1
|
Emonds S, Kamp J, Viermann R, Kalde A, Roth H, Wessling M. Open and dense hollow fiber nanofiltration membranes through a streamlined polyelectrolyte-based spinning process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Zhang S, Xia F, Demoustier-Champagne S, Jonas AM. Layer-by-layer assembly in nanochannels: assembly mechanism and applications. NANOSCALE 2021; 13:7471-7497. [PMID: 33870383 DOI: 10.1039/d1nr01113h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer (LbL) assembly is a versatile technology to construct multifunctional nanomaterials using various supporting substrates, enabled by the large selection freedom of building materials and diversity of possible driving forces. The fine regulation over the film thickness and structure provides an elegant way to tune the physical/chemical properties by mild assembly conditions (e.g. pH, ion strength). In this review, we focus on LbL in nanochannels, which exhibit a different growth mechanism compared to "open", convex substrates. The assembly mechanism in nanochannels is discussed in detail, followed by the summary of applications of LbL assemblies liberated from nanochannel templates which can be used as nanoreactors, drug carriers and transporting channels across cell membranes. For fluidic applications, robust membrane substrates are required to keep in place nanotube arrays for membrane-based separation, purification, biosensing and energy harvesting, which are also discussed. The good compatibility of LbL with crossover technologies from other fields allows researchers to further extend this technology to a broader range of research fields, which is expected to result in an increased number of applications of LbL technology in the future.
Collapse
Affiliation(s)
- Shouwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, China
| | - Sophie Demoustier-Champagne
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter (IMCN/BSMA), Université catholique de Louvain, Croix du Sud 1/L7.04.02, B1348 Louvain-la-Neuve, Belgium.
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences - Bio and Soft Matter (IMCN/BSMA), Université catholique de Louvain, Croix du Sud 1/L7.04.02, B1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
Huang R, Zhang K, Zhu G, Sun Z, He S, Chen W. Blocking-Free ELISA Using a Gold Nanoparticle Layer Coated Commercial Microwell Plate. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3537. [PMID: 30347684 PMCID: PMC6210089 DOI: 10.3390/s18103537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISA) show extensive application in immunoassays, to detect and monitor protein biomarkers in clinical diagnosis. Nevertheless, the time required and its multiple steps limit its application. We take advantage of a polyethyleneimine (PEI) gold nanoparticle (GNP) coated microwell plate to perform blocking-free ELISA, in which no nonspecific protein adsorption appears on the GNP layer. If the PEI-GNP coated microwell plate and immobilization of captured antibodies on the plate are prepared in advance, such as using an ELISA kit, the whole ELISA process can be finished in less than 2 h. Meanwhile, we have ensured that the GNP layer can preserve the precision and good linearity of ELISA without causing negative effects on the plate.
Collapse
Affiliation(s)
- Ruijia Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Ke Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Guoshuai Zhu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhencheng Sun
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Songliang He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
4
|
de Lange V, Habegger M, Schmidt M, Vörös J. Improving FoRe: A New Inlet Design for Filtering Samples through Individual Microarray Spots. ACS Sens 2017; 2:339-345. [PMID: 28723211 DOI: 10.1021/acssensors.6b00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this publication we present an improvement to our previously introduced vertical flow microarray, the FoRe array, which capitalizes on the fusion of immunofiltration and densely packed micron test sites. Filtering samples through individual microarray spots allows us to rapidly analyze dilute samples with high-throughput and high signal-to-noise. Unlike other flowthrough microarrays, in the FoRe design samples are injected into micron channels and sequentially exposed to different targets. This arrangement makes it possible to increase the sensitivity of the microarray by simply increasing the sample volume or to rapidly reconcentrate samples after preprocessing steps dilute the analyte. Here we present a new inlet system which allows us to increase the analyzed sample volume without compromising the micron spot size and dense layout. We combined this with a model assay to demonstrate that the device is sensitive to the amount of antigen, and as a result, sample volume directly correlates to sensitivity. We introduced a simple technique for analysis of blood, which previously clogged the nanometer-sized pores, requiring only microliter volumes expected from an infant heel prick. A drop of blood is mixed with buffer to separate the plasma before reconcentrating the sample on the microarray spot. We demonstrated the success of this procedure by spiking TNF-α into blood and achieved a limit of detection of 18 pM. Compared to traditional protein microarrays, the FoRe array is still inexpensive, customizable, and simple to use, and thanks to these improvements has a broad range of applications from small animal studies to environmental monitoring.
Collapse
Affiliation(s)
- Victoria de Lange
- Laboratory of Biosensors
and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Marco Habegger
- Laboratory of Biosensors
and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Marco Schmidt
- Laboratory of Biosensors
and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors
and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Zhang F, Ma J, Watanabe J, Tang J, Liu H, Shen H. Dual Electrophoresis Detection System for Rapid and Sensitive Immunoassays with Nanoparticle Signal Amplification. Sci Rep 2017; 7:42562. [PMID: 28198385 PMCID: PMC5309740 DOI: 10.1038/srep42562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/08/2017] [Indexed: 12/19/2022] Open
Abstract
An electrophoretic technique was combined with an enzyme-linked immunosorbent assay (ELISA) system to achieve a rapid and sensitive immunoassay. A cellulose acetate filter modified with polyelectrolyte multilayer (PEM) was used as a solid substrate for three-dimensional antigen-antibody reactions. A dual electrophoresis process was used to induce directional migration and local condensation of antigens and antibodies at the solid substrate, avoiding the long diffusion times associated with antigen-antibody reactions in conventional ELISAs. The electrophoretic forces drove two steps in the ELISA process, namely the adsorption of antigen, and secondary antibody-labelled polystyrene nanoparticles (NP-Ab). The total time needed for dual electrophoresis-driven detection was just 4 min, nearly 2 h faster than a conventional ELISA system. Moreover, the rapid NP-Ab electrophoresis system simultaneously achieved amplification of the specific signal and a reduction in noise, leading to a more sensitive NP-Ab immunoassay with a limit of detection (LOD) of 130 fM, and wide range of detectable concentrations from 0.13 to 130 pM. These results suggest that the combination of dual electrophoresis detection and NP-Ab signal amplification has great potential for future immunoassay systems.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Junjie Ma
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Junji Watanabe
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan
| | - Jinlong Tang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huiyu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
6
|
Lai X, Gao G, Watanabe J, Liu H, Shen H. Hydrophilic Polyelectrolyte Multilayers Improve the ELISA System: Antibody Enrichment and Blocking Free. Polymers (Basel) 2017; 9:polym9020051. [PMID: 30970737 PMCID: PMC6432497 DOI: 10.3390/polym9020051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/23/2022] Open
Abstract
In this study, polyelectrolyte multilayers were fabricated on a polystyrene (PS) plate using a Layer-by-Layer (LbL) self-assembly technique. The resulting functional platform showed improved performance compared with conventional enzyme-linked immunosorbent assay (ELISA) systems. Poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) were used as cationic and anionic polyelectrolytes. On the negatively-charged (PDDA/PAA)3 polyelectrolyte multilayers the hydrophilic PAA surface could efficiently decrease the magnitude of the noise signal, by inhibiting nonspecific adsorption even without blocking reagent adsorption. Moreover, the (PDDA/PAA)3 substrate covalently immobilized the primary antibody, greatly increasing the amount of primary antibody adsorption and enhancing the specific detection signal compared with a conventional PS plate. The calibration curve of the (PDDA/PAA)3 substrate showed a wide linear range, for concentrations from 0.033 to 33 nM, a large specific signal change, and a detection limit of 33 pM, even though the conventional blocking reagent adsorption step was omitted. The (PDDA/PAA)3 substrate provided a high-performance ELISA system with a simple fabrication process and high sensitivity; the system presented here shows potential for a variety of immunosensor applications.
Collapse
Affiliation(s)
- Xing Lai
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gan Gao
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Junji Watanabe
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan.
| | - Huiyu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Zhao Y, Zhao H, Zhou K, Zhang G, Chen L, Feng X. Study on the influence of reaction time on the structure and properties of the PVDF membrane modified through the method of atom transfer radical polymerization. POLYM ENG SCI 2013. [DOI: 10.1002/pen.23641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yiping Zhao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Material Science & Engineering; Tianjin Polytechnic University; Tianjin 300387 People's Republic of China
| | - Haiyang Zhao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Material Science & Engineering; Tianjin Polytechnic University; Tianjin 300387 People's Republic of China
| | - Kaipeng Zhou
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Material Science & Engineering; Tianjin Polytechnic University; Tianjin 300387 People's Republic of China
| | - Guifang Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Material Science & Engineering; Tianjin Polytechnic University; Tianjin 300387 People's Republic of China
| | - Li Chen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Material Science & Engineering; Tianjin Polytechnic University; Tianjin 300387 People's Republic of China
| | - Xia Feng
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Material Science & Engineering; Tianjin Polytechnic University; Tianjin 300387 People's Republic of China
| |
Collapse
|