1
|
Tang Z, Zhao M, Li N, Xiao H, Miao Q, Zhang M, Liu K, Huang L, Chen L, Zeng H, Wu H. Self-healing, reusable and conductive cellulose nanocrystals-containing adhesives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Yu X, Dong C, Zhuang W, Shi D, Dong W, Chen M, Kaneko D. Bio-Based Hotmelt Adhesives with Well-Adhesion in Water. Polymers (Basel) 2021; 13:666. [PMID: 33672307 PMCID: PMC7927086 DOI: 10.3390/polym13040666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
We suggest a simple idea of bio-based adhesives with strong adhesion even under water. The adhesives simply prepared via polycondensation of 3,4-dihydroxyhydrocinnamic acid (DHHCA) and lactic acid (LA) in one pot polymerization. Poly(DHHCA-co-LA) has a hyperbranched structure and demonstrated strong dry and wet adhesion strength on diverse material surfaces. We found that their adhesion strength depended on the concentration of DHHCA. Poly(DHHCA-co-LA) with the lowest concentration of DHHCA showed the highest adhesion strength in water with a value of 2.7 MPa between glasses, while with the highest concentration of DHHCA it exhibited the highest dry adhesion strength with a value of 3.5 MPa, which was comparable to commercial instant super glue. Compared to underwater glues reported previously, our adhesives were able to spread rapidly under water with a low viscosity and worked strongly. Poly(DHHCA-co-LA) also showed long-term stability and kept wet adhesion strength of 2.2 MPa after steeping in water for 1 month at room temperature (initial strength was 2.4 MPa). In this paper, Poly(DHHCA-co-LA) with strong dry and wet adhesion properties and long-term stability was demonstrated for various kinds of applications, especially for wet conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Y.); (C.D.); (W.Z.); (D.S.); (W.D.)
| | - Daisaku Kaneko
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Y.); (C.D.); (W.Z.); (D.S.); (W.D.)
| |
Collapse
|
3
|
Sha X, Zhang C, Qi M, Zheng L, Cai B, Chen F, Wang Y, Zhou Y. Mussel-Inspired Alternating Copolymer as a High-Performance Adhesive Material Both at Dry and Under-Seawater Conditions. Macromol Rapid Commun 2020; 41:e2000055. [PMID: 32297374 DOI: 10.1002/marc.202000055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022]
Abstract
Marine mussels have the ability to cling to various surfaces at wet or underwater conditions, which inspires the research of catechol-functionalized polymers (CFPs) to develop high-performance adhesive materials. However, these polymeric adhesives generally face the problems of complex synthetic route, and it is still high challenging to prepare CFPs with excellent adhesive performance both at dry and underwater conditions. Herein, a mussel-inspired alternating copolymer, poly(dopamine-alt-2,2-bis(4-glycidyloxyphenyl)propane) (P(DA-a-BGOP)), is synthesized in one step by using commercially available monomers through epoxy-amino click chemistry. The incorporation of polar groups and rigid bisphenol A structures into the polymer backbone enhances the cohesion energy of polymer matrix. The alternating polymer structure endows the polymers with high catechol content and controlled polymer sequence. As a result, P(DA-a-BGOP) exhibits a strong bonding strength as high as 16.39 ± 2.13 MPa on stainless steel substrates after a hot pressing procedure and displays a bonding strength of 1.05 ± 0.05 MPa on glass substrates at an under-seawater condition, which surpasses most commercial adhesives.
Collapse
Affiliation(s)
- Xinyi Sha
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Changxu Zhang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Meiwei Qi
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Longhui Zheng
- Henan Agricultural University, No. 63 Agricultural Road, Zhengzhou, Henan, 450002, P. R. China
| | - Beike Cai
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Feng Chen
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yuling Wang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Herrera C, Ysinga KJ, Jenkins CL. Polysulfides Synthesized from Renewable Garlic Components and Repurposed Sulfur Form Environmentally Friendly Adhesives. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35312-35318. [PMID: 31448895 DOI: 10.1021/acsami.9b11204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural materials have been used as glues throughout human history. Over the last century, society has come to rely heavily on synthetic, petroleum-based adhesives instead, consuming ∼14 million tons per year. In recent years, however, there has been a resurgence of glues formed with renewable materials. This work seeks to integrate the two to form strong adhesives. Here, elemental sulfur was combined with diallyl sulfide (DAS), diallyl disulfide (DADS), and garlic essential oil (GEO) to form adhesive polymers from recycled petroleum waste and renewable monomers. The labile sulfur bonds in DADS and GEO allowed these monomers to be homopolymerized, forming polysulfides entirely from renewable monomers. Heating these materials causes them to transition from viscous liquids to hardened solids. A family of copolymers containing different garlic components and varying sulfur-to-monomer ratios were synthesized, characterized, and tested for this study. Polymer structures were confirmed by 1H NMR. Changes to the polysulfide material properties upon curing were examined by gel permeation chromatography and differential scanning calorimetry. Characterization data of cured polymers were used to choose the optimal cure temperature for adhesion studies. The adhesion strength of polysulfides with varying compositions was determined by single-lap shear testing. Strong bonding was obtained for all garlic-based polysulfides with strengths 3 times higher than commercial hide glue.
Collapse
Affiliation(s)
- Cristina Herrera
- Department of Chemistry , Ball State University , 2000 W. University Avenue , Muncie , Indiana 47306 , United States
| | - Kristen J Ysinga
- Department of Chemistry , Ball State University , 2000 W. University Avenue , Muncie , Indiana 47306 , United States
| | - Courtney L Jenkins
- Department of Chemistry , Ball State University , 2000 W. University Avenue , Muncie , Indiana 47306 , United States
| |
Collapse
|
5
|
Wang S, Kitamura Y, Hiraishi N, Taira S, Tsuge A, Kaneko T, Kaneko D. Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta- or para-hydroxyphenylpropionic acid segments on their properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Fonseca AC, Lima MS, Sousa AF, Silvestre AJ, Coelho JFJ, Serra AC. Cinnamic acid derivatives as promising building blocks for advanced polymers: synthesis, properties and applications. Polym Chem 2019. [DOI: 10.1039/c9py00121b] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A global overview of the use of cinnamic acid derivatives in polymer science is given in this review paper.
Collapse
Affiliation(s)
- Ana C. Fonseca
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Mafalda S. Lima
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Andreia F. Sousa
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Armando J. Silvestre
- CICECO – Aveiro Institute of Materials and Department of Chemistry
- University of Aveiro
- Portugal
| | - Jorge F. J. Coelho
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Arménio C. Serra
- CEMMPRE
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| |
Collapse
|
7
|
Zhang H, Zhao T, Newland B, Liu W, Wang W, Wang W. Catechol functionalized hyperbranched polymers as biomedical materials. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Wang B, Lee JS, Jeon YS, Kim J, Kim JH. Hydrophobicity-enhanced adhesion of novel biomimetic biocompatible polyaspartamide derivative glues. POLYM INT 2018. [DOI: 10.1002/pi.5544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bo Wang
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jae Sang Lee
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Young-Sil Jeon
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jaeyun Kim
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Ji-Heung Kim
- Department of Chemical Engineering; Sungkyunkwan University; Suwon Republic of Korea
| |
Collapse
|
9
|
Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Appl Microbiol Biotechnol 2017; 101:5279-5290. [PMID: 28396925 DOI: 10.1007/s00253-017-8270-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.
Collapse
|
10
|
Bartucci MA, Napadensky E, Lenhart JL, Orlicki JA. Side chain length impacting thermal transitions and water uptake of acrylate–maleimide copolymers with pendent catechols. RSC Adv 2017. [DOI: 10.1039/c7ra08769a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Significant moisture uptake was observed for a family of catechol side-chain poly(alkyl acrylate-maleimide)s (PAMs) intended to probe the effects of Tg and polarity.
Collapse
|
11
|
Single-molecule interaction force measurements of catechol analog monomers and synthesis of adhesive polymer using the results. Polym J 2016. [DOI: 10.1038/pj.2015.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Mu Y, Wan X. Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone. Macromol Rapid Commun 2016; 37:545-50. [DOI: 10.1002/marc.201500723] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/05/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Youbing Mu
- The Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; 189 Songling Road Qingdao P. R. China
- University of Chinese Academy of Sciences; 19A Yuquan Road Beijing 100049 P. R. China
| | - Xiaobo Wan
- The Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; 189 Songling Road Qingdao P. R. China
| |
Collapse
|
13
|
|
14
|
Hong S, Lee H, Lee H. Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:887-94. [PMID: 24991526 PMCID: PMC4077523 DOI: 10.3762/bjnano.5.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/29/2014] [Indexed: 05/13/2023]
Abstract
Quinone tanning is a well-characterized biochemical process found in invertebrates, which produce diverse materials from extremely hard tissues to soft water-resistant adhesives. Herein, we report new types of catecholamine PEG derivatives, PEG-NH-catechols that can utilize an expanded spectrum of catecholamine chemistry. The PEGs enable simultaneous participation of amine and catechol in quinone tanning crosslinking. The intermolecular reaction between PEG-NH-catechols forms a dramatic nano-scale junction resulting in enhancement of gelation kinetics and mechanical properties of PEG hydrogels compared to results obtained by using PEGs in the absence of amine groups. Therefore, the study provides new insight into designing new crosslinking chemistry for controlling nano-scale chemical reactions that can broaden unique properties of bulk hydrogels.
Collapse
Affiliation(s)
- Seonki Hong
- Department of Chemistry, Center for Nature-inspired Technology in KI NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291, University Rd, Daejeon 305-701, South Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120–750, South Korea
| | - Haeshin Lee
- Department of Chemistry, Center for Nature-inspired Technology in KI NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291, University Rd, Daejeon 305-701, South Korea
| |
Collapse
|
15
|
Hiraishi N, Kaneko D, Taira S, Wang S, Otsuki M, Tagami J. Mussel-mimetic, bioadhesive polymers from plant-derived materials. ACTA ACUST UNITED AC 2013; 6:59-62. [PMID: 23857900 DOI: 10.1111/jicd.12054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/31/2013] [Indexed: 01/09/2023]
Abstract
AIM Mussel-mimetic, bioadhesive polymers are synthesized from plant-derived sources. The strong adhesive action is caused by interactions between the catechol groups at the end of the polymer terminal chains and the substrate surface. Here, we present a preliminary study of the adhesion properties and a discussion of the adhesion mechanism. METHODS Two bioadhesive polymers were synthesized from natural plant-derived monomers by the transesterification of: (a) caffeic acid (3,4-dihydroxycinnamic acid; DHCA) and p-coumaric acid (4-hydroxycinnamic acid; 4HCA) to produce poly(DHCA-co-4HCA); and (b) 4-dihydroxyhydrocinnamic acid (DHHCA) and 3-(3-hydroxyphenyl) propionic acid (3HPPA) to produce poly(DHHCA-co-3HPPA). Thermoplastic poly(DHCA-co-4HCA) or poly(DHHCA-co-3HPPA) was placed between glass, carbon, steel, or bovine dentin substrates, and a lap shear adhesion test was conducted to compare them using conventional cyanoacrylate glue and epoxy resin. RESULTS The greatest adhesion for all tested substrates was exhibited by poly(DHHCA-co-3HPPA), followed by epoxy resin adhesive, poly(DHCA-co-4HCA), and cyanoacrylate adhesive. The adhesive strength of poly(DHHCA-co-3HPPA) was greater than 25.6 MPa for glass, 29.6 MPa for carbon, 15.7 MPa for steel, and 16.3 MPA for bovine dentin. CONCLUSION The adhesion of poly(DHHCA-co-3HPPA) might be the strongest reported for a mussel-mimic adhesive system, and could be a feasible alternative to petroleum adhesives.
Collapse
Affiliation(s)
- Noriko Hiraishi
- Department of Oral Health Science, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Yazaki K, Tateyama S, Kaneko D, Kaneko T. Photomechanic Behavior of Main-chain Type of Polycoumarates. J PHOTOPOLYM SCI TEC 2013. [DOI: 10.2494/photopolymer.26.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Syntheses of hyperbranched liquid-crystalline biopolymers with strong adhesion from phenolic phytomonomers. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-05-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel thermotropic liquid-crystalline (LC) biocopolymer, poly{trans-3-methoxyl-4-hydroxycinnamic acid (MHCA: ferulic acid)-co-trans-3,4-dihydroxycinnamic acid (DHCA: caffeic acid)}, was synthesized by a thermal acidolysis-polycondensation of MHCA and DHCA, efficiently catalyzed by Na2HPO4. When the MHCA composition of poly(MHCA-co-DHCA) was 60, 75, and 90 mol %, the copolymers showed a nematic LC phase although individual homopolymers such as polyMHCA and polyDHCA did not exhibit LC phase. Poly(MHCA-co-DHCA)s showed high molecular weight (Mw) ranged between Mn 2.6 × 104 to 3.7 × 104 and Mw 8.2 × 104 to 13.1 × 104, respectively, high glass-transition temperature (Tg) with the range of 115 to 140 °C and high degradation temperature T10, from 315 to 356 °C. In the adhesive test of copolymers against the surface of carbon substrate, the copolymers showed high shear strength at fracture.
Collapse
|
18
|
Matos-Pérez CR, White JD, Wilker JJ. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 2012; 134:9498-505. [PMID: 22582754 DOI: 10.1021/ja303369p] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues.
Collapse
Affiliation(s)
- Cristina R Matos-Pérez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | | | | |
Collapse
|
19
|
Kaneko D, Matsumoto K, Kinugawa S, Tateyama S, Kaneko T. Effects of adhesive characteristics of the catechol group on fiber-reinforced plastics. Polym J 2011. [DOI: 10.1038/pj.2011.91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|