1
|
Amdani S, Conway J, George K, Martinez HR, Asante-Korang A, Goldberg CS, Davies RR, Miyamoto SD, Hsu DT. Evaluation and Management of Chronic Heart Failure in Children and Adolescents With Congenital Heart Disease: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e33-e50. [PMID: 38808502 DOI: 10.1161/cir.0000000000001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
With continued medical and surgical advancements, most children and adolescents with congenital heart disease are expected to survive to adulthood. Chronic heart failure is increasingly being recognized as a major contributor to ongoing morbidity and mortality in this population as it ages, and treatment strategies to prevent and treat heart failure in the pediatric population are needed. In addition to primary myocardial dysfunction, anatomical and pathophysiological abnormalities specific to various congenital heart disease lesions contribute to the development of heart failure and affect potential strategies commonly used to treat adult patients with heart failure. This scientific statement highlights the significant knowledge gaps in understanding the epidemiology, pathophysiology, staging, and outcomes of chronic heart failure in children and adolescents with congenital heart disease not amenable to catheter-based or surgical interventions. Efforts to harmonize the definitions, staging, follow-up, and approach to heart failure in children with congenital heart disease are critical to enable the conduct of rigorous scientific studies to advance our understanding of the actual burden of heart failure in this population and to allow the development of evidence-based heart failure therapies that can improve outcomes for this high-risk cohort.
Collapse
|
2
|
Odogwu NM, Hagen C, Nelson TJ. Transcriptome studies of congenital heart diseases: identifying current gaps and therapeutic frontiers. Front Genet 2023; 14:1278747. [PMID: 38152655 PMCID: PMC10751320 DOI: 10.3389/fgene.2023.1278747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
Congenital heart disease (CHD) are genetically complex and comprise a wide range of structural defects that often predispose to - early heart failure, a common cause of neonatal morbidity and mortality. Transcriptome studies of CHD in human pediatric patients indicated a broad spectrum of diverse molecular signatures across various types of CHD. In order to advance research on congenital heart diseases (CHDs), we conducted a detailed review of transcriptome studies on this topic. Our analysis identified gaps in the literature, with a particular focus on the cardiac transcriptome signatures found in various biological specimens across different types of CHDs. In addition to translational studies involving human subjects, we also examined transcriptomic analyses of CHDs in a range of model systems, including iPSCs and animal models. We concluded that RNA-seq technology has revolutionized medical research and many of the discoveries from CHD transcriptome studies draw attention to biological pathways that concurrently open the door to a better understanding of cardiac development and related therapeutic avenue. While some crucial impediments to perfectly studying CHDs in this context remain obtaining pediatric cardiac tissue samples, phenotypic variation, and the lack of anatomical/spatial context with model systems. Combining model systems, RNA-seq technology, and integrating algorithms for analyzing transcriptomic data at both single-cell and high throughput spatial resolution is expected to continue uncovering unique biological pathways that are perturbed in CHDs, thus facilitating the development of novel therapy for congenital heart disease.
Collapse
Affiliation(s)
- Nkechi Martina Odogwu
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Clinton Hagen
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
| | - Timothy J. Nelson
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
4
|
Habibian JS, Bolino M, Qian A, Woolsey R, Quilici D, Petereit J, Ferguson BS. Class I HDAC inhibitors attenuate dexamethasone-induced muscle atrophy via increased protein kinase C (PKC) delta phosphorylation. Cell Signal 2023; 110:110815. [PMID: 37478958 PMCID: PMC10528066 DOI: 10.1016/j.cellsig.2023.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Skeletal muscle atrophy is defined by wasting or decrease in muscle mass owing to injury, aging, malnutrition, chronic disuse, or physical consequences of chronic illness. Under normal physiological conditions, a network of signal transduction pathways serves to balance muscle protein synthesis and proteolysis; however, metabolic shifts occur from protein synthesis to protein degradation that leads to a reduction in cross-sectional myofibers and can result in loss of skeletal muscle mass (atrophy) over time. Recent evidence highlights posttranslational modifications (PTMs) such as acetylation and phosphorylation in contractile dysfunction and muscle wasting. Indeed, histone deacetylase (HDAC) inhibitors have been shown to attenuate muscle atrophy and delay muscle damage in response to nutrient deprivation, in models of metabolic dysfunction and genetic models of muscle disease (e.g., muscle dystrophy). Despite our current understanding of lysine acetylation in muscle physiology, a role for HDACs in the regulation of muscle signal transduction remains a 'black box.' Using C2C12 myotubes stimulated with dexamethasone (Dex) as a model of muscle atrophy, we report that protein kinase C delta (PKCδ) phosphorylation decreased at threonine 505 (T505) and serine 643 (S643) in myotubes in response to muscle atrophy; these residues are important for PKCδ activity. Interestingly, PKCδ phosphorylation was restored/increased in myotubes treated with a pan-HDAC inhibitor or a class I selective HDAC inhibitor targeting HDACs1, -2, and - 3 in response to Dex. Moreover, we observed that Dex induced atrophy in skeletal muscle tissue in mice; this reduction in atrophy occurred rapidly, with weight loss noted by day 3 post-Dex and muscle weight loss noted by day 7. Similar to our findings in C2C12 myotubes, Dex attenuated phosphorylation of PKCδ at S643, while HDAC inhibition restored or increased PKCδ phosphorylation at both T505 and S643 in the tibialis anterior. Consistent with this hypothesis, we report that HDAC inhibition could not restore myotube size in response to Dex in the presence of a PKCδ inhibitor or when overexpressing a dominant negative PKCδ. Additionally, the overexpression of a constitutively active PKCδ prevented Dex-induced myotube atrophy. Combined, these data suggest that HDACs regulate muscle physiology via changes in intracellular signaling, namely PKCδ phosphorylation. Whether HDACs regulate PKCδ through canonical (e.g. gene-mediated regulation of phosphatases) or non-canonical (e.g. direct deacetylation of PKCδ to change phosphorylation states) mechanisms remain unclear and future research is needed to clarify this point.
Collapse
Affiliation(s)
- Justine S Habibian
- Department of Nutrition, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Pharmacology and Physiology, The University of Nevada Reno, Reno, NV 89557, USA
| | - Matthew Bolino
- Department of Nutrition, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV 89557, United States of America
| | - Anthony Qian
- Cellular and Molecular Pharmacology and Physiology, The University of Nevada Reno, Reno, NV 89557, USA
| | - Rebekah Woolsey
- Mick Hitchcock, Ph.D. Nevada Proteomics Center (RRID:SCR_017761), The University of Nevada Reno, Reno, NV 89557, USA
| | - David Quilici
- Mick Hitchcock, Ph.D. Nevada Proteomics Center (RRID:SCR_017761), The University of Nevada Reno, Reno, NV 89557, USA
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), The University of Nevada Reno, Reno, NV 89557, USA
| | - Bradley S Ferguson
- Department of Nutrition, The University of Nevada Reno, Reno, NV 89557, United States of America; Cellular and Molecular Biology, The University of Nevada Reno, Reno, NV 89557, United States of America; Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, The University of Nevada Reno, Reno, NV 89557, United States of America.
| |
Collapse
|
5
|
Medical Therapies for Heart Failure in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9050152. [PMID: 35621863 PMCID: PMC9143150 DOI: 10.3390/jcdd9050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Significant surgical and medical advances over the past several decades have resulted in a growing number of infants and children surviving with hypoplastic left heart syndrome (HLHS) and other congenital heart defects associated with a single systemic right ventricle (RV). However, cardiac dysfunction and ultimately heart failure (HF) remain the most common cause of death and indication for transplantation in this population. Moreover, while early recognition and treatment of single ventricle-related complications are essential to improving outcomes, there are no proven therapeutic strategies for single systemic RV HF in the pediatric population. Importantly, prototypical adult HF therapies have been relatively ineffective in mitigating the need for cardiac transplantation in HLHS, likely due to several unique attributes of the failing HLHS myocardium. Here, we discuss the most commonly used medical therapies for the treatment of HF symptoms in HLHS and other single systemic RV patients. Additionally, we provide an overview of potential novel therapies for systemic ventricular failure in the HLHS and related populations based on fundamental science, pre-clinical, clinical, and observational studies in the current literature.
Collapse
|
6
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
7
|
Chun P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch Pharm Res 2020; 43:1276-1296. [PMID: 33245518 DOI: 10.1007/s12272-020-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
A wide range of histone deacetylase (HDAC) inhibitors have been studied for their therapeutic potential because the excessive activity and expression of HDACs have been implicated in the pathogenesis of cardiac diseases. An increasing number of preclinical studies have demonstrated the cardioprotective effects of numerous HDAC inhibitors, suggesting a wide variety of mechanisms by which the inhibitors protect against cardiac stress, such as the suppression of cardiac fibrosis and fetal gene expression, enhancement of angiogenesis and mitochondrial biogenesis, prevention of electrical remodeling, and regulation of apoptosis, autophagy, and cell cycle arrest. For the development of isoform-selective HDAC inhibitors with high efficacy and low toxicity, it is important to identify and understand the mechanisms responsible for the effects of the inhibitors. This review highlights the preclinical effects of HDAC inhibitors that act against Zn2+-dependent HDACs and the underlying mechanisms of their protective effects against cardiac hypertrophy, hypertension, myocardial infarction, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
8
|
Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease. Curr Dev Nutr 2020; 4:nzaa166. [PMID: 33294766 PMCID: PMC7703391 DOI: 10.1093/cdn/nzaa166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is one of the major debilitating birth defects resulting in significant impact on neonatal and child mortality globally. The etiology of CHD is complex and multifactorial. Many causative genes responsible for CHDs have been identified from the familial forms previously. Still, the non-Mendelian inheritance and predominant sporadic cases have stimulated research to understand the epigenetic basis and environmental impact on the incidence of CHD. The fetal epigenetic programming affecting cardiac development is susceptible to the availability of key dietary factors during the crucial periconceptional period. This article highlights the need and importance of in-depth research in the new emerging area of maternal nutritional epigenetics and CHD. It summarizes the current research and underlines the limitations in these types of studies. This review will benefit the future research on nutrition as a modifiable environmental factor to decrease the incidence of CHD.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| | - Subramanian Chellappan
- Department of Anesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, Haryana, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| |
Collapse
|
9
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Improves Energetic Status and Cardiomyogenic Differentiation of Human Dilated Myocardium-Derived Primary Mesenchymal Cells. Int J Mol Sci 2020; 21:ijms21144845. [PMID: 32650632 PMCID: PMC7402340 DOI: 10.3390/ijms21144845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background. In this study the effect of histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) on the energetic status and cardiomyogenic differentiation of human healthy and dilated myocardium-derived mesenchymal stromal cells (hmMSC) have been investigated. Methods. The hmMSC were isolated from the healthy and dilated post-operation heart biopsies by explant outgrowth method. Cell proliferation, HDAC activity, mitochondrial membrane potential, and level of adenosine triphosphate (ATP) were evaluated. The effect of SAHA on mitochondrial parameters has been investigated also by Seahorse XF analyzer and cardiomyogenic differentiation was confirmed by the expression of transcription factor NK2 Homeobox 5 (Nkx2.5), cardiac troponin T and alpha cardiac actin at gene and protein levels. Results. Dilated myocardium-derived hmMSC had almost 1.5 folds higher HDAC activity compared to the healthy cells and significantly lower mitochondrial membrane potential and ATP level. HDAC class I and II inhibitor SAHA improved energetic status of mitochondria in dilated myocardium-isolated hmMSC and increased expression of cardiac specific proteins during 14 days of exposure of cells to SAHA. Conclusions. HDAC inhibitor SAHA can be a promising therapeutic for dilated cardiomyopathy (DCM). Dilated hmMSC exposed to SAHA improved energetic status and, subsequently, cardiomyogenic differentiation. Data suggest that human dilated myocardium-derived MSC still have cardio tissue regenerative potential, which might be stimulated by HDAC inhibitors.
Collapse
|
10
|
Garcia AM, Beatty JT, Nakano SJ. Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. Am J Physiol Heart Circ Physiol 2020; 318:H947-H965. [PMID: 32108525 PMCID: PMC7191494 DOI: 10.1152/ajpheart.00518.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Because of remarkable surgical and medical advances over the past several decades, there are growing numbers of infants and children living with single ventricle congenital heart disease (SV), where there is only one functional cardiac pumping chamber. Nevertheless, cardiac dysfunction (and ultimately heart failure) is a common complication in the SV population, and pharmacological heart failure therapies have largely been ineffective in mitigating the need for heart transplantation. Given that there are several inherent risk factors for ventricular dysfunction in the setting of SV in addition to probable differences in molecular adaptations to heart failure between children and adults, it is perhaps not surprising that extrapolated adult heart failure medications have had limited benefit in children with SV heart failure. Further investigations into the molecular mechanisms involved in pediatric SV heart failure may assist with risk stratification as well as development of targeted, efficacious therapies specific to this patient population. In this review, we present a brief overview of SV anatomy and physiology, with a focus on patients with a single morphological right ventricle requiring staged surgical palliation. Additionally, we discuss outcomes in the current era, risk factors associated with the progression to heart failure, present state of knowledge regarding molecular alterations in end-stage SV heart failure, and current therapeutic interventions. Potential avenues for improving SV outcomes, including identification of biomarkers of heart failure progression, implications of personalized medicine and stem cell-derived therapies, and applications of novel models of SV disease, are proposed as future directions.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Jonathan-Thomas Beatty
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
11
|
Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Diseases 2019; 7:diseases7030052. [PMID: 31480510 PMCID: PMC6787645 DOI: 10.3390/diseases7030052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
: Congenital heart disease (CHD) is the most common birth defect worldwide and the number one killer of live-born infants in the United States. Heart development occurs early in embryogenesis and involves complex interactions between multiple cell populations, limiting the understanding and consequent treatment of CHD. Furthermore, genome sequencing has largely failed to predict or yield therapeutics for CHD. In addition to the underlying genome, epigenetics and mechanobiology both drive heart development. A growing body of evidence implicates the aberrant regulation of these two extra-genomic systems in the pathogenesis of CHD. In this review, we describe the stages of human heart development and the heart defects known to manifest at each stage. Next, we discuss the distinct and overlapping roles of epigenetics and mechanobiology in normal development and in the pathogenesis of CHD. Finally, we highlight recent advances in the identification of novel epigenetic biomarkers and environmental risk factors that may be useful for improved diagnosis and further elucidation of CHD etiology.
Collapse
|
12
|
Garcia AM, Nakano SJ, Karimpour-Fard A, Nunley K, Blain-Nelson P, Stafford NM, Stauffer BL, Sucharov CC, Miyamoto SD. Phosphodiesterase-5 Is Elevated in Failing Single Ventricle Myocardium and Affects Cardiomyocyte Remodeling In Vitro. Circ Heart Fail 2019; 11:e004571. [PMID: 30354365 DOI: 10.1161/circheartfailure.117.004571] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Single ventricle (SV) congenital heart disease is fatal without intervention, and eventual heart failure is a major cause of morbidity and mortality. Although there are no proven medical therapies for the treatment or prevention of heart failure in the SV heart disease population, phosphodiesterase-5 inhibitors (PDE5i), such as sildenafil, are increasingly used. Although the pulmonary vasculature is the primary target of PDE5i therapy in patients with SV heart disease, the effects of PDE5i on the SV heart disease myocardium remain largely unknown. We sought to determine PDE5 expression and activity in the single right ventricle of SV heart disease patients relative to nonfailing controls and to determine whether PDE5 impacts cardiomyocyte remodeling using a novel serum-based in vitro model. Methods and Results PDE5 expression (n=9 nonfailing; n=7 SV heart disease), activity (n=8 nonfailing; n=9 SV heart disease), and localization (n=3 SV heart disease) were determined in explanted human right ventricle myocardium. PDE5 is expressed in SV heart disease cardiomyocytes, and PDE5 protein expression and activity are increased in SV heart disease right ventricle compared with nonfailing right ventricle. Isolated neonatal rat ventricular myocytes were treated for 72 hours with nonfailing or SV heart disease patient serum±sildenafil. Reverse transcription quantitative polymerase chain reaction (n=5 nonfailing; n=12 SV heart disease) and RNA sequencing (n=3 nonfailing; n=3 SV heart disease) were performed on serum-treated neonatal rat ventricular myocytes and demonstrated that treatment with SV heart disease sera results in pathological gene expression changes that are attenuated with PDE5i. Conclusions PDE5 is increased in failing SV heart disease myocardium, and pathological gene expression changes in SV heart disease serum-treated neonatal rat ventricular myocytes are abrogated by PDE5i. These results suggest that PDE5 represents an intriguing myocardial therapeutic target in this population.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora (A.M.G., S.J.N., S.D.M.)
| | - Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora (A.M.G., S.J.N., S.D.M.)
| | | | - Karin Nunley
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Penny Blain-Nelson
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Natalie M Stafford
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine (K.N., P.B.-N., N.M.S., B.L.S., C.C.S.)
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora (A.M.G., S.J.N., S.D.M.)
| |
Collapse
|
13
|
Chahal G, Tyagi S, Ramialison M. Navigating the non-coding genome in heart development and Congenital Heart Disease. Differentiation 2019; 107:11-23. [PMID: 31102825 DOI: 10.1016/j.diff.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/14/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Congenital Heart Disease (CHD) is characterised by a wide range of cardiac defects, from mild to life-threatening, which occur in babies worldwide. To date, there is no cure to CHD, however, progress in surgery has reduced its mortality allowing children affected by CHD to reach adulthood. In an effort to understand its genetic basis, several studies involving whole-genome sequencing (WGS) of patients with CHD have been undertaken and generated a great wealth of information. The majority of putative causative mutations identified in WGS studies fall into the non-coding part of the genome. Unfortunately, due to the lack of understanding of the function of these non-coding mutations, it is challenging to establish a causal link between the non-coding mutation and the disease. Thus, here we review the state-of-the-art approaches to interpret non-coding mutations in the context of CHD and address the following questions: What are the non-coding sequences important for cardiac function? Which technologies are used to identify them? Which resources are available to analyse them? What mutations are expected in these non-coding sequences? Learning from developmental process, what is their expected role in CHD?
Collapse
Affiliation(s)
- Gulrez Chahal
- Australian Regenerative Medicine Institute (ARMI), 15 Innovation Walk, Monash University, Wellington Road, Clayton, 3800, VIC, Australia; Systems Biology Institute (SBI), Wellington Road, Clayton, 3800, VIC, Australia
| | - Sonika Tyagi
- School of Biological Sciences, Monash University, Wellington Road, Clayton, 3800, VIC, Australia; Australian Genome Research Facility, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute (ARMI), 15 Innovation Walk, Monash University, Wellington Road, Clayton, 3800, VIC, Australia; Systems Biology Institute (SBI), Wellington Road, Clayton, 3800, VIC, Australia.
| |
Collapse
|
14
|
Design, synthesis and biological evaluation of novel indole derivatives as potential HDAC/BRD4 dual inhibitors and anti-leukemia agents. Bioorg Chem 2019; 84:410-417. [DOI: 10.1016/j.bioorg.2018.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
15
|
Spearman AD. Epigenetics for the pediatric cardiologist. CONGENIT HEART DIS 2017; 12:828-833. [PMID: 28984030 DOI: 10.1111/chd.12543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
A genetic basis of congenital heart disease (CHD) has been known for decades. In addition to the sequence of the genome, the contribution of epigenetics to pediatric cardiology is increasingly recognized. Multiple epigenetic mechanisms, including DNA methylation, histone modification, and RNA-based regulation, are known mediators of cardiovascular disease, including both development and progression of CHD and its sequelae. Basic understanding of the concepts of epigenetics will be essential to all pediatric cardiologists in order to understand mechanisms of pathophysiology, pharmacotherapeutic concepts, and to understand the role of epigenetics in precision medicine.
Collapse
Affiliation(s)
- Andrew D Spearman
- Medical College of Wisconsin, 9000 Wisconsin Avenue, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|