1
|
Jianfang W, Raza SHA, Pant SD, Juan Z, Prakash A, Abdelnour SA, Aloufi BH, Mahasneh ZMH, Amin AA, Shokrollahi B, Zan L. Exploring Epigenetic and Genetic Modulation in Animal Responses to Thermal Stress. Mol Biotechnol 2025; 67:942-956. [PMID: 38528286 DOI: 10.1007/s12033-024-01126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
There is increasing evidence indicating that global temperatures are rising significantly, a phenomenon commonly referred to as 'global warming', which in turn is believed to be causing drastic changes to the global climate. Global warming (GW) directly impacts animal health, reproduction, production, and welfare, presenting several challenges to livestock enterprises. Thermal stress (TS) is one of the key consequences of GW, and all animal species, including livestock, have diverse physiological, epigenetic and genetic mechanisms to respond to TS. As a result, TS can significantly affect an animals' health, immune responsiveness, metabolic pathways etc. which can also influence the productivity, performance, and welfare of animals. Moreover, prolonged exposure to TS can lead to transgenerational and intergenerational changes that are mediated by epigenetic changes. For example, in several animal species, the effects of TS are encoded epigenetically during the animals' growth or productive stage, and these epigenetic changes can be transmitted intergenerationally. Such epigenetic changes can affect animal productivity by changing the phenotype so that it aligns with its ancestors' environment, irrespective of its immediate environment. Furthermore, epigenetic and genetic changes can also help protect cells from the adverse effects of TS by modulating the transcriptional status of heat-responsive genes in animals. This review focuses on the genetic and epigenetic modulation and regulation that occurs in TS conditions via HSPs, histone alterations and DNA methylation.
Collapse
Affiliation(s)
- Wang Jianfang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Zhao Juan
- College of Animal Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, USA
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, University of Jordan, Amman, Jordan
| | - Ahmed A Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang-gun, 25340, Republic of Korea
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Lee VY, Nils AVM, Arruda BP, Xavier GF, Nogueira MI, Motta-Teixeira LC, Takada SH. Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations. IBRO Neurosci Rep 2024; 17:263-279. [PMID: 39310269 PMCID: PMC11414703 DOI: 10.1016/j.ibneur.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.
Collapse
Affiliation(s)
- Vitor Yonamine Lee
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Aline Vilar Machado Nils
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Bruna Petrucelli Arruda
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Gilberto Fernando Xavier
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Maria Inês Nogueira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Lívia Clemente Motta-Teixeira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, R. Jaguaribe, 155 - Vila Buarque, Sao Paulo, SP 01224-001, Brazil
| | - Silvia Honda Takada
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
3
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
4
|
Huang L, Guo N, Cheng M, Wang J, Chen F, Shi Y. The value of plasma insulin-like growth factor 1 and interleukin-18 in the diagnosis of bronchopulmonary dysplasia in premature infants. Front Pediatr 2022; 10:1013537. [PMID: 36304530 PMCID: PMC9592911 DOI: 10.3389/fped.2022.1013537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To explore the diagnostic value of IGF-1 and IL-18 in premature infants with BPD. METHODS Through a prospective observational study, the serum samples of infants in the BPD group and the non-BPD group were collected at different targeted time points, and the serum IGF-1 and IL-18 concentrations were dynamically monitored by ELISA. The Student t-test and one-way analysis of variance were adopted to analyze data, and the receiver operating characteristic (ROC) curve was used to test the diagnostic value. RESULT A total of 90 VLBW premature infants admitted to NICU between January 2020 and 2021 were finally included. Compared with the non-BPD group, infants diagnosed with BPD had a significantly lower serum concentration of IGF-1 (P < 0.05) but a higher level of IL-18 (P < 0.05) on days 1, 7, 14, and 28 after birth. With the ROC curve analysis, the serum concentration IGF-1 on day 14 and IL-18 on day 28 reported high sensitivity and specificity to predict the risk of BPD (IGF-1: sensitivity: 89.29%, specificity: 77.78%, AUC: 0.8710; IL-18: sensitivity: 53.57%, specificity: 83.33%, AUC: 0.7887). And more substantial predictive power was found in combined analysis of IGF-1 and serum IL-18 on day 14: the sensitivity was 91.07% and the specificity was 83.33%, with the AUC of 0.9142. CONCLUSION IGF-1 and IL-18 might be closely involved in the occurrence and development of BPD. The serum concentration of IGF-1 combined with IL-18 could be potentially sensitive markers for the early diagnosis and severity of BPD.
Collapse
Affiliation(s)
- Lie Huang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ning Guo
- Department of Neonatology, The First People's Hospital of Yinchuan, Ningxia Medical University, Yinchuan, China
| | - Meile Cheng
- Department of Neonatology, The First People's Hospital of Yinchuan, Ningxia Medical University, Yinchuan, China
| | - Jianhui Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Feifan Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Yan Z, Huang QL, Chen J, Liu F, Wei Y, Chen SL, Wu CY, Li Z, Lin XP. Chicoric acid alleviates LPS-induced inflammatory response through miR-130a-3p/IGF-1pathway in human lung A549 epithelial cells. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211038244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To investigate the effects and potential mechanisms of chicoric acid (CA) on LPS-induced inflammatory response in A549 cells. 0–800 μM CA was added to A549 cells to determine the toxicity of CA using MTT assay. Then, 2 μg/mL LPS and 50 μM CA were simultaneously added to A549 cells to investigate the effects of CA. In order to investigate the effects of miR-130a-3p and IGF-1 on LPS-induced A549 cells, cells were infected with inhibitor of miR-130a-3p and si RNA IGF-1. The levels of inflammatory cytokines such as IL-1β, IL-6, and TNF-α were measured by real-time RT-PCR and enzyme-linked immunosorbent (ELISA) assay. The IGF-1 pathway and NF-κB expression were measured using immunoblot assay. Moreover, a luciferase activity assay was used to indicate the binding site of miR-130a-3p on the 3′UTR of IGF-1. 0–50 μM CA had no toxicity on A549 cells. Thus, we chose 50 μM CA for the following study. CA attenuated the inflammatory response by LPS through decreasing IL-1β, IL-6, and TNF-α levels and increasing IGF-1/IGF-1R expression. Inhibition of miR-130a-3p reduced the inflammatory response and restored IGF-1/IGF-1R pathway induced by LPS. Furthermore, luciferase activity results indicated that miR-130a-3p directly targeted IGF-1 to regulate inflammatory response. CA alleviates LPS-induced inflammatory response through miR-130a-3p/IGF-1pathway in A549 cells.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Qing-Lan Huang
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Jun Chen
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Fan Liu
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Yi Wei
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Shu-Li Chen
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Chun-Yan Wu
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Zhen Li
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Xiao-Ping Lin
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
6
|
Wu J, Zhang W, Li C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front Genet 2020; 11:653. [PMID: 32733534 PMCID: PMC7358359 DOI: 10.3389/fgene.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Animals have evolved multiple systems, including genetic and epigenetic systems, to respond accordingly to heat exposure and heat acclimation. Heat exposure greatly affects immunity, changes metabolic processes, and poses a serious threat to animals. Heat acclimation is induced by repeated organism exposure to heat stress to dissipate heat. This review focuses on genetic modulation via heat shock transcription factors and calcium as two important factors and compares the changes in HSPs under heat stress and heat acclimation. Epigenetic regulation summarizes the role of HSPs in DNA methylation and histone modifications under heat stress and heat acclimation. These genetic and epigenetic modifications protect cells from thermal damage by mediating the transcriptional levels of heat-responsive genes. This review highlights recent advances in the genetic and epigenetic control of animal thermal responses and their interactions.
Collapse
Affiliation(s)
- Jiong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Ventilatory and carotid body responses to acute hypoxia in rats exposed to chronic hypoxia during the first and second postnatal weeks. Respir Physiol Neurobiol 2020; 275:103400. [PMID: 32006667 DOI: 10.1016/j.resp.2020.103400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023]
Abstract
Chronic hypoxia (CH) during postnatal development causes a blunted hypoxic ventilatory response (HVR) in neonatal mammals. The magnitude of the HVR generally increases with age, so CH could blunt the HVR by delaying this process. Accordingly, we predicted that CH would have different effects on the respiratory control of neonatal rats if initiated at birth versus initiated later in postnatal development (i.e., after the HVR has had time to mature). Rats had blunted ventilatory and carotid body responses to hypoxia whether CH (12 % O2) occurred for the first postnatal week (P0 to P7) or second postnatal week (P7 to P14). However, if initiated at P0, CH also caused the HVR to retain the "biphasic" shape characteristic of newborn mammals; CH during the second postnatal week did not result in a biphasic HVR. CH from birth delayed the transition from a biphasic HVR to a sustained HVR until at least P9-11, but the HVR attained a sustained (albeit blunted) phenotype by P13-15. Since delayed maturation of the HVR did not completely explain the blunted HVR, we tested the alternative hypothesis that the blunted HVR was caused by an inflammatory response to CH. Daily administration of the anti-inflammatory drug ibuprofen (4 mg kg-1, i.p.) did not alter the effects of CH on the HVR. Collectively, these data suggest that CH blunts the HVR in neonatal rats by impairing carotid body responses to hypoxia and by delaying (but not preventing) postnatal maturation of the biphasic HVR. The mechanisms underlying this plasticity require further investigation.
Collapse
|
8
|
Sacerdoti F, Scalise ML, Burdet J, Amaral MM, Franchi AM, Ibarra C. Shiga Toxin-Producing Escherichia coli Infections during Pregnancy. Microorganisms 2018; 6:E111. [PMID: 30360505 PMCID: PMC6313425 DOI: 10.3390/microorganisms6040111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal infection with Shiga toxin-producing Escherichia coli (STEC) causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS), characterized by hemolytic anemia, thrombocytopenia and acute renal failure. The main virulence factor of STEC is Shiga toxin (Stx), which is responsible for HUS development. STEC can produce Stx type 1 and/or 2 (Stx1, Stx2) and their variants, Stx2 being more frequently associated with severe cases of HUS. This pathology occurs in 5⁻15% of cases with STEC infection when Stx gain access to the bloodstream and causes damage in the target organs such as the kidney and brain. STEC infections affect mainly young children, although the large HUS outbreak with a new Stx2-producing STEC O104:H4 in Europe in 2011 involved more adults than children, and women were over-represented. Maternal infections during pregnancy are associated with adverse pregnancy outcomes. Studies in rats showed that Stx2 binds to the utero-placental unit and causes adverse pregnancy outcomes. In this article, we provide a brief overview of Stx2 action on placental tissues and discuss whether they might cause pregnancy loss or preterm birth.
Collapse
Affiliation(s)
- Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires 1121, Argentina.
| | - María Luján Scalise
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires 1121, Argentina.
| | - Juliana Burdet
- Laboratorio de Hematología, Hospital Universitario Austral, Pilar, Buenos Aires 1629, Argentina.
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires 1121, Argentina.
| | - Ana María Franchi
- CEFYBO-CONICET, Universidad de Buenos Aires, Buenos Aires 1121, Argentina.
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires 1121, Argentina.
| |
Collapse
|
9
|
Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057589. [PMID: 30018981 PMCID: PMC6029485 DOI: 10.1155/2018/6057589] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) was firstly identified as a hormone that mediates the biological effects of growth hormone. Accumulating data have indicated the role of IGF-1 signaling pathway in lung development and diseases such as congenital disorders, cancers, inflammation, and fibrosis. IGF-1 signaling modulates the development and differentiation of many types of lung cells, including airway basal cells, club cells, alveolar epithelial cells, and fibroblasts. IGF-1 signaling deficiency results in alveolar hyperplasia in humans and disrupted lung architecture in animal models. The components of IGF-1 signaling pathways are potentiated as biomarkers as they are dysregulated locally or systemically in lung diseases, whereas data may be inconsistent or even paradoxical among different studies. The usage of IGF-1-based therapeutic agents urges for more researches in developmental disorders and inflammatory lung diseases, as the majority of current data are collected from limited number of animal experiments and are generally less exuberant than those in lung cancer. Elucidation of these questions by further bench-to-bedside researches may provide us with rational clinical diagnostic approaches and agents concerning IGF-1 signaling in lung diseases.
Collapse
|
10
|
Radom-Aizik S, Zaldivar FP, Nance DM, Haddad F, Cooper DM, Adams GR. A Translational Model of Incomplete Catch-Up Growth: Early-Life Hypoxia and the Effect of Physical Activity. Clin Transl Sci 2018; 11:412-419. [PMID: 29603633 PMCID: PMC6039202 DOI: 10.1111/cts.12550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Advances in therapies have led to prolonged survival from many previously lethal health threats in children, notably among prematurely born babies and those with congenital heart disease. Evidence for catch‐up growth is common in these children, but in many cases the adult phenotype is never achieved. A translational animal model is required in which specific tissues can be studied over a reasonable time interval. We investigated the impact of postnatal hypoxia (HY) (12%O2 (HY12) or 10% O2 (HY10)) on growth in rats relative to animals raised in room air. Subgroups had access to running wheels following the HY period. Growth was fully compensated in adult HY12 rats but not HY10 rats. The results of this study indicate that neonatal hypoxia can be a useful model for the elucidation of mechanisms that mediate successful catch‐up growth following neonatal insults and identify the critical factors that prevent successful catch‐up growth.
Collapse
Affiliation(s)
- Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Frank P Zaldivar
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Dwight M Nance
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Fadia Haddad
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Dan M Cooper
- Pediatric Exercise and Genomics Research Center (PERC), Departments of Pediatrics, University of California, Irvine, California, USA
| | - Gregory R Adams
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
11
|
Wang J, Yu J, Fan J, He Y, Dong W, Wang Z. Evaluation of altitude-appropriate reference ranges for neutrophils in diagnosis of sepsis in very low birth weight infants: A multicenter retrospective study. PLoS One 2017; 12:e0171571. [PMID: 28182674 PMCID: PMC5300268 DOI: 10.1371/journal.pone.0171571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/22/2017] [Indexed: 11/26/2022] Open
Abstract
Background The circulating neutrophil count was commonly believed to be influenced by altitude. At present, neutrophil reference ranges (RRs) for very low birth weight (VLBW) neonates are only available from the sea level and from high altitude. This study aimed to construct RRs for neutrophils in VLBW infants in an intermediate-altitude area and assess its usefulness in evaluation for sepsis. Methods This was a multicenter retrospective study of 2173 VLBW infants admitted to 20 hospitals in Chongqing in southwest of China with altitude from 1000 to 2600 feet. The RRs for absolute total neutrophils (ATN), absolute total immature neutrophils (ATI), and immature: total neutrophil proportion were constructed based on “normal” neonates (unlikely infection). Values of neutrophil from septic and uninfected neonates were respectively assessed using the revised RRs and the previous Mouzinho’s and Schmutz’s RRs. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were compared using the McNemar’s test or χ2 test. Results The upper limits for ATN and ATI using the revised RRs were much higher than those using Mouzinho’s RRs, but lower than those using Schmutz’s RRs. The revised RRs and Mouzinho’s RRs had higher sensitivities than Schmutz’s RRs at 73–672 h. The revised RRs had a higher specificity than Mouzinho’s RRs at both 0–72 h and 73–672 h. The NPV for any abnormality in neutrophil values was high at both 0–72 h and 73–672 h irrespective of the RRs used. Conclusion Altitude-appropriate RRs for neutrophils is more suitable to guide the diagnosis and management of neonatal sepsis in VLBW infants.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jialin Yu
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
- * E-mail:
| | - Juan Fan
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yu He
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Wenhui Dong
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhengli Wang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| |
Collapse
|
12
|
Sukhanova IA, Sebentsova EA, Levitskaya NG. The acute and delayed effects of perinatal hypoxic brain damage in children and in model experiments with rodents. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Ju CR, Chen M, Zhang JH, Lin ZY, Chen RC. Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease. PLoS One 2016; 11:e0150838. [PMID: 26998756 PMCID: PMC4801210 DOI: 10.1371/journal.pone.0150838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/20/2016] [Indexed: 12/18/2022] Open
Abstract
Objective To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV) function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD). Methods The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE) less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP) levels were analyzed as a comparison of myostatin. Results The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL) were significantly higher in patients with cor pulmonale (16.68 ± 2.95) than in those without (13.56 ± 3.09), and much higher than in controls (8.79±2.79), with each p<0.01. Significant differences were also found in plasma BNP levels among the three groups (p<0.05). Multivariate regression analysis suggested that myostatin levels were significantly correlated with the values of TAPSE and RV myocardium performance index among the COPD patients, and that BNP levels were significantly correlated only with systolic pulmonary arterial pressure, with each p<0.05. Conclusions Plasma myostatin levels are increased in COPD patients who have cor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD.
Collapse
Affiliation(s)
- Chun-Rong Ju
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Miao Chen
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Jian-Heng Zhang
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Zhi-Ya Lin
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Rong-Chang Chen
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| |
Collapse
|
14
|
Horowitz M. Epigenetics and cytoprotection with heat acclimation. J Appl Physiol (1985) 2016; 120:702-10. [DOI: 10.1152/japplphysiol.00552.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
Studying “phenotypic plasticity” involves comparison of traits expressed in response to environmental fluctuations and aims to understand tolerance and survival in new settings. Reversible phenotypic changes that enable individuals to match their phenotype to environmental demands throughout life can be artificially induced, i.e., acclimation or occur naturally, i.e., acclimatization. The onset and achievement of acclimatory homeostasis are determined by molecular programs that induce the acclimated transcriptome. In heat acclimation, much evidence suggests that epigenetic mechanisms are powerful players in these processes. Epigenetic mechanisms affect the accessibility of the DNA to transcription factors, thereby regulating gene expression and controlling the phenotype. The heat-acclimated phenotype confers cytoprotection against novel stressors via cross-tolerance mechanisms, by attenuation of the initial damage and/or by accelerating spontaneous recovery through the release of help signals. This indispensable acclimatory feature has a memory and can be rapidly reestablished after the loss of acclimation and the return to the physiological preacclimated phenotype. The transcriptional landscape of the deacclimated phenotype includes constitutive transcriptional activation of epigenetic bookmarks. Heat shock protein (HSP) 70/HSP90/heat shock factor 1 memory protocol demonstrated constitutive histone H4 acetylation on hsp70 and hsp90 promotors. Novel players in the heat acclimation setup are poly(ADP-ribose)ribose polymerase 1 affecting chromatin condensation, DNA linker histones from the histone H1 cluster, and transcription factors associated with the P38 pathway. We suggest that these orchestrated responses maintain euchromatin and proteostasis during deacclimation and predispose to rapid reacclimation and cytoprotection. These mechanisms represent within-life epigenetic adaptations and cytoprotective memory.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
15
|
Watzlawik JO, Kahoud RJ, O’Toole RJ, White KAM, Ogden AR, Painter MM, Wootla B, Papke LM, Denic A, Weimer JM, Carey WA, Rodriguez M. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice. PLoS One 2015; 10:e0128007. [PMID: 26020269 PMCID: PMC4447462 DOI: 10.1371/journal.pone.0128007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2–3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by dysmyelination, abnormal spinal neuron composition, and neuro-motor deficits in adulthood.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Robert J. Kahoud
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Ryan J. O’Toole
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. M. White
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Alyssa R. Ogden
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Meghan M. Painter
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Louisa M. Papke
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Jill M. Weimer
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - William A. Carey
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
McCarthy TL, Yun Z, Madri JA, Centrella M. Stratified control of IGF-I expression by hypoxia and stress hormones in osteoblasts. Gene 2014; 539:141-51. [PMID: 24440782 DOI: 10.1016/j.gene.2014.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/04/2014] [Indexed: 01/11/2023]
Abstract
Bone cells respond to the integrated effects of local and systemic regulation. Here we show that hypoxia and the stress hormones PGE2 and glucocorticoid interact in complex ways in osteoblasts, converging on insulin like growth factor I (IGF-I) expression. Whereas hypoxia alone rapidly increased transcription factor HIF activity, it suppressed DNA synthesis, had no significant effects on protein synthesis or alkaline phosphatase activity, and drove discrete changes in a panel of osteoblast mRNAs. Notably, hypoxia increased expression of the acute phase response transcription factor C/EBPδ which can induce IGF-I in response to PGE2, but conversely prevented the stimulatory effect of PGE2 on IGF-I mRNA. However, unlike its effect on C/EBPδ, hypoxia suppressed expression of the obligate osteoblast transcription factor Runx2, which can activate an upstream response element in the IGF-I gene promoter. Hypoxic inhibition of IGF-I and Runx2 were enforced by glucocorticoid, and continued with prolonged exposure. Our studies thus reveal that IGF-I expression is stratified by two critical transcriptional elements in osteoblasts, which are resolved by the individual and combined effects of hypoxic stress and stress hormones. In so doing, hypoxia suppresses Runx2, limits the enhancing influence of PGE2, and interacts with glucocorticoid to reduce IGF-I expression by osteoblasts.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Yale University School of Medicine, Department of Surgery, New Haven, CT 06520-8041, USA; Yale University School of Medicine, Department of Pathology, New Haven, CT 06520-8023, USA.
| | - Zhong Yun
- Yale University School of Medicine, Department of Therapeutic Radiology, New Haven, CT 06520-8040, USA
| | - Joseph A Madri
- Yale University School of Medicine, Department of Pathology, New Haven, CT 06520-8023, USA
| | - Michael Centrella
- Yale University School of Medicine, Department of Surgery, New Haven, CT 06520-8041, USA; Yale University School of Medicine, Department of Pathology, New Haven, CT 06520-8023, USA.
| |
Collapse
|