1
|
Muffels I, Rodenburg R, Willemen HL, van Haaften-Visser D, Waterham H, Eijkelkamp N, Fuchs SA, van Hasselt PM. Imaging flow cytometry reveals divergent mitochondrial phenotypes in mitochondrial disease patients. iScience 2025; 28:111496. [PMID: 39801833 PMCID: PMC11719857 DOI: 10.1016/j.isci.2024.111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/24/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Traditional classification by clinical phenotype or oxidative phosphorylation (OXPHOS) complex deficiencies often fails to clarify complex genotype-phenotype correlations in mitochondrial disease. A multimodal functional assessment may better reveal underlying disease patterns. Using imaging flow cytometry (IFC), we evaluated mitochondrial fragmentation, swelling, membrane potential, reactive oxygen species (ROS) production, and mitochondrial mass in fibroblasts from 31 mitochondrial disease patients. Significant changes were observed in 97% of patients, forming two overarching groups with distinct responses to mitochondrial pathology. One group displayed low-to-normal membrane potential, indicating a hypometabolic state, while the other showed elevated membrane potential and swelling, suggesting a hypermetabolic state. Literature analysis linked these clusters to complex I stability defects (hypometabolic) and proton pumping activity (hypermetabolic). Thus, our IFC-based platform offers a novel approach to identify disease-specific patterns through functional responses, supporting improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Irena.J.J. Muffels
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Richard Rodenburg
- Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Hanneke L.D. Willemen
- Center for Translational Immunology (CTI), Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Désirée van Haaften-Visser
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Hans Waterham
- United for Metabolic Diseases (UMD), Utrecht 3584 EA, the Netherlands
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC - AMC, Amsterdam 1105 AZ, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology (CTI), Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Sabine A. Fuchs
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
- United for Metabolic Diseases (UMD), Utrecht 3584 EA, the Netherlands
| | - Peter M. van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
- United for Metabolic Diseases (UMD), Utrecht 3584 EA, the Netherlands
| |
Collapse
|
2
|
Clinical Heterogeneity in MT-ATP6 Pathogenic Variants: Same Genotype-Different Onset. Cells 2022; 11:cells11030489. [PMID: 35159298 PMCID: PMC8834419 DOI: 10.3390/cells11030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Human mitochondrial disease exhibits large variation of clinical phenotypes, even in patients with the same causative gene defect. We illustrate this heterogeneity by confronting clinical and biochemical data of two patients with the uncommon pathogenic homoplasmic NC_012920.1(MT-ATP6):m.9035T>C variant in MT-ATP6. Patient 1 presented as a toddler with severe motor and speech delay and spastic ataxia without extra-neurologic involvement. Patient 2 presented in adolescence with ataxia and ophthalmoplegia without cognitive or motor impairment. Respiratory chain complex activities were normal in cultured skin fibroblasts from both patients when calculated as ratios over citrate synthase activity. Native gels found presence of subcomplexes of complex V in fibroblast and/or skeletal muscle. Bioenergetic measurements in fibroblasts from both patients detected reduced spare respiratory capacities and altered extracellular acidification rates, revealing a switch from mitochondrial respiration to glycolysis to uphold ATP production. Thus, in contrast to the differing disease presentation, biochemical evidence of mitochondrial deficiency turned out quite similar. We conclude that biochemical analysis remains a valuable tool to confirm the genetic diagnosis of mitochondrial disease, especially in patients with new gene variants or atypical clinical presentation.
Collapse
|
3
|
Dewaele S, Delhaye L, De Paepe B, de Bony EJ, De Wilde J, Vanderheyden K, Anckaert J, Yigit N, Nuytens J, Vanden Eynde E, Smet J, Verschoore M, Nemati F, Decaudin D, Rodrigues M, Zhao P, Jochemsen A, Leucci E, Vandesompele J, Van Dorpe J, Marine JC, Van Coster R, Eyckerman S, Mestdagh P. The long non-coding RNA SAMMSON is essential for uveal melanoma cell survival. Oncogene 2022; 41:15-25. [PMID: 34508176 PMCID: PMC8724009 DOI: 10.1038/s41388-021-02006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/02/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) can exhibit cell-type and cancer-type specific expression profiles, making them highly attractive as therapeutic targets. Pan-cancer RNA sequencing data revealed broad expression of the SAMMSON lncRNA in uveal melanoma (UM), the most common primary intraocular malignancy in adults. Currently, there are no effective treatments for UM patients with metastatic disease, resulting in a median survival time of 6-12 months. We aimed to investigate the therapeutic potential of SAMMSON inhibition in UM. Antisense oligonucleotide (ASO)-mediated SAMMSON inhibition impaired the growth and viability of a genetically diverse panel of uveal melanoma cell lines. These effects were accompanied by an induction of apoptosis and were recapitulated in two uveal melanoma patient derived xenograft (PDX) models through subcutaneous ASO delivery. SAMMSON pulldown revealed several candidate interaction partners, including various proteins involved in mitochondrial translation. Consequently, inhibition of SAMMSON impaired global, mitochondrial and cytosolic protein translation levels and mitochondrial function in uveal melanoma cells. The present study demonstrates that SAMMSON expression is essential for uveal melanoma cell survival. ASO-mediated silencing of SAMMSON may provide an effective treatment strategy to treat primary and metastatic uveal melanoma patients.
Collapse
Affiliation(s)
- Shanna Dewaele
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Louis Delhaye
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
| | - Boel De Paepe
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Eric James de Bony
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jilke De Wilde
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of pathology, Ghent University Hospital, Ghent, Belgium
| | - Katrien Vanderheyden
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Justine Nuytens
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eveline Vanden Eynde
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Joél Smet
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Maxime Verschoore
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Fariba Nemati
- Institut Curie, Laboratory of Preclinical Investigation, Translational Research Department, PSL Research University, Paris, France
| | - Didier Decaudin
- Institut Curie, Laboratory of Preclinical Investigation, Translational Research Department, PSL Research University, Paris, France
- Institut Curie, Department of Medical Oncology, PSL Research University, Paris, France
| | - Manuel Rodrigues
- Institut Curie, Department of Medical Oncology, PSL Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France
| | - Peihua Zhao
- Center for Medical Biotechnology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aart Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- TRACE, LKI Leuven Cancer Institute, Leuven, Belgium
| | - Jo Vandesompele
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of pathology, Ghent University Hospital, Ghent, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sven Eyckerman
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Deus CM, Yambire KF, Oliveira PJ, Raimundo N. Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends Mol Med 2019; 26:71-88. [PMID: 31791731 DOI: 10.1016/j.molmed.2019.10.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Cellular function requires coordination between different organelles and metabolic cues. Mitochondria and lysosomes are essential for cellular metabolism as major contributors of chemical energy and building blocks. It is therefore pivotal for cellular function to coordinate the metabolic roles of mitochondria and lysosomes. However, these organelles do more than metabolism, given their function as fundamental signaling platforms in the cell that regulate many key processes such as autophagy, proliferation, and cell death. Mechanisms of crosstalk between mitochondria and lysosomes are discussed, both under physiological conditions and in diseases that affect these organelles.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - King Faisal Yambire
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany.
| |
Collapse
|
5
|
Celie BM, Mariman A, Boone J, Delesie L, Tobback E, Seneca S, De Paepe B, Vogelaers D, Van Coster RN, Bourgois JG. Near-Infrared Spectroscopy Screening to Allow Detection of Pathogenic Mitochondrial DNA Variants in Individuals with Unexplained Abnormal Fatigue: A Preliminary Study. APPLIED SPECTROSCOPY 2018; 72:715-724. [PMID: 29336589 DOI: 10.1177/0003702818756647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unexplained abnormal fatigue is characterized by chronic fatigue persisting for at least six months and not sufficiently explained by any recognized medical condition. In this pilot study, twelve individuals with abnormal fatigue remaining unexplained after thorough screening were investigated using a near-infrared (NIR) spectroscopy handgrip test. Four of them were found to have an abnormal oxygen extraction pattern similar to participants with documented mitochondrial myopathy. In three of the four individuals, diverse mitochondrial abnormalities were documented by spectrophotometric, immunocytological, fluorescent, and morphological analyses performed in skeletal muscle and in cultured skin fibroblasts. Three of the four participants with decreased muscular oxygen extraction were each shown to harbor a different homoplasmic pathogenic mitochondrial DNA point mutation (m.961T > C, m.1555A > G, m.14484T > C). In the fourth participant, the presence of multiple large mitochondrial DNA deletions was suspected in muscle tissue. In contrast, none of the eight abnormally fatigued participants with normal NIR spectroscopy results harbored either a pathogenic mitochondrial DNA point mutation or large deletions ( P < 0.001). This pilot study shows that NIR spectroscopy may serve as a noninvasive screening tool to delineate a subgroup (of participants) with mitochondrial dysfunction among the large group of individuals with unexplained abnormal fatigue.
Collapse
Affiliation(s)
- Bert M Celie
- 1 26656 Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - An Mariman
- 2 Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
- 3 Center for Neurophysiologic Monitoring, Ghent University Hospital, Ghent, Belgium
| | - Jan Boone
- 1 26656 Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- 4 Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Liesbeth Delesie
- 2 Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Els Tobback
- 2 Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
- 3 Center for Neurophysiologic Monitoring, Ghent University Hospital, Ghent, Belgium
| | - Sara Seneca
- 5 Centre for Medical Genetics, University Hospital Brussels, Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Boel De Paepe
- 6 60200 Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Dirk Vogelaers
- 2 Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
- 3 Center for Neurophysiologic Monitoring, Ghent University Hospital, Ghent, Belgium
| | - Rudy N Van Coster
- 6 60200 Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Jan G Bourgois
- 1 26656 Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- 4 Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Van Maldergem L, Besse A, De Paepe B, Blakely EL, Appadurai V, Humble MM, Piard J, Craig K, He L, Hella P, Debray FG, Martin JJ, Gaussen M, Laloux P, Stevanin G, Van Coster R, Taylor RW, Copeland WC, Mormont E, Bonnen PE. POLG2 deficiency causes adult-onset syndromic sensory neuropathy, ataxia and parkinsonism. Ann Clin Transl Neurol 2016; 4:4-14. [PMID: 28078310 PMCID: PMC5221457 DOI: 10.1002/acn3.361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Mitochondrial dysfunction plays a key role in the pathophysiology of neurodegenerative disorders such as ataxia and Parkinson's disease. We describe an extended Belgian pedigree where seven individuals presented with adult‐onset cerebellar ataxia, axonal peripheral ataxic neuropathy, and tremor, in variable combination with parkinsonism, seizures, cognitive decline, and ophthalmoplegia. We sought to identify the underlying molecular etiology and characterize the mitochondrial pathophysiology of this neurological syndrome. Methods Clinical, neurophysiological, and neuroradiological evaluations were conducted. Patient muscle and cultured fibroblasts underwent extensive analyses to assess mitochondrial function. Genetic studies including genome‐wide sequencing were conducted. Results Hallmarks of mitochondrial dysfunction were present in patients’ tissues including ultrastructural anomalies of mitochondria, mosaic cytochrome c oxidase deficiency, and multiple mtDNA deletions. We identified a splice acceptor variant in POLG2, c.970‐1G>C, segregating with disease in this family and associated with a concomitant decrease in levels of POLG2 protein in patient cells. Interpretation This work extends the clinical spectrum of POLG2 deficiency to include an overwhelming, adult‐onset neurological syndrome that includes cerebellar syndrome, peripheral neuropathy, tremor, and parkinsonism. We therefore suggest to include POLG2 sequencing in the evaluation of ataxia and sensory neuropathy in adults, especially when it is accompanied by tremor or parkinsonism with white matter disease. The demonstration that deletions of mtDNA resulting from autosomal‐dominant POLG2 variant lead to a monogenic neurodegenerative multicomponent syndrome provides further evidence for a major role of mitochondrial dysfunction in the pathomechanism of nonsyndromic forms of the component neurodegenerative disorders.
Collapse
Affiliation(s)
- Lionel Van Maldergem
- Centre de génétique humaine Université de Franche-Comté Besançon France; Metabolic Unit Centre of Human Genetics University Hospital Liège Belgium
| | - Arnaud Besse
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Boel De Paepe
- Department of Pediatrics Division of Child Neurology & Metabolism Ghent University Hospital Belgium
| | - Emma L Blakely
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Vivek Appadurai
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Margaret M Humble
- Mitochondrial DNA Replication Group National Institute of Environmental Health Sciences Durham North Carolina
| | - Juliette Piard
- Centre de génétique humaine Université de Franche-Comté Besançon France
| | - Kate Craig
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - Pierre Hella
- Department of Neurology Sambre and Meuse Regional Hospital Namur Belgium
| | | | | | - Marion Gaussen
- Inserm U1127 CNRS UMR 7225 Sorbonne Universités UPMC Paris France; Institut du Cerveau et de la Moelle épinière Hopital Pitié-Salpêtrière Paris France; Ecole Pratique des Hautes Etudes PSL Université Laboratoire de neurogénétique F-75013 Paris France
| | - Patrice Laloux
- Université catholique de Louvain CHU UCL Namur Department of Neurology B5530 Yvoir Belgium; UCL Institute of Neuroscience (IoNS) B1200 Brussels Belgium
| | - Giovanni Stevanin
- Inserm U1127 CNRS UMR 7225 Sorbonne Universités UPMC Paris France; Institut du Cerveau et de la Moelle épinière Hopital Pitié-Salpêtrière Paris France; Ecole Pratique des Hautes Etudes PSL Université Laboratoire de neurogénétique F-75013 Paris France
| | - Rudy Van Coster
- Department of Pediatrics Division of Child Neurology & Metabolism Ghent University Hospital Belgium
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research Institute of Neuroscience Newcastle University Newcastle upon Tyne United Kingdom
| | - William C Copeland
- Mitochondrial DNA Replication Group National Institute of Environmental Health Sciences Durham North Carolina
| | - Eric Mormont
- Université catholique de Louvain CHU UCL Namur Department of Neurology B5530 Yvoir Belgium; UCL Institute of Neuroscience (IoNS) B1200 Brussels Belgium
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| |
Collapse
|
7
|
Kogot-Levin A, Saada A, Leibowitz G, Soiferman D, Douiev L, Raz I, Weksler-Zangen S. Upregulation of Mitochondrial Content in Cytochrome c Oxidase Deficient Fibroblasts. PLoS One 2016; 11:e0165417. [PMID: 27780242 PMCID: PMC5079646 DOI: 10.1371/journal.pone.0165417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cytochrome-c-oxidase (COX) deficiency is a frequent cause of mitochondrial disease and is associated with a wide spectrum of clinical phenotypes. We studied mitochondrial function and biogenesis in fibroblasts derived from the Cohen (CDs) rat, an animal model of COX deficiency. COX activity in CDs-fibroblasts was 50% reduced compared to control rat fibroblasts (P<0.01). ROS-production in CDs fibroblasts increased, along with marked mitochondrial fragmentation and decreased mitochondrial membrane-potential, indicating mitochondrial dysfunction. Surprisingly, cellular ATP content, oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were unchanged. To clarify the discrepancy between mitochondrial dysfunction and ATP production, we studied mitochondrial biogenesis and turnover. The content of mitochondria was higher in CDs-fibroblasts. Consistently, AMPK activity and the expression of NRF1-target genes, NRF2 and PGC1-α that mediate mitochondrial biogenesis were increased (P<0.01 vs control fibroblast). In CDs-fibrobalsts, the number of autophagosomes (LC3+ puncta) containing mitochondria in CDs fibroblasts was similar to that in control fibroblasts, suggesting that mitophagy was intact. Altogether, our findings demonstrate that mitochondrial dysfunction and oxidative stress are associated with an increase in mitochondrial biogenesis, resulting in preservation of ATP generation.
Collapse
Affiliation(s)
- Aviram Kogot-Levin
- The Diabetes Unit, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research and Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gil Leibowitz
- The Diabetes Unit, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Soiferman
- Monique and Jacques Roboh Department of Genetic Research and Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Liza Douiev
- Monique and Jacques Roboh Department of Genetic Research and Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Itamar Raz
- The Diabetes Unit, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- The Diabetes Unit, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
8
|
Sabarwal A, Agarwal R, Singh RP. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells. Mol Carcinog 2016; 56:499-514. [PMID: 27254419 DOI: 10.1002/mc.22512] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akash Sabarwal
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado
| | - Rana P Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.,Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Scholkmann F. Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis. Theor Biol Med Model 2016; 13:16. [PMID: 27267202 PMCID: PMC4896004 DOI: 10.1186/s12976-016-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed "membrane nanotubes" (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland.
- Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038, Zurich, Switzerland.
| |
Collapse
|
10
|
Singh N, Nambiar D, Kale RK, Singh RP. Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells. Nutr Cancer 2014; 65 Suppl 1:36-43. [PMID: 23682781 DOI: 10.1080/01635581.2013.785007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Usnic acid (UA) is a secondary metabolite abundantly found in lichens. Some studies have shown the anticancer potential of UA; however, its efficacy and associated mechanisms are yet to be fully explored. Herein, we assessed the anticancer potency and associated molecular alterations by UA in human lung carcinoma A549 cells. UA treatment (25-100 μM) for 24 and 48 h decreased total cell number by 39-67% (P < 0.01) and 68-89% (P < 0.001), respectively, and enhanced cell death by up to twofold and eightfold (P < 0.001), respectively. UA (1-10 μM) also significantly (P < 0.001) suppressed colony formation of A549 cells. The cell growth inhibition was associated with cell cycle arrest at G0/ G1 phase. UA decreased the expression of cyclin-dependent kinase (CDK)4, CDK6, and cyclin D1 and increased the expression of CDK inhibitor (CDKI) p21/cip1 protein. While examining the cell death associated molecular changes, we observed that UA induces mitochondrial membrane depolarization and led to more than twofold increase (P < 0.01) in apoptotic cells. The apoptotic effect of UA was accompanied by enhanced poly(ADP-ribose) polymerase cleavage. This study shows that UA inhibits cell growth involving G0/G1 phase cell cycle arrest and induces cell death via mitochondrial membrane depolarization and induction of apoptosis in human lung carcinoma cells.
Collapse
Affiliation(s)
- Narendra Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | | | | | | |
Collapse
|
11
|
Chang S, Ren G, Steiner RD, Merkens L, Roullet JB, Korade Z, DiMuzio PJ, Tulenko TN. Elevated Autophagy and Mitochondrial Dysfunction in the Smith-Lemli-Opitz Syndrome. Mol Genet Metab Rep 2014; 1:431-442. [PMID: 25405082 PMCID: PMC4231544 DOI: 10.1016/j.ymgmr.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) is a congenital, autosomal recessive metabolic and developmental disorder caused by mutations in the enzyme which catalyzes the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. Herein we show that dermal fibroblasts obtained from SLOS children display increased basal levels of LC3B-II, the hallmark protein signifying increased autophagy. The elevated LC3B-II is accompanied by increased beclin-1 and cellular autophagosome content. We also show that the LC3B-II concentration in SLOS cells is directly proportional to the cellular concentration of 7DHC, suggesting that the increased autophagy is caused by 7DHC accumulation secondary to defective DHCR7. Further, the increased basal LC3B-II levels were decreased significantly by pretreating the cells with antioxidants implicating a role for oxidative stress in elevating autophagy in SLOS cells. Considering the possible source of oxidative stress, we examined mitochondrial function in the SLOS cells using JC-1 assay and found significant mitochondrial dysfunction compared to mitochondria in control cells. In addition, the levels of PINK1 which targets dysfunctional mitochondria for removal by the autophagic pathway are elevated in SLOS cells, consistent with mitochondrial dysfunction as a stimulant of mitophagy in SLOS. This suggests that the increase in autophagic activity may be protective, i.e., to remove dysfunctional mitochondria. Taken together, these studies are consistent with a role for mitochondrial dysfunction leading to increased autophagy in SLOS pathophysiology.
Collapse
Affiliation(s)
- Shaohua Chang
- Department of Surgery, Cooper University Hospital, Cooper Medical School at Rowan University, Camden, NJ 08103, United States
| | - Gongyi Ren
- Department of Surgery, Cooper University Hospital, Cooper Medical School at Rowan University, Camden, NJ 08103, United States
| | - Robert D. Steiner
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Louise Merkens
- Department of Pediatrics, Institute for Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, United States
- Department of Molecular & Medical Genetics, Institute for Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Jean-Baptiste Roullet
- Department of Pediatrics, Institute for Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, United States
- Department of Molecular & Medical Genetics, Institute for Development and Disability, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Zeljka Korade
- Department of Psychiatry, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States
| | - Paul J. DiMuzio
- Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA 19107, United States
| | - Thomas N. Tulenko
- Department of Surgery, Cooper University Hospital, Cooper Medical School at Rowan University, Camden, NJ 08103, United States
- Corresponding author at: Department of Surgery, Cooper University Hospital, 3 Cooper Plaza, Suite 411, Camden, NJ 08103, United States.
| |
Collapse
|
12
|
Ferreira R, Rocha H, Almeida V, Padrão AI, Santa C, Vilarinho L, Amado F, Vitorino R. Mitochondria proteome profiling: a comparative analysis between gel- and gel-free approaches. Talanta 2013; 115:277-83. [PMID: 24054592 DOI: 10.1016/j.talanta.2013.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 12/22/2022]
Abstract
Mitochondrial proteomics emerged aiming to disclose the dynamics of mitochondria under various pathophysiological conditions. In the present study we investigated the relative merits of gel-based (2DE and SDS-LC) and gel-free (2D-LC) protein separation approaches and protein identification algorithms (Mascot and Paragon) in the proteome profiling of mitochondria isolated from cultured fibroblasts, a sample traditionally used for diagnosis purposes. Combining data retrieved from 2DE, 2D-LC and SDS-LC and search methods, a total of 696 non-redundant proteins were identified. An overlap of only 19% between the proteins identified by the three different methods was observed when Mascot and Paragon were used. Regarding protein ID, a consistency in the number of identified proteins per sample was noticed for 2DE approach. Independent of the methodological approach chosen, it was noticed that the predominance in mitochondria of hydrophilic proteins with 20-50 kDa and pI 5-6 and 8-9; however, 2D-LC and SDS-LC allowed the enrichment of proteins with a mass below 30 kDa and of basic proteins with pI values above 8. In conclusion, data from the present study highlight the power of integrating different separation technologies and protein identification algorithms.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
De Paepe B. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/217162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cells display changes that aid them to escape from cell death, sustain their proliferative powers, and shift their metabolism toward glycolytic energy production. Mitochondria are key organelles in many metabolic and biosynthetic pathways, and the adaptation of mitochondrial function has been recognized as crucial to the changes that occur in cancer cells. This paper zooms in on the pathologic evaluation of mitochondrial markers for diagnosing and staging of human cancer and determining the patients’ prognoses.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratories for Neuropathology & Mitochondrial Disorders, Ghent University Hospital, Building K5 3rd Floor, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|