SGT1-HSP90 complex is required for recognition of CENP-A by COPS8. Thus, the SGT1-HSP90 complex contributes to the E3 ligase activity of the CUL4A complex that is necessary for CENP-A ubiquitylation and CENP-A deposition at the centromere.
Collapse
Affiliation(s)
- Yohei Niikura
- a Greehey Children's Cancer Research Institute , Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine , San Antonio , TX , USA.,b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Risa Kitagawa
- a Greehey Children's Cancer Research Institute , Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine , San Antonio , TX , USA.,b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Hiroo Ogi
- b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Katsumi Kitagawa
- a Greehey Children's Cancer Research Institute , Department of Molecular Medicine, UT Health Science Center San Antonio School of Medicine , San Antonio , TX , USA.,b The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| |
Collapse
|
13
|
Willhoft O, Kerr R, Patel D, Zhang W, Al-Jassar C, Daviter T, Millson SH, Thalassinos K, Vaughan CK. The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores. Sci Rep 2017; 7:41626. [PMID: 28139700 PMCID: PMC5282575 DOI: 10.1038/srep41626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 12/05/2022] Open
Abstract
The essential cochaperone Sgt1 recruits Hsp90 chaperone activity to a range of cellular factors including SCF E3 ubiquitin ligases and the kinetochore in eukaryotes. In these pathways Sgt1 interacts with Skp1, a small protein that heterodimerizes with proteins containing the F-box motif. We have determined the crystal structure of the interacting domains of Saccharomyces cerevisiae Sgt1 and Skp1 at 2.8 Å resolution and validated the interface in the context of the full-length proteins in solution. The BTB/POZ domain of Skp1 associates with Sgt1 via the concave surface of its TPR domain using residues that are conserved in humans. Dimerization of yeast Sgt1 occurs via an insertion that is absent from monomeric human Sgt1. We identify point mutations that disrupt dimerization and Skp1 binding in vitro and find that the interaction with Skp1 is an essential function of Sgt1 in yeast. Our data provide a structural rationale for understanding the phenotypes of temperature-sensitive Sgt1 mutants and for linking Skp1-associated proteins to Hsp90-dependent pathways.
Collapse
Affiliation(s)
- Oliver Willhoft
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Richard Kerr
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Division of Biosciences, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Dipali Patel
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Wenjuan Zhang
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Caezar Al-Jassar
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Tina Daviter
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Stefan H Millson
- School of Life Sciences, Joseph Banks Laboratory, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Division of Biosciences, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Cara K Vaughan
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
14
|
Hong TJ, Hahn JS. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli. Biochem Biophys Res Commun 2016; 478:1647-52. [PMID: 27591899 DOI: 10.1016/j.bbrc.2016.08.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Abstract
NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expression level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes.
Collapse
Affiliation(s)
- Tae-Joon Hong
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J 2015; 30:1712-23. [PMID: 26722004 DOI: 10.1096/fj.15-283408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022]
Abstract
Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.
Collapse
Affiliation(s)
- Elizabeth Roundhill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| | - Doug Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Burchill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| |
Collapse
|
16
|
Kamien B, Digilio MC, Novelli A, O'Donnell S, Bain N, Meldrum C, Dudding-Byth T, Scott RJ, Goel H. Narrowing the critical region for overgrowth within 13q14.2-q14.3 microdeletions. Eur J Med Genet 2015; 58:629-33. [PMID: 26475974 DOI: 10.1016/j.ejmg.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/30/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
Large chromosomal deletions from 13q13.3 to 13q21.3 have previously been associated with overgrowth. We present two patients with deletions at 13q14.2q14.3 who have macrocephaly, tall stature relative to their parents, cardiac phenotypes, and intellectual disability. This report narrows the critical region for tall stature, macrocephaly, and possibly cardiac disease.
Collapse
Affiliation(s)
- Benjamin Kamien
- Hunter Genetics, Newcastle, New South Wales, Australia; The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia; The University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle, New South Wales, Australia.
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | | | - Nicole Bain
- Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia
| | - Cliff Meldrum
- Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia
| | - Tracy Dudding-Byth
- Hunter Genetics, Newcastle, New South Wales, Australia; The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- The University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle, New South Wales, Australia; Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia
| | - Himanshu Goel
- Hunter Genetics, Newcastle, New South Wales, Australia; The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia
| |
Collapse
|