1
|
Vinukonda G, La Gamma EF. Emerging therapies for brain recovery after IVH in neonates: Cord blood derived Mesenchymal Stem Cells (MSC) and Unrestricted Somatic Stem Cells (USSC). Semin Perinatol 2022; 46:151598. [PMID: 35589461 DOI: 10.1016/j.semperi.2022.151598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this report, we summarize evidence on mechanisms of injury after intraventricular hemorrhage resulting in post-hemorrhagic white matter injury and hydrocephalus and correlate that with the possibility of cellular therapy. We describe how two stem cell lines (MSC & USSC) acting in a paracrine fashion offer promise for attenuating the magnitude of injury in animal models and for improved functional recovery by: lowering the magnitude of apoptosis and neuronal cell death, reducing inflammation, and thus, mitigating white matter injury that culminates in improved motor and neurocognitive outcomes. Animal models of IVH are analyzed for their similarity to the human condition and we discuss merits of each approach. Studies on stem cell therapy for IVH in human neonates is described. Lastly, we offer suggestions on what future studies are needed to better understand mechanisms of injury and recovery and argue that human trials need to be expanded in parallel to animal research.
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, Cell Biology & Anatomy New York Medical College, Valhalla, NY
| | - Edmund F La Gamma
- Department of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY.
| |
Collapse
|
2
|
Earlier preterm birth is associated with a worse neurocognitive outcome in a rabbit model. PLoS One 2021; 16:e0246008. [PMID: 33503047 PMCID: PMC7840009 DOI: 10.1371/journal.pone.0246008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
Background Preterm birth (PTB) and particularly late preterm PTB has become a research focus for obstetricians, perinatologists, neonatologists, pediatricians and policy makers alike. Translational models are useful tools to expedite and guide clinical but presently no model exists that contextualizes the late PTB scenario. Herein we aimed to develop a rabbit model that echo’s the clinical neurocognitive phenotypes of early and late PTB. Methods Time mated rabbit does underwent caesarean delivery at a postconceptional age (PCA) of either 28 (n = 6), 29 (n = 5), 30 (n = 4) or 31 (n = 4) days, term = 31 d. Newborn rabbits were mixed and randomly allocated to be raised by cross fostering and underwent short term neurobehavioral testing on corrected post-natal day 1. Open field (OFT), spontaneous alteration (TMT) and novel object recognition (NORT) tests were subsequently performed at 4 and 8 weeks of age. Results PTB was associated with a significant gradient of short-term mortality and morbidity inversely related to the PCA. On postnatal day 1 PTB was associated with a significant sensory deficit in all groups but a clear motor insult was only noted in the PCA 29d and PCA 28d groups. Furthermore, PCA 29d and PCA 28d rabbits had a persistent neurobehavioral deficit with less exploration and hyperanxious state in the OFT, less alternation in TMT and lower discriminatory index in the NORT. While PCA 30d rabbits had some anxiety behavior and lower spontaneous alteration at 4 weeks, however at 8 weeks only mild anxiety driven behavior was observed in some of these rabbits. Conclusions In this rabbit model, delivery at PCA 29d and PCA 28d mimics the clinical phenotype of early PTB while delivery at PCA 30d resembles that of late PTB. This could serve as a model to investigate perinatal insults during the early and late preterm period.
Collapse
|
3
|
Vinukonda G, Liao Y, Hu F, Ivanova L, Purohit D, Finkel DA, Giri P, Bapatla L, Shah S, Zia MT, Hussein K, Cairo MS, La Gamma EF. Human Cord Blood-Derived Unrestricted Somatic Stem Cell Infusion Improves Neurobehavioral Outcome in a Rabbit Model of Intraventricular Hemorrhage. Stem Cells Transl Med 2019; 8:1157-1169. [PMID: 31322326 PMCID: PMC6811700 DOI: 10.1002/sctm.19-0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Intraventricular hemorrhage (IVH) is a severe complication of preterm birth, which leads to hydrocephalus, cerebral palsy, and mental retardation. There are no available therapies to cure IVH, and standard treatment is supportive care. Unrestricted somatic stem cells (USSCs) from human cord blood have reparative effects in animal models of brain and spinal cord injuries. USSCs were administered to premature rabbit pups with IVH and their effects on white matter integrity and neurobehavioral performance were evaluated. USSCs were injected either via intracerebroventricular (ICV) or via intravenous (IV) routes in 3 days premature (term 32d) rabbit pups, 24 hours after glycerol‐induced IVH. The pups were sacrificed at postnatal days 3, 7, and 14 and effects were compared to glycerol‐treated but unaffected or nontreated control. Using in vivo live bioluminescence imaging and immunohistochemical analysis, injected cells were found in the injured parenchyma on day 3 when using the IV route compared to ICV where cells were found adjacent to the ventricle wall forming aggregates; we did not observe any adverse events from either route of administration. The injected USSCs were functionally associated with attenuated microglial infiltration, less apoptotic cell death, fewer reactive astrocytes, and diminished levels of key inflammatory cytokines (TNFα and IL1β). In addition, we observed better preservation of myelin fibers, increased myelin gene expression, and altered reactive astrocyte distribution in treated animals, and this was associated with improved locomotor function. Overall, our findings support the possibility that USSCs exert anti‐inflammatory effects in the injured brain mitigating many detrimental consequences associated with IVH. stem cells translational medicine2019;8:1157–1169
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Furong Hu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Deepti Purohit
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Dina A Finkel
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Priyadarshani Giri
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | | | - Shetal Shah
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Muhammed T Zia
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Karen Hussein
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA.,Department of Medicine, Pathology, Microbiology & Immunology, Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Edmund F La Gamma
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA.,Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Early neuropathological and neurobehavioral consequences of preterm birth in a rabbit model. Sci Rep 2019; 9:3506. [PMID: 30837582 PMCID: PMC6401068 DOI: 10.1038/s41598-019-39922-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/04/2019] [Indexed: 11/22/2022] Open
Abstract
Preterm birth is the most significant problem in contemporary obstetrics accounting for 5–18% of worldwide deliveries. Encephalopathy of prematurity encompasses the multifaceted diffuse brain injury resulting from preterm birth. Current animal models exploring the underlying pathophysiology of encephalopathy of prematurity employ significant insults to generate gross central nervous system abnormalities. To date the exclusive effect of prematurity was only studied in a non-human primate model. Therefore, we aimed to develop a representative encephalopathy of prematurity small animal model only dependent on preterm birth. Time mated New-Zealand white rabbit does were either delivered on 28 (pre-term) or 31 (term) postconceptional days by caesarean section. Neonatal rabbits underwent neurobehavioral evaluation on 32 days post conception and then were transcardially perfuse fixed. Neuropathological assessments for neuron and oligodendrocyte quantification, astrogliosis, apoptosis and cellular proliferation were performed. Lastly, ex-vivo high-resolution Magnetic Resonance Imaging was used to calculate T1 volumetric and Diffusion Tensor Imaging derived fractional anisotropy and mean diffusivity. Preterm birth was associated with a motoric (posture instability, abnormal gait and decreased locomotion) and partial sensory (less pain responsiveness and failing righting reflex) deficits that coincided with global lower neuron densities, less oligodendrocyte precursors, increased apoptosis and less proliferation. These region-specific histological changes corresponded with Magnetic Resonance Diffusion Tensor Imaging differences. The most significant differences were seen in the hippocampus, caudate nucleus and thalamus of the preterm rabbits. In conclusion this model of preterm birth, in the absence of any other contributory events, resulted in measurable neurobehavioral deficits with associated brain structural and Magnetic Resonance Diffusion Tensor Imaging findings.
Collapse
|