1
|
Characterization of a Read-through Fusion Transcript, BCL2L2-PABPN1, Involved in Porcine Adipogenesis. Genes (Basel) 2022; 13:genes13030445. [PMID: 35327999 PMCID: PMC8955228 DOI: 10.3390/genes13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
cis-Splicing of adjacent genes (cis-SAGe) has been involved in multiple physiological and pathological processes in humans. However, to the best of our knowledge, there is no report of cis-SAGe in adipogenic regulation. In this study, a cis-SAGe product, BCL2L2–PABPN1 (BP), was characterized in fat tissue of pigs with RT-PCR and RACE method. BP is an in-frame fusion product composed of 333 aa and all the functional domains of both parents. BP is highly conserved among species and rich in splicing variants. BP was found to promote proliferation and inhibit differentiation of primary porcine preadipocytes. A total of 3074/44 differentially expressed mRNAs (DEmRs)/known miRNAs (DEmiRs) were identified in porcine preadipocytes overexpressing BP through RNA-Seq analysis. Both DEmRs and target genes of DEmiRs were involved in various fat-related pathways with MAPK and PI3K-Akt being the top enriched. PPP2CB, EGFR, Wnt5A and EHHADH were hub genes among the fat-related pathways identified. Moreover, ssc-miR-339-3p was found to be critical for BP regulating adipogenesis through integrated analysis of mRNA and miRNA data. The results highlight the role of cis-SAGe in adipogenesis and contribute to further revealing the mechanisms underlying fat deposition, which will be conductive to human obesity control.
Collapse
|
2
|
Stefanek E, Samiei E, Kavoosi M, Esmaeillou M, Roustai Geraylow K, Emami A, Ashrafizadeh M, Perrin D, Gordon JW, Akbari M, Ghavami S. A bioengineering method for modeling alveolar Rhabdomyosarcoma and assessing chemotherapy responses. MethodsX 2021; 8:101473. [PMID: 34430344 PMCID: PMC8374652 DOI: 10.1016/j.mex.2021.101473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignant tumor. Treatment of RMS usually includes primary tumor resection along with systemic chemotherapy. Two-dimensional (2D) cell culture systems and animal models have been extensively used for investigating the potential efficacy of new RMS treatments. However, RMS cells behave differently in 2D culture than in vivo, which has recently inspired the adoption of three-dimensional (3D) culture environments. In the current paper, we will describe the detailed methodology we have developed for fabricating a 3D engineered model to study alveolar RMS (ARMS) in vitro. This model consists of a thermally cross-linked collagen disk laden with RMS cells that mimics the structural and bio-chemical aspects of the tumor extracellular matrix (ECM). This process is highly reproducible and produces a 3D engineered model that can be used to analyze the cytotoxicity and autophagy induction of drugs on ARMS cells. The most improtant bullet points are as following:We fabricated 3D model of ARMS. The current ARMS 3D model can be used for screening of chemotherapy drugs. We developed methods to detect apoptosis and autophagy in ARMS 3D model to detect the mechansims of chemotherapy agents.
Collapse
Key Words
- 2D, Two-dimensional
- 3D, Three-dimensional
- AKT, Protein Kinase B
- Apoptosis
- Autophagy
- BSA, Bovine serum albumin
- Biofabrication
- Cell death
- DAPI, 4’,6-Diami- dino-2-Phenylindole, Dihydrochloride
- DFS, Disease-free survival
- DMEM, Dulbecco's phosphate buffered saline
- DNA, Deoxyribonucleic acid
- ECM, Extracellular matrix
- EDTA, Ethylenediaminetetraacetic acid
- EM, Engineered model
- EthD-1, Ethidium homodimer-1
- FBS, Fetal bovine serum
- FOXO1, Forkhead box protein O1
- HEPES, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)
- ICC, Immunocytochemistry
- IgG, Immunoglobulin G
- LC3, Microtubule associated protein 1A/1B-light chain 3
- MEK, Mitogen-activated extracellular signal-regulated kinase
- MYOD1, Myogenic muscle differentiation transcription factor 1
- PAX, Paired box gene
- PDMS, Polydimethylsiloxane
- PNIPAAm, Poly-N-isopropylacrylamide
- RGD, Arginylglycylaspartic acid
- RMS, Rhabdomyosarcoma
- RPMI, Roswell Park Memorial Institute
- RT, Room temperature
- Rhabdomyosarcoma
- TMZ, Temozolomide
- dECM, Decellularized extracellular matrix
Collapse
Affiliation(s)
- Evan Stefanek
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Mahboubeh Kavoosi
- Department of Biology, School of Basic Sciences, Research and Science Branch of Islamic Azad University, Zanjan, Iran
| | | | | | - Arya Emami
- Faculty of Psychology, Department of Health, York University, ON, Canada.,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
| | - David Perrin
- Department of Surgery, Section of Orthopaedic Surgery, University of Manitoba, Winnipeg MB R3A 1R9, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada.,Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice 44-100, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg MBR3E 0V9, Canada.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.,Faculty of Medicine, Katowice School of Technology, Katowice, Poland
| |
Collapse
|
3
|
Hashemolhosseini S. The role of protein kinase CK2 in skeletal muscle: Myogenesis, neuromuscular junctions, and rhabdomyosarcoma. Neurosci Lett 2020; 729:135001. [DOI: 10.1016/j.neulet.2020.135001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023]
|
4
|
Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol 2019; 9:1458. [PMID: 31921698 PMCID: PMC6933601 DOI: 10.3389/fonc.2019.01458] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, and can be subcategorized histologically and/or based on PAX-FOXO1 fusion gene status. Over the last four decades, there have been no significant improvements in clinical outcomes for advanced and metastatic RMS patients, underscoring a need for new treatment options for these groups. Despite significant advancements in our understanding of the genomic landscape and underlying biological mechanisms governing RMS that have informed the identification of novel therapeutic targets, development of these therapies in clinical trials has lagged far behind. In this review, we summarize the current frontline multi-modality therapy for RMS according to pediatric protocols, highlight emerging targeted therapies and immunotherapies identified by preclinical studies, and discuss early clinical trial data and the implications they hold for future clinical development.
Collapse
Affiliation(s)
- Celine Chen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Scheer
- Pediatrics 5, Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| |
Collapse
|
5
|
Knott MML, Hölting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev 2019; 38:625-642. [PMID: 31970591 PMCID: PMC6994515 DOI: 10.1007/s10555-019-09839-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).
Collapse
Affiliation(s)
- Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Gatz SA, Aladowicz E, Casanova M, Chisholm JC, Kearns PR, Fulda S, Geoerger B, Schäfer BW, Shipley JM. A Perspective on Polo-Like Kinase-1 Inhibition for the Treatment of Rhabdomyosarcomas. Front Oncol 2019; 9:1271. [PMID: 31824851 PMCID: PMC6882953 DOI: 10.3389/fonc.2019.01271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcomas are the most common pediatric soft tissue sarcoma and are a major cause of death from cancer in young patients requiring new treatment options to improve outcomes. High-risk patients include those with metastatic or relapsed disease and tumors with PAX3-FOXO1 fusion genes that encode a potent transcription factor that drives tumourigenesis through transcriptional reprogramming. Polo-Like Kinase-1 (PLK1) is a serine/threonine kinase that phosphorylates a wide range of target substrates and alters their activity. PLK1 functions as a pleiotropic master regulator of mitosis and regulates DNA replication after stress. Taken together with high levels of expression that correlate with poor outcomes in many cancers, including rhabdomyosarcomas, it is an attractive therapeutic target. This is supported in rhabdomyosarcoma models by characterization of molecular and phenotypic effects of reducing and inhibiting PLK1, including changes to the PAX3-FOXO1 fusion protein. However, as tumor re-growth has been observed, combination strategies are required. Here we review preclinical evidence and consider biological rationale for PLK1 inhibition in combination with drugs that promote apoptosis, interfere with activity of PAX3-FOXO1 and are synergistic with microtubule-destabilizing drugs such as vincristine. The preclinical effects of low doses of the PLK1 inhibitor volasertib in combination with vincristine, which is widely used in rhabdomyosarcoma treatment, show particular promise in light of recent clinical data in the pediatric setting that support achievable volasertib doses predicted to be effective. Further development of novel therapeutic strategies including PLK1 inhibition may ultimately benefit young patients with rhabdomyosarcoma and other cancers.
Collapse
Affiliation(s)
- Susanne A. Gatz
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Ewa Aladowicz
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | | | - Julia C. Chisholm
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Pamela R. Kearns
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Department of Paediatric and Adolescent Oncology, Université Paris-Saclay, Villejuif, France
| | - Beat W. Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Janet M. Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
7
|
Nguyen TH, Barr FG. Therapeutic Approaches Targeting PAX3-FOXO1 and Its Regulatory and Transcriptional Pathways in Rhabdomyosarcoma. Molecules 2018; 23:E2798. [PMID: 30373318 PMCID: PMC6278278 DOI: 10.3390/molecules23112798] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a family of soft tissue cancers that are related to the skeletal muscle lineage and predominantly occur in children and young adults. A specific chromosomal translocation t(2;13)(q35;q14) that gives rise to the chimeric oncogenic transcription factor PAX3-FOXO1 has been identified as a hallmark of the aggressive alveolar subtype of RMS. PAX3-FOXO1 cooperates with additional molecular changes to promote oncogenic transformation and tumorigenesis in various human and murine models. Its expression is generally restricted to RMS tumor cells, thus providing a very specific target for therapeutic approaches for these RMS tumors. In this article, we review the recent understanding of PAX3-FOXO1 as a transcription factor in the pathogenesis of this cancer and discuss recent developments to target this oncoprotein for treatment of RMS.
Collapse
Affiliation(s)
| | - Frederic G. Barr
- Laboratory of Pathology, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Wachtel M, Schäfer BW. PAX3-FOXO1: Zooming in on an “undruggable” target. Semin Cancer Biol 2018; 50:115-123. [DOI: 10.1016/j.semcancer.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
9
|
Acquisition of an oncogenic fusion protein serves as an initial driving mutation by inducing aneuploidy and overriding proliferative defects. Oncotarget 2018; 7:62814-62835. [PMID: 27588498 PMCID: PMC5325330 DOI: 10.18632/oncotarget.11716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
While many solid tumors are defined by the presence of a particular oncogene, the role that this oncogene plays in driving transformation through the acquisition of aneuploidy and overcoming growth arrest are often not known. Further, although aneuploidy is present in many solid tumors, it is not clear whether it is the cause or effect of malignant transformation. The childhood sarcoma, Alveolar Rhabdomyosarcoma (ARMS), is primarily defined by the t(2;13)(q35;q14) translocation, creating the PAX3-FOXO1 fusion protein. It is unclear what role PAX3-FOXO1 plays in the initial stages of tumor development through the acquisition and persistence of aneuploidy. In this study we demonstrate that PAX3-FOXO1 serves as a driver mutation to initiate a cascade of mRNA and miRNA changes that ultimately reprogram proliferating myoblasts to induce the formation of ARMS. We present evidence that cells containing PAX3-FOXO1 have changes in the expression of mRNA and miRNA essential for maintaining proper chromosome number and structure thereby promoting aneuploidy. Further, we demonstrate that the presence of PAX3-FOXO1 alters the expression of growth factor related mRNA and miRNA, thereby overriding aneuploid-dependent growth arrest. Finally, we present evidence that phosphorylation of PAX3-FOXO1 contributes to these changes. This is one of the first studies describing how an oncogene and post-translational modifications drive the development of a tumor through the acquisition and persistence of aneuploidy. This mechanism has implications for other solid tumors where large-scale genomics studies may elucidate how global alterations contribute to tumor phenotypes allowing the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
10
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
Acquisition of an oncogenic fusion protein is sufficient to globally alter the landscape of miRNA expression to inhibit myogenic differentiation. Oncotarget 2017; 8:87054-87072. [PMID: 29152063 PMCID: PMC5675615 DOI: 10.18632/oncotarget.19693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The differentiation status of tumors is used as a prognostic indicator, with tumors comprised of less differentiated cells exhibiting higher levels of aggressiveness that correlate with a poor prognosis. Although oncogenes contribute to blocking differentiation, it is not clear how they globally alter miRNA expression during differentiation to achieve this result. The pediatric sarcoma Alveolar Rhabdomyosarcoma, which is primarily characterized by the expression of the PAX3-FOXO1 oncogenic fusion protein, consists of undifferentiated muscle cells. However, it is unclear what role PAX3-FOXO1 plays in promoting the undifferentiated state. We demonstrate that expression of PAX3-FOXO1 globally alters the expression of over 80 individual miRNA during early myogenic differentiation, resulting in three primary effects: 1) inhibition of the expression of 51 miRNA essential for promoting myogenesis, 2) promoting the aberrant expression of 43 miRNA not normally expressed during myogenesis, and 3) altering the expression pattern of 39 additional miRNA. Combined, these changes are predicted to have an overall negative effect on myogenic differentiation. This is one of the first studies describing how an oncogene globally alters miRNA expression to block differentiation and has clinical implications for the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
12
|
Arnold MA, Barr FG. Molecular diagnostics in the management of rhabdomyosarcoma. Expert Rev Mol Diagn 2017; 17:189-194. [PMID: 28058850 DOI: 10.1080/14737159.2017.1275965] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION A classification of rhabdomyosarcoma (RMS) with prognostic relevance has primarily relied on clinical features and histologic classification as either embryonal or alveolar RMS. The PAX3-FOXO1 and PAX7-FOXO1 gene fusions occur in 80% of cases with the alveolar subtype and are more predictive of outcome than histologic classification. Identifying additional molecular hallmarks that further subclassify RMS is an active area of research. Areas Covered: The authors review the current state of the PAX3-FOXO1 and PAX7-FOXO1 fusions as prognostic biomarkers. Emerging biomarkers, including mRNA expression profiling, MYOD1 mutations, RAS pathway mutations and gene fusions involving NCOA2 or VGLL2 are also reviewed. Expert commentary: Strategies for modifying RMS risk stratification based on molecular biomarkers are emerging with the potential to transform the clinical management of RMS, ultimately improving patient outcomes by tailoring therapy to predicted patient risk and identifying targets for novel therapies.
Collapse
Affiliation(s)
- Michael A Arnold
- a Department of Pathology and Laboratory Medicine , Nationwide Children's Hospital , Columbus , OH , USA.,b Department of Pathology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Fredric G Barr
- c Laboratory of Pathology , National Cancer Institute , Bethesda , MD , USA
| |
Collapse
|
13
|
Abstract
Rhabdomyosarcoma (RMS) is a myogenic tumor classified as the most frequent soft tissue sarcoma affecting children and adolescents. The histopathological classification includes 5 different histotypes, with 2 most predominant referred as to embryonal and alveolar, the latter being characterized by adverse outcome. The current molecular classification identifies 2 major subsets, those harboring the fused Pax3-Foxo1 transcription factor generating from a recurrent specific translocation (fusion-positive RMS), and those lacking this signature but harboring mutations in the RAS/PI3K/AKT signaling axis (fusion-negative RMS). Since little attention has been devoted to RMS metabolism until now, in this review we summarize the "state of art" of metabolism and discuss how some of the molecular signatures found in this cancer, as observed in other more common tumors, can predict important metabolic challenges underlying continuous cell growth, oxidative stress resistance and metastasis, which could be the subject of future targeted therapies.
Collapse
Affiliation(s)
- Eugenio Monti
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Alessandro Fanzani
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy.,b Interuniversity Institute of Myology , Rome , Italy
| |
Collapse
|
14
|
Abstract
Gene fusions and their encoded products (fusion RNAs and proteins) are viewed as one of the hallmarks of cancer. Traditionally, they were thought to be generated solely by chromosomal rearrangements. However, recent discoveries of trans-splicing and cis-splicing events between neighboring genes, suggest that there are other mechanisms to generate chimeric fusion RNAs without corresponding changes in DNA. In addition, chimeric RNAs have been detected in normal physiology, complicating the use of fusions in cancer detection and therapy. On the other hand, "intergenically spliced" fusion RNAs represent a new repertoire of biomarkers and therapeutic targets. Here, we review current knowledge on chimeric RNAs and implications for cancer detection and treatment, and discuss outstanding questions for the advancement of the field.
Collapse
Affiliation(s)
- Yuemeng Jia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
15
|
Loupe JM, Miller PJ, Bonner BP, Maggi EC, Vijayaraghavan J, Crabtree JS, Taylor CM, Zabaleta J, Hollenbach AD. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion. Oncogenesis 2016; 5:e246. [PMID: 27454080 PMCID: PMC4972903 DOI: 10.1038/oncsis.2016.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression.
Collapse
Affiliation(s)
- J M Loupe
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - P J Miller
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - B P Bonner
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - E C Maggi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Vijayaraghavan
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - C M Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A D Hollenbach
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
16
|
Basharat Z, Yasmin A. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry. INFECTION GENETICS AND EVOLUTION 2015; 34:326-38. [DOI: 10.1016/j.meegid.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/01/2022]
|