1
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
2
|
Li A, Ma T, Wang S, Guo Y, Song Q, Liu H, Yu B, Feng S. Discovery of WS-384, a first-in-class dual LSD1 and DCN1-UBC12 protein-protein interaction inhibitor for the treatment of non-small cell lung cancer. Biomed Pharmacother 2024; 173:116240. [PMID: 38401512 DOI: 10.1016/j.biopha.2024.116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024] Open
Abstract
Abnormally high expression of lysine-specific demethylase 1 A (LSD1) and DCN1 plays a vital role in the occurrence, development, and poor prognosis of non-small cell lung cancer (NSCLC). Accumulating evidence has shown that the development of small-molecule inhibitors dually targeting LSD1 and the DCN1-UBC12 interaction probably have therapeutic promise for cancer therapy. This work reported that WS-384 dually targeted LSD1 and DCN1-UBC12 interactions and evaluated its antitumor effects in vitro and in vivo. Specifically, WS-384 inhibited A549 and H1975 cells viability and decreased colony formation and EdU incorporation. WS-384 could also trigger cell cycle arrest, DNA damage, and apoptosis. Moreover, WS-384 significantly decreased tumor weight and volume in A549 xenograft mice. Mechanistically, WS-384 increased the gene and protein level of p21 by suppressing the neddylation of cullin 1 and decreasing H3K4 demethylation at the CDKN1A promoter. The synergetic upregulation of p21 contributed to cell cycle arrest and the proapoptotic effect of WS-384 in NSCLC cells. Taken together, our proof of concept studies demonstrated the therapeutic potential of dual inhibition of LSD1 and the DCN1-UBC12 interaction for the treatment of NSCLC. WS-384 could be used as a lead compound to develop new dual LSD1/DCN1 inhibitors for the treatment of human diseases in which LSD1 and DCN1 are dysregulated.
Collapse
Affiliation(s)
- Anqi Li
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Siqi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Yang Z, Zhang S, Liu X, Shu R, Shi W, Qu W, Liu D, Cai Z, Wang Y, Cheng X, Liu Y, Zhang XJ, Bai L, Li H, She ZG. Histone demethylase KDM1A promotes hepatic steatosis and inflammation by increasing chromatin accessibility in NAFLD. J Lipid Res 2024; 65:100513. [PMID: 38295985 PMCID: PMC10907224 DOI: 10.1016/j.jlr.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.
Collapse
Affiliation(s)
- Zifeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Siyao Zhang
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Xiang Liu
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Rui Shu
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Shi
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Weiyi Qu
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dianyu Liu
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Zhiwei Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ye Wang
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Xu Cheng
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China
| | - Yemao Liu
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lan Bai
- Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Gannan Innovation and Translational Medicine Research Institute, State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Medical University, Ganzhou, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Shen L, Wang B, Wang SP, Ji SK, Fu MJ, Wang SW, Hou WQ, Dai XJ, Liu HM. Combination Therapy and Dual-Target Inhibitors Based on LSD1: New Emerging Tools in Cancer Therapy. J Med Chem 2024; 67:922-951. [PMID: 38214982 DOI: 10.1021/acs.jmedchem.3c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Lysine specific demethylase 1 (LSD1), a transcriptional modulator that represses or activates target gene expression, is overexpressed in many cancer and causes imbalance in the expression of normal gene networks. Over two decades, numerous LSD1 inhibitors have been reported, especially some of which have entered clinical trials, including eight irreversible inhibitors (TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, ORY-2001, TAK-418, and LH-1802) and two reversible inhibitors (CC-90011 and SP-2577). Most clinical LSD1 inhibitors demonstrated enhanced efficacy in combination with other agents. LSD1 multitarget inhibitors have also been reported, exampled by clinical dual LSD1/histone deacetylases (HDACs) inhibitors 4SC-202 and JBI-802. Herein, we present a comprehensive overview of the combination of LSD1 inhibitors with various antitumor agents, as well as LSD1 multitarget inhibitors. Additionally, the challenges and future research directionsare also discussed, and we hope this review will provide new insight into the development of LSD1-targeted anticancer agents.
Collapse
Affiliation(s)
- Liang Shen
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Bo Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shao-Peng Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shi-Kun Ji
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Meng-Jie Fu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shu-Wu Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Wen-Qing Hou
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| |
Collapse
|
5
|
Li D, Liang H, Wei Y, Xiao H, Peng X, Pan W. Exploring the potential of histone demethylase inhibition in multi-therapeutic approaches for cancer treatment. Eur J Med Chem 2024; 264:115999. [PMID: 38043489 DOI: 10.1016/j.ejmech.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Histone demethylases play a critical role in gene transcription regulation and have been implicated in cancer. Numerous reports have highlighted the overexpression of histone demethylases, such as LSD1 and JmjC, in various malignant tumor tissues, identifying them as effective therapeutic targets for cancer treatment. Despite many histone demethylase inhibitors entering clinical trials, their clinical efficacy has been limited. Therefore, combination therapies based on histone demethylase inhibitors, along with other modulators like dual-acting inhibitors, have gained significant attention and made notable progress in recent years. In this review, we provide an overview of recent advances in drug discovery targeting histone demethylases, focusing specifically on drug combination therapy and histone demethylases-targeting dual inhibitors. We discuss the rational design, pharmacodynamics, pharmacokinetics, and clinical status of these approaches. Additionally, we summarize the co-crystal structures of LSD1 inhibitors and their target proteins as well as describe the corresponding binding interactions. Finally, we also provided the challenges and future directions for utilizing histone demethylases in cancer therapy, such as PROTACs and molecular glue etc.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hailiu Liang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Yifei Wei
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xiao
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaopeng Peng
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| | - Wanyi Pan
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol 2023; 16:87. [PMID: 37525282 PMCID: PMC10388525 DOI: 10.1186/s13045-023-01485-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
NEDDylation, a post-translational modification through three-step enzymatic cascades, plays crucial roles in the regulation of diverse biological processes. NEDD8-activating enzyme (NAE) as the only activation enzyme in the NEDDylation modification has become an attractive target to develop anticancer drugs. To date, numerous inhibitors or agonists targeting NAE have been developed. Among them, covalent NAE inhibitors such as MLN4924 and TAS4464 currently entered into clinical trials for cancer therapy, particularly for hematological tumors. This review explains the relationships between NEDDylation and cancers, structural characteristics of NAE and multistep mechanisms of NEDD8 activation by NAE. In addition, the potential approaches to discover NAE inhibitors and detailed pharmacological mechanisms of NAE inhibitors in the clinical stage are explored in depth. Importantly, we reasonably investigate the challenges of NAE inhibitors for cancer therapy and possible development directions of NAE-targeting drugs in the future.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14:1120911. [PMID: 36817147 PMCID: PMC9932783 DOI: 10.3389/fphar.2023.1120911] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) was first identified in 2004 as an epigenetic enzyme able to demethylate specific lysine residues of histone H3, namely H3K4me1/2 and H3K9me1/2, using FAD as the cofactor. It is ubiquitously overexpressed in many types of cancers (breast, gastric, prostate, hepatocellular, and esophageal cancer, acute myeloid leukemia, and others) leading to block of differentiation and increase of proliferation, migration and invasiveness at cellular level. LSD1 inhibitors can be grouped in covalent and non-covalent agents. Each group includes some hybrid compounds, able to inhibit LSD1 in addition to other target(s) at the same time (dual or multitargeting compounds). To date, 9 LSD1 inhibitors have entered clinical trials, for hematological and/or solid cancers. Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC-90011) and seclidemstat (SP-2577)]. Another TCP-based LSD1/MAO-B dual inhibitor, vafidemstat (ORY-2001), is in clinical trial for Alzheimer's diseases and personality disorders. The present review summarizes the structure and functions of LSD1, its pathological implications in cancer and non-cancer diseases, and the identification of LSD1 covalent and non-covalent inhibitors with different chemical scaffolds, including those involved in clinical trials, highlighting their potential as potent and selective anticancer agents.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Di Bello
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,*Correspondence: Rossella Fioravanti,
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Wang J, Wu J, Wang Y, Wang Y, Jiang C, Zou M, Jin X, Sun X, Zhang Y, Ma S, Wang G, Zhu X, Lu H, Xu C, Wang W, Li L, Han Y, Cai S, Li H. A DNA Damage Response Related Signature to Predict Prognosis in Patients with Acute Myeloid Leukemia. Cancer Invest 2023; 41:1-13. [PMID: 36629468 DOI: 10.1080/07357907.2023.2167209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
The prognosis of acute myeloid leukemia (AML) is disappointing in most subtypes and varies widely. DNA damage response (DDR) is associated with prognosis and immunotherapy in multiple cancers. Here, we identify a signature of eight DDR-related genes associated with overall survival, which stratifies AML patients into high- and low-risk groups. Patients in low-risk group were more likely to respond to sorafenib. The signature could be an independent prognostic predictor for patients treated with ADE and ADE plus gemtuzumab ozogamicin. Therefore, this DDR prognostic signature might be applied to prognostic stratification and treatment selection in AML patients, which warrants further studies.
Collapse
Affiliation(s)
- Jun Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jiafei Wu
- School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yijing Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yu Wang
- Department of Hematology, Dong Li Hospital, Chengdu, China
| | - Chuanyan Jiang
- Department of Hematology, Chengdu Second People's Hospital, Chengdu, China
| | - Mengying Zou
- Department of Hematology, Chengdu BOE Hospital, Chengdu, China
| | | | | | - Yu Zhang
- Burning Rock Biotech, Guangzhou, China
| | - Sijia Ma
- Burning Rock Biotech, Guangzhou, China
| | | | - Xin Zhu
- Burning Rock Biotech, Guangzhou, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wenxian Wang
- Department of Clinical Trial, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Leo Li
- Burning Rock Biotech, Guangzhou, China
| | | | | | - Hui Li
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|
10
|
Lv YX, Tian S, Zhang ZD, Feng T, Li HQ. LSD1 inhibitors for anticancer therapy: a patent review (2017-present). Expert Opin Ther Pat 2022; 32:1027-1042. [PMID: 35914778 DOI: 10.1080/13543776.2022.2109332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Lysine-specific demethylase 1 (LSD1), which belongs to the demethylase of non-histone proteins, is believed to promote cancer cell proliferation and metastasis by modifying histones. LSD1 dysfunction may play a key role in a variety of cancers, such as acute myeloid leukemia and non-small cell lung cancer, indicating that LSD1 is a promising epigenetic target for cancer therapy. Many different types of small molecule LSD1 inhibitors have been developed and shown to inhibit tumor cell proliferation, invasion, and migration, providing a new treatment strategy for solid tumors. AREAS COVERED This review summarizes the progress of LSD1 inhibitor research in the last four years, including selected new patents and article publications, as well as the therapeutic potential of these compounds. EXPERT OPINION Natural products offer a promising prospect for developing novel potent LSD1 inhibitors, as structural design and activity of irreversible and reversible inhibitors have been continuously optimized since the discovery of the LSD1 target in 2004. The use of "microtubule-binding agents" and "dual-agent combination" has recently become a new anticancer technique, reducing the resistance and adverse reactions of traditional drugs. Several microtubule-binding drugs have been used successfully in clinical practice, providing structural scaffolds and new ideas for the development of safer drugs.
Collapse
Affiliation(s)
- Yi-Xin Lv
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Sheng Tian
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhou-Dong Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Tao Feng
- Clinical Laboratory, The Children's Hospital of Suzhou University, 92 Zhongnan Street, Suzhou, Jiangsu 215025, P.R. China
| | - Huan-Qiu Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
11
|
Dong J, Pervaiz W, Tayyab B, Li D, Kang L, Zhang H, Gong H, Ma X, Li J, Agboyibor C, Bi Y, Liu H. A comprehensive comparative study on LSD1 in different cancers and tumor specific LSD1 inhibitors. Eur J Med Chem 2022; 240:114564. [PMID: 35820351 DOI: 10.1016/j.ejmech.2022.114564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/14/2023]
Abstract
LSD1 was significantly over-expressed in several cancer types, and its aberrant overexpression was revealed to play a crucial role in the initiation and progression of cancer. Several LSD1 inhibitors that were discovered and developed so far were found to be effective in attenuating tumor growth in both in vivo and in vitro studies. However, the major challenge associated with the development of cancer therapies is personalized treatment. Therefore, it is essential to look in detail at how LSD1 plays its part in carcinogenesis and whether there are any different expression levels of LSD1 in different tumors. Here in this review, fresh insight into a list of function correlated LSD1 binding proteins are provided, and we tried to figure out the role of LSD1 in different cancer types, including hematological malignancies and solid tumors. A critical description of mutation preference for LSD1 in different tumors was also discussed. Recent research findings clearly showed that the abrogation of LSD1 demethylase activity via LSD1 inhibitors markedly reduced the growth of cancer cells. But there are still many ambiguities regarding the role of LSD1 in different cancers. Therefore, targeting LSD1 for treating different cancers is still reductionist, and many challenges need to be met to improve the therapeutic outcomes of LSD1 inhibitors.
Collapse
Affiliation(s)
- Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Tayyab
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Dié Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Clement Agboyibor
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefeng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongmin Liu
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Duan YC, Zhang SJ, Shi XJ, Jin LF, Yu T, Song Y, Guan YY. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur J Med Chem 2021; 222:113588. [PMID: 34107385 DOI: 10.1016/j.ejmech.2021.113588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Shao-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Lin-Feng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
13
|
Lu Y, Guo G, Hong R, Chen X, Sun Y, Liu F, Zhang Z, Jin X, Dong J, Yu K, Yang X, Nan Y, Huang Q. LncRNA HAS2-AS1 Promotes Glioblastoma Proliferation by Sponging miR-137. Front Oncol 2021; 11:634893. [PMID: 34094916 PMCID: PMC8173206 DOI: 10.3389/fonc.2021.634893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
GBM (Glioblastoma multiform) is the most malignant tumor type of the central nervous system and has poor diagnostic and clinical outcomes. LncRNAs (Long non-coding RNAs) have been reported to participate in multiple biological and pathological processes, but their underlying mechanism remains poorly understood. Here, we aimed to explore the role of the lncRNA HAS2-AS1 (HAS2 antisense RNA 1) in GBM. GSE103227 was analyzed, and qRT-PCR was performed to measure the expression of HAS2-AS1 in GBM. FISH (Fluorescence in situ hybridization) was performed to verify the localization of HAS2-AS1. The interaction between HAS2-AS1 and miR-137 (microRNA-137) was predicted by LncBook and miRcode followed by dual-luciferase reporter assays, and the relationships among HAS2-AS1, miR-137 and LSD1 (lysine-specific demethylase 1) were assessed by WB (western blot) and qRT-PCR. Colony formation and CCK-8 (cell counting kit-8) assays were performed as functional tests. In vivo, nude mice were used to confirm the function of HAS2-AS1. HAS2-AS1 expression was upregulated in GBM cell lines, and HAS2-AS1 was localized mainly in the cytoplasm. In vitro, high HAS2-AS1 expression promoted proliferation, and knockdown of HAS2-AS1 significantly inhibited proliferation. Furthermore, HAS2-AS1 functioned as a ceRNA (competing endogenous RNA) of miR-137, leading to the disinhibition of its downstream target LSD1. The miR-137 level was downregulated by HAS2-AS1 overexpression and upregulated by HAS2-AS1 knockdown. In a subsequent study, LSD1 expression was negatively regulated by miR-137, while miR-137 reversed the LSD1 expression levels caused by HAS2-AS1. These results were further supported by the nude mouse tumorigenesis experiment; compared with xenografts with high HAS2-AS1 expression, the group with low levels of HAS2-AS1 exhibited suppressed proliferation and better survival. We conclude that lncRNA HAS2-AS1 promotes proliferation by functioning as a miR-137 decoy to increase LSD1 levels and thus might be a possible biomarker for GBM.
Collapse
Affiliation(s)
- Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang Liu
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Kai Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
14
|
Siklos M, Kubicek S. Therapeutic targeting of chromatin: status and opportunities. FEBS J 2021; 289:1276-1301. [PMID: 33982887 DOI: 10.1111/febs.15966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The molecular characterization of mechanisms underlying transcriptional control and epigenetic inheritance since the 1990s has paved the way for the development of targeted therapies that modulate these pathways. In the past two decades, cancer genome sequencing approaches have uncovered a plethora of mutations in chromatin modifying enzymes across tumor types, and systematic genetic screens have identified many of these proteins as specific vulnerabilities in certain cancers. Now is the time when many of these basic and translational efforts start to bear fruit and more and more chromatin-targeting drugs are entering the clinic. At the same time, novel pharmacological approaches harbor the potential to modulate chromatin in unprecedented fashion, thus generating entirely novel opportunities. Here, we review the current status of chromatin targets in oncology and describe a vision for the epigenome-modulating drugs of the future.
Collapse
Affiliation(s)
- Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
15
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
16
|
Dai XJ, Liu Y, Xiong XP, Xue LP, Zheng YC, Liu HM. Tranylcypromine Based Lysine-Specific Demethylase 1 Inhibitor: Summary and Perspective. J Med Chem 2020; 63:14197-14215. [PMID: 32931269 DOI: 10.1021/acs.jmedchem.0c00919] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) has become an important and promising anticancer target since it was first identified in 2004 and specially demethylates lysine residues of histone H3K4me1/2 and H3K9me1/2. LSD1 is ubiquitously overexpressed in diverse cancers, and abrogation of LSD1 results in inhibition of proliferation, invasion, and migration in cancer cells. Over the past decade, a number of biologically active small-molecule LSD1 inhibitors have been developed. To date, six trans-2-phenylcyclopropylamine (TCP)-based LSD1 inhibitors (including TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, and ORY-2001) that covalently bind to the flavin adenine dinucleotide (FAD) within the LSD1 catalytic cavity have already entered into clinical trials. Here, we provide an overview about the structures, activities, and structure-activity relationship (SAR) of TCP-based LSD1 inhibitors that mainly covers the literature from 2008 to date. The opportunities, challenges, and future research directions in this emerging and promising field are also discussed.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Peng Xiong
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei-Peng Xue
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| |
Collapse
|
17
|
Targeting LSD1 for acute myeloid leukemia (AML) treatment. Pharmacol Res 2020; 164:105335. [PMID: 33285227 DOI: 10.1016/j.phrs.2020.105335] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Targeted therapy for acute myeloid leukemia (AML) is an effective strategy, but currently there are very limited therapeutic targets for AML treatment. Histone lysine specific demethylase 1 (LSD1) is highly expressed in many cancers, impedes the differentiation of cancer cells, promotes the proliferation, metastasis and invasion of cancer cells, and is associated with poor prognosis. Targeting LSD1 has been recognized as a promising strategy for AML treatment in recent years. Based on these features, in the review, we discussed the main epigenetic drugs targeting LSD1 for AML therapy. Thus, this review focuses on the progress of LSD1 inhibitors in AML treatment, particularly those such as tranylcypromine (TCP), ORY-1001, GSK2879552, and IMG-7289 in clinical trials. These inhibitors provide novel scaffolds for designing new LSD1 inhibitors. Besides, combined therapies of LSD1 inhibitors with other drugs for AML treatment are also highlighted.
Collapse
|
18
|
Miyamoto K, Minami Y. Cutting Edge Molecular Therapy for Acute Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21145114. [PMID: 32698349 PMCID: PMC7404220 DOI: 10.3390/ijms21145114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Recently, whole exome sequencing for acute myeloid leukemia (AML) has been performed by a next-generation sequencer in several studies. It has been revealed that a few gene mutations are identified per AML patient. Some of these mutations are actionable mutations that affect the response to an approved targeted treatment that is available for off-label treatment or that is available in clinical trials. The era of precision medicine for AML has arrived, and it is extremely important to detect actionable mutations relevant to treatment decision-making. However, the percentage of actionable mutations found in AML is about 50% at present, and therapeutic development is also needed for AML patients without actionable mutations. In contrast, the newly approved drugs are less toxic than conventional intensive chemotherapy and can be combined with low-intensity treatments. These combination therapies can contribute to the improvement of prognosis, especially in elderly AML patients who account for more than half of all AML patients. Thus, the treatment strategy for leukemia is changing drastically and showing rapid progress. In this review, we present the latest information regarding the recent development of treatment for AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Combined Modality Therapy/methods
- Drug Approval
- Epigenesis, Genetic/drug effects
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy/methods
- Mutation/drug effects
- Precision Medicine/methods
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- Small Molecule Libraries/therapeutic use
Collapse
Affiliation(s)
| | - Yosuke Minami
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| |
Collapse
|
19
|
Wang W, Zhang Z, Kuang X, Ma D, Xiong J, Lu T, Zhang Y, Yu K, Zhang S, Wang J, Fang Q. 4SC-202 induces apoptosis in myelodysplastic syndromes and the underlying mechanism. Am J Transl Res 2020; 12:2968-2983. [PMID: 32655823 PMCID: PMC7344078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Epigenetic modifications play crucial roles in regulating the self-renewal and differentiation of hematopoiesis. 4SC-202, a novel inhibitor of histone lysine-specific demethylase 1 (LSD1) and class I histone deacetylases (HDACs), is a potential therapeutic agent to treat myelodysplastic syndrome (MDS). However, it remains unclarified of the mechanism of 4SC-202. In the study, we found that 4SC-202 treatment could inhibit cell viability, induce apoptosis and cause G2/M cell cycle arrest in MDS cell line SKM-1. Heme oxygenase-1 (HO-1) was correlated with disease progression and chemotherapy resistance. Here, we reported that 4SC-202 could down-regulate the expression of HO-1, and up-regulation of HO-1 could significantly attenuate the 4SC-202-induced apoptosis in SKM-1 cells. In addition, the activation of NF-κB pathway was suppressed by 4SC-202, while up-regulation of HO-1 significantly weakened the 4SC-202-induced suppression of the NF-κB pathway, thereby attenuating the efficacy of 4SC-202. However, down-regulation of HO-1 enhanced the sensitivity of 4SC-202 against SKM-1 cells. Moreover, SKM-1 cells were transfected with HO-1 overexpression lentivirus, subsequently injected into the tail vein of NOD/SCID mice, followed by administration of 4SC-202 in mice. As a result, up-regulation HO-1 could partially attenuate 4SC-202-suppressed MDS cells growth in NOD/SCID mice. In conclusion, 4SC-202 could induce apoptosis via the NF-κB pathway, and our present finding may provide a novel therapeutic strategy for MDS.
Collapse
Affiliation(s)
- Weili Wang
- Department of Pharmacy, Guizhou Medical UniversityGuiyang, P. R. China
| | - Zhaoyuan Zhang
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou ProvinceGuiyang, P. R. China
| | - Xingyi Kuang
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou ProvinceGuiyang, P. R. China
| | - Dan Ma
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou ProvinceGuiyang, P. R. China
| | - Jie Xiong
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou ProvinceGuiyang, P. R. China
| | - Tingting Lu
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou ProvinceGuiyang, P. R. China
| | - Yaming Zhang
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou ProvinceGuiyang, P. R. China
| | - Kunling Yu
- Department of Pharmacy, Guizhou Medical UniversityGuiyang, P. R. China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| | - Siyu Zhang
- Department of Pharmacy, Guizhou Medical UniversityGuiyang, P. R. China
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| | - Jishi Wang
- Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou ProvinceGuiyang, P. R. China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| |
Collapse
|
20
|
Deb G, Wingelhofer B, Amaral FMR, Maiques-Diaz A, Chadwick JA, Spencer GJ, Williams EL, Leong HS, Maes T, Somervaille TCP. Pre-clinical activity of combined LSD1 and mTORC1 inhibition in MLL-translocated acute myeloid leukaemia. Leukemia 2020; 34:1266-1277. [PMID: 31780813 PMCID: PMC7192845 DOI: 10.1038/s41375-019-0659-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022]
Abstract
The histone demethylase lysine-specific demethylase 1 (LSD1 or KDM1A) has emerged as a candidate therapeutic target in acute myeloid leukaemia (AML); tranylcypromine-derivative inhibitors induce loss of clonogenic activity and promote differentiation, in particular in the MLL-translocated molecular subtype of AML. In AML, the use of drugs in combination often delivers superior clinical activity. To identify genes and cellular pathways that collaborate with LSD1 to maintain the leukaemic phenotype, and which could be targeted by combination therapies, we performed a genome-wide CRISPR-Cas9 dropout screen. We identified multiple components of the amino acid sensing arm of mTORC1 signalling-RRAGA, MLST8, WDR24 and LAMTOR2-as cellular sensitizers to LSD1 inhibition. Knockdown of mTORC1 components, or mTORC1 pharmacologic inhibition, in combination with LSD1 inhibition enhanced differentiation in both cell line and primary cell settings, in vitro and in vivo, and substantially reduced the frequency of clonogenic primary human AML cells in a modelled minimal residual disease setting. Synergistic upregulation of a set of transcription factor genes associated with terminal monocytic lineage differentiation was observed. Thus, dual mTORC1 and LSD1 inhibition represents a candidate combination approach for enhanced differentiation in MLL-translocated AML which could be evaluated in early phase clinical trials.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis
- Cell Proliferation
- Drug Therapy, Combination
- Everolimus/pharmacology
- Female
- Gene Expression Regulation, Leukemic
- Histone Demethylases/antagonists & inhibitors
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid-Lymphoid Leukemia Protein/genetics
- Translocation, Genetic
- Tranylcypromine/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Gauri Deb
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bettina Wingelhofer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Alba Maiques-Diaz
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - John A Chadwick
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Emma L Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Hui-Sun Leong
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940, Barcelona, Spain
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
21
|
Design, synthesis and biological evaluation of tetrahydroquinoline-based reversible LSD1 inhibitors. Eur J Med Chem 2020; 194:112243. [PMID: 32229389 DOI: 10.1016/j.ejmech.2020.112243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
The targeted regulation of LSD1, which is highly expressed in a variety of tumor cells, is a promising cancer therapy strategy. Several LSD1 inhibitors are currently under clinical evaluation, and most of these inhibitors are irreversible. Here, we report the design, synthesis and biochemical evaluation of novel tetrahydroquinoline-based reversible LSD1 inhibitors. Compounds 18s and 18x, which are selective to LSD1 over MAO-A/B, exhibit excellent LSD1 inhibition at the molecular levels with IC50 = 55 nM and 540 nM, respectively. The classic Lineweaver-Burk plots revealed that compound 18s could reversibly bind the LSD1 enzyme in a noncompetitive manner. Molecular docking was used to reveal the potential binding-mode of the compounds and interpret the structure-activity relationships. Furthermore, compounds 18s and 18x significantly inhibited proliferation (IC50 = 1.13 μM and 1.15 μM, respectively) and induced apoptosis in MGC-803 cells with high expression of LSD1. Compound 18x showed acceptable liver microsomal stability. Meanwhile, 18x did not appear to inhibit CYPs at 10 μM in vitro. Remarkably, the oral administration of compound 18x can inhibit the growth of MGC-803 xenograft tumors without significant side effects. Our findings suggest that tetrahydroquinoline-based LSD1 inhibitors deserve further investigation for the treatment of LSD1 overexpressing cancer.
Collapse
|
22
|
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12:129. [PMID: 31801559 PMCID: PMC6894138 DOI: 10.1186/s13045-019-0811-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
23
|
Amino-carboxamide benzothiazoles as potential LSD1 hit inhibitors. Part I: Computational fragment-based drug design. J Mol Graph Model 2019; 93:107440. [DOI: 10.1016/j.jmgm.2019.107440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023]
|
24
|
Bauer TM, Besse B, Martinez-Marti A, Trigo JM, Moreno V, Garrido P, Ferron-Brady G, Wu Y, Park J, Collingwood T, Kruger RG, Mohammad HP, Ballas MS, Dhar A, Govindan R. Phase I, Open-Label, Dose-Escalation Study of the Safety, Pharmacokinetics, Pharmacodynamics, and Efficacy of GSK2879552 in Relapsed/Refractory SCLC. J Thorac Oncol 2019; 14:1828-1838. [DOI: 10.1016/j.jtho.2019.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022]
|
25
|
Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, Mason CE. Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity. Front Genet 2019; 10:133. [PMID: 30881380 PMCID: PMC6405641 DOI: 10.3389/fgene.2019.00133] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/08/2019] [Indexed: 01/09/2023] Open
Abstract
Leukemia, specifically acute myeloid leukemia (AML), is a common malignancy that can be differentiated into multiple subtypes based on leukemogenic history and etiology. Although genetic aberrations, particularly cytogenetic abnormalities and mutations in known oncogenes, play an integral role in AML development, epigenetic processes have been shown as a significant and sometimes independent dynamic in AML pathophysiology. Here, we summarize how tumors evolve and describe AML through an epigenetic lens, including discussions on recent discoveries that include prognostics from epialleles, changes in RNA function for hematopoietic stem cells and the epitranscriptome, and novel epigenetic treatment options. We further describe the limitations of treatment in the context of the high degree of heterogeneity that characterizes acute myeloid leukemia.
Collapse
Affiliation(s)
- Samantha L Goldman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,University of Maryland, College Park, MD, United States
| | - Ciaran Hassan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Mihir Khunte
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Arielle Soldatenko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Yunji Jong
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
26
|
Saito S, Kikuchi J, Koyama D, Sato S, Koyama H, Osada N, Kuroda Y, Akahane K, Inukai T, Umehara T, Furukawa Y. Eradication of Central Nervous System Leukemia of T-Cell Origin with a Brain-Permeable LSD1 Inhibitor. Clin Cancer Res 2018; 25:1601-1611. [PMID: 30518632 DOI: 10.1158/1078-0432.ccr-18-0919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Lysine-specific demethylase 1 (LSD1) regulates several biological processes via the bifunctional modulation of enhancer functions. Recently, we reported that LSD1 overexpression is a founder abnormality of T-cell leukemogenesis and is maintained in fully transformed T-cell acute lymphoblastic leukemia (T-ALL) cells. On the basis of this finding, we attempted to develop novel LSD1 inhibitors effective for T-ALL with central nervous system (CNS) involvement. EXPERIMENTAL DESIGN We chemically modified the prototype LSD inhibitor tranylcypromine (TCP) and screened for cytotoxicity against TCP-resistant T-ALL cell lines. In vivo efficacy of novel LSD1 inhibitors was examined in immunodeficient mice transplanted with luciferase-expressing T-ALL cell lines, which faithfully reproduce human T-ALL with CNS involvement. RESULTS We found robust cytotoxicity against T-ALL cells, but not normal bone marrow progenitors, for two N-alkylated TCP derivatives, S2116 and S2157. The two compounds induced apoptosis in TCP-resistant T-ALL cells in vitro and in vivo by repressing transcription of the NOTCH3 and TAL1 genes through increased H3K9 methylation and reciprocal H3K27 deacetylation at superenhancer regions. Both S2116 and S2157 significantly retarded the growth of T-ALL cells in xenotransplanted mice and prolonged the survival of recipients as monotherapy and in combination with dexamethasone. Notably, S2157 could almost completely eradicate CNS leukemia because of its ability to efficiently pass through the blood-brain barrier. CONCLUSIONS These findings provide a molecular basis and rationale for the inclusion of a brain-permeable LSD1 inhibitor, S2157, in treatment strategies for T-ALL with CNS involvement.
Collapse
Affiliation(s)
- Shiori Saito
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Daisuke Koyama
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shin Sato
- Epigenetics Drug Discovery Unit, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Naoki Osada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiaki Kuroda
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takashi Umehara
- Epigenetics Drug Discovery Unit, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
27
|
Duan Y, Qin W, Suo F, Zhai X, Guan Y, Wang X, Zheng Y, Liu H. Design, synthesis and in vitro evaluation of stilbene derivatives as novel LSD1 inhibitors for AML therapy. Bioorg Med Chem 2018; 26:6000-6014. [PMID: 30448189 DOI: 10.1016/j.bmc.2018.10.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
LSD1 is implicated in a number of malignancies and has emerged as an exciting target. As part of our sustained efforts to develop novel reversible LSD1 inhibitors for epigenetic therapy of cancers, in this study, we reported a series of stilbene derivatives and evaluated their LSD1 inhibitory activities, obtaining several compounds as potent LSD1 inhibitors with IC50 values in submicromolar range. Enzyme kinetics studies and SPR assay suggested that compound 8c, the most active LSD1 inhibitor (IC50 = 283 nM), potently inhibited LSD1 in a reversible and FAD competitive manner. Consistent with the kinetics data, molecular docking showed that compound 8c can be well docked into the FAD binding site of LSD1. Flow cytometry analysis showed that compound 8c was capable of up-regulating the expression of the surrogate cellular biomarker CD86 in THP-1 human leukemia cells, suggesting the ability to block LSD1 activity in cells. Compound 8c showed good inhibition against THP-1 and MOLM-13 cells with IC50 values of 5.76 and 8.34 μM, respectively. Moreover, compound 8c significantly inhibited colony formation of THP-1 cells dose dependently.
Collapse
Affiliation(s)
- Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wenping Qin
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fengzhi Suo
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiaoyu Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yuanyuan Guan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaojuan Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Yichao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
28
|
Abstract
In this issue of Cancer Cell, Maes and colleagues report in vitro and in vivo findings with ORY-1001-an oral, highly potent and selective covalent small-molecule inhibitor of lysine-specific demethylase 1 (LSD1)-in development for acute myeloid leukemia (AML), as well as correlative data from two AML patients receiving ORY-1001.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Y Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|