1
|
Patil V, Perez-Carpena P, Lopez-Escamez JA. A systematic review on the contribution of DNA methylation to hearing loss. Clin Epigenetics 2024; 16:88. [PMID: 38970134 PMCID: PMC11227199 DOI: 10.1186/s13148-024-01697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND DNA methylation may have a regulatory role in monogenic sensorineural hearing loss and complex, polygenic phenotypic forms of hearing loss, including age-related hearing impairment or Meniere disease. The purpose of this systematic review is to critically assess the evidence supporting a functional role of DNA methylation in phenotypes associated with hearing loss. RESULTS The search strategy yielded a total of 661 articles. After quality assessment, 25 records were selected (12 human DNA methylation studies, 5 experimental animal studies and 8 studies reporting mutations in the DNMT1 gene). Although some methylation studies reported significant differences in CpG methylation in diverse gene promoters associated with complex hearing loss phenotypes (ARHI, otosclerosis, MD), only one study included a replication cohort that supported a regulatory role for CpG methylation in the genes TCF25 and POLE in ARHI. Conversely, several studies have independently confirmed pathogenic mutations within exon 21 of the DNMT1 gene, which encodes the DNA (cytosine-5)-methyltransferase 1 enzyme. This methylation enzyme is strongly associated with a rare disease defined by autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). Of note, rare variants in DNMT1 and DNMT3A genes have also been reported in noise-induced hearing loss. CONCLUSIONS Evidence supporting a functional role for DNA methylation in hearing loss is limited to few genes in complex disorders such as ARHI. Mutations in the DNMT1 gene are associated with ADCA-DN, suggesting the CpG methylation in hearing loss genes deserves further attention in hearing research.
Collapse
Affiliation(s)
- Vibha Patil
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Rm 611024, Level 11 Kolling Institute | 10 Westbourne St, St Leonards, Sydney, NSW, 2064, Australia.
| | - Patricia Perez-Carpena
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.Granada, Universidad de Granada, Granada, Spain
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Program, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Instituto de Investigacion Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Jose A Lopez-Escamez
- Meniere's Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Rm 611024, Level 11 Kolling Institute | 10 Westbourne St, St Leonards, Sydney, NSW, 2064, Australia
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.Granada, Universidad de Granada, Granada, Spain
- Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Program, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| |
Collapse
|
2
|
Wang X, Yang W, Zhu Y, Zhang S, Jiang M, Hu J, Zhang HH. Genomic DNA Methylation in Diabetic Chronic Complications in Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:896511. [PMID: 35846305 PMCID: PMC9277053 DOI: 10.3389/fendo.2022.896511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
AIM To explore the relationship between genomic DNA methylation and diabetic chronic complications. METHODS 299 patients with type 2 diabetes mellitus (T2DM) hospitalized in the Second Affiliated Hospital of Soochow University were enrolled. We divided the patients into different complications groups and corresponding non-complication groups. Clinical and biochemical parameters were compared between the two groups. The level of genomic DNA methylation in leukocytes was determined by high-performance liquid chromatography-tandem mass spectrometry. RESULTS (1) Age, duration of diabetes, creatinine (Cr), blood urea nitrogen (BUN), genomic DNA methylation, 24- hour urine total protein (24-hUTP), and intima-media thickness (IMT) were significantly higher in the carotid plaque (CP) group. Waist-to-hip ratio (WHR), body mass index (BMI), estimated glomerular- filtration rate (eGFR), and albumin (Alb) were significantly lower in the CP group. Gender, age and BMI were the influencing factors of CP. (2) Age, duration, Cr, BUN, urinary microalbumin creatinine ratio (UACR), systolic blood pressure (SBP), TCSS, and 24- hUTP were significantly higher in the diabetic retinopathy (DR) group. eGFR, 2h postprandial C- peptide, and Alb were lower in the DR group. Age, duration, Cr, Alb, SBP, and the presence of DN were the influencing factors of DR. (3) Age, duration, HbA1c, BUN, TCSS, SBP, and IMT(R) were significantly higher in the diabetic nephropathy (DN) group. 2h postprandial C-peptide, and Alb were lower in the DN group. HbA1c, BUN, DR, and HBP were the influencing factors of DN. (4) Age, duration, total cholesterol (TC), low-density lipoprotein (LDL-C), triglyceride (TG), Cr, BUN, uric acid (UA), and SBP were significantly higher in the diabetic peripheral neuropathy (DPN) group. The level of genomic DNA methylation and eGFR were significantly lower in the DPN group. Age, duration, LDL-C, UA, the presence of DR, and the genomic DNA methylation level were the influencing factors for DPN. Incorporating the level of genomic DNA methylation into the prediction model could improve the ability to predict DPN on the basis of conventional risk factors. CONCLUSION Low level of genomic DNA methylation is a relatively specific risk factor for DPN in patients with T2DM and not a contributing factor to the other chronic complications.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Wenhong Yang
- Department of Nursing, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Yunyan Zhu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Shiyu Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Miao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
- *Correspondence: Hong-Hong Zhang, ; Ji Hu,
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
- *Correspondence: Hong-Hong Zhang, ; Ji Hu,
| |
Collapse
|
3
|
Flook M, Escalera-Balsera A, Gallego-Martinez A, Espinosa-Sanchez JM, Aran I, Soto-Varela A, Lopez-Escamez JA. DNA Methylation Signature in Mononuclear Cells and Proinflammatory Cytokines May Define Molecular Subtypes in Sporadic Meniere Disease. Biomedicines 2021; 9:1530. [PMID: 34829759 PMCID: PMC8615058 DOI: 10.3390/biomedicines9111530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Meniere Disease (MD) is a multifactorial disorder of the inner ear characterized by vertigo attacks associated with sensorineural hearing loss and tinnitus with a significant heritability. Although MD has been associated with several genes, no epigenetic studies have been performed on MD. Here we performed whole-genome bisulfite sequencing in 14 MD patients and six healthy controls, with the aim of identifying an MD methylation signature and potential disease mechanisms. We observed a high number of differentially methylated CpGs (DMC) when comparing MD patients to controls (n= 9545), several of them in hearing loss genes, such as PCDH15, ADGRV1 and CDH23. Bioinformatic analyses of DMCs and cis-regulatory regions predicted phenotypes related to abnormal excitatory postsynaptic currents, abnormal NMDA-mediated receptor currents and abnormal glutamate-mediated receptor currents when comparing MD to controls. Moreover, we identified various DMCs in genes previously associated with cochleovestibular phenotypes in mice. We have also found 12 undermethylated regions (UMR) that were exclusive to MD, including two UMR in an inter CpG island in the PHB gene. We suggest that the DNA methylation signature allows distinguishing between MD patients and controls. The enrichment analysis confirms previous findings of a chronic inflammatory process underlying MD.
Collapse
Affiliation(s)
- Marisa Flook
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alba Escalera-Balsera
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, 36071 Pontevedra, Spain;
| | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, 15706 Santiago de Compostela, Spain;
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
- Division of Otolaryngology, Department of Surgery, University of Granada, 18011 Granada, Spain
| |
Collapse
|
4
|
Hajiabolhassan F, Tavanai E. Diabetes-induced auditory complications: are they preventable? a comprehensive review of interventions. Eur Arch Otorhinolaryngol 2021; 278:3653-3665. [PMID: 33555440 DOI: 10.1007/s00405-021-06630-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels, which, over time, lead to major chronic complications in various organs of the body. A growing body of research suggests that diabetes could also result in degenerative changes in the auditory system. To date, several attempts have been made to prevent and reduce diabetes-induced auditory complications. Such attempts have generally focused on disease modifying as well as other pharmacological treatments involving several herbal and non-herbal agents such as vitamins C and E, rutin, resveratrol, coffee, trigonelline, Dioscorea nipponica, red ginseng, Pterostilbene Bofutsushosan, Daisaikoto, tolrestat, ACE inhibitors (enalapril), Ca antagonists (nimodipine), Lipo-prostaglandin E1, methylprednisolone, dexamethasone, and chlorogenic acid and also other strategies like acupuncture. However, there is no consensus about which are the most effective strategies for preventing and reducing auditory complications in diabetic patients with few side effects and maximum efficacy. This paper provides a comprehensive review of interventions for preventing and treating diabetes-induced auditory complications to help therapists.
Collapse
Affiliation(s)
- Fahimeh Hajiabolhassan
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Avenue, 0098, Tehran, Iran.,Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Avenue, 0098, Tehran, Iran.
| |
Collapse
|
5
|
Pasquier J, Spurgeon M, Bradic M, Thomas B, Robay A, Chidiac O, Dib MJ, Turjoman R, Liberska A, Staudt M, Fakhro KA, Menzies R, Jayyousi A, Zirie M, Suwaidi JA, Malik RA, Talal T, Rafii A, Mezey J, Rodriguez-Flores J, Crystal RG, Abi Khalil C. Whole-methylome analysis of circulating monocytes in acute diabetic Charcot foot reveals differentially methylated genes involved in the formation of osteoclasts. Epigenomics 2019; 11:281-296. [PMID: 30753117 DOI: 10.2217/epi-2018-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To assess whether DNA methylation of monocytes play a role in the development of acute diabetic Charcot foot (CF). PATIENTS & METHODS We studied the whole methylome (WM) of circulating monocytes in 18 patients with Type 2 diabetes (T2D) and acute CF, 18 T2D patients with equivalent neuropathy and 18 T2D patients without neuropathy, using the enhanced reduced representation bisulfite sequencing technique. RESULTS & CONCLUSION WM analysis demonstrated that CF monocytes are differentially methylated compared with non-CF monocytes, in both CpG-site and gene-mapped analysis approaches. Among the methylated genes, several are involved in the migration process during monocyte differentiation into osteoclasts or are indirectly involved through the regulation of inflammatory pathways. Finally, we demonstrated an association between methylation and gene expression in cis- and trans-association.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Mark Spurgeon
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithica, NY, NY-14850, USA
| | - Martina Bradic
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Marie-Joe Dib
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Rebal Turjoman
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Alexandra Liberska
- Flow Cytometry Facility, Microscopy Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Michelle Staudt
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Khalid A Fakhro
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Human Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Robert Menzies
- Department of Podiatry, Hamad Medical Corporation, Doha, Qatar
| | - Amin Jayyousi
- Department of Diabetes and Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | - Mahmoud Zirie
- Department of Diabetes and Endocrinology, Hamad Medical Corporation, Doha, Qatar
| | | | - Rayaz A Malik
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Talal Talal
- Department of Podiatry, Hamad Medical Corporation, Doha, Qatar
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Jason Mezey
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithica, NY, NY-14850, USA
| | - Juan Rodriguez-Flores
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Department of Biological Statistics and Computational Biology, Cornell University, Ithica, NY, NY-14850, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY, NY-10021, USA.,Heart Hospital, Hamad Medical Corporation, Doha, Qatar.,Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, NY, NY-10021, USA
| |
Collapse
|
6
|
Zhang HH, Han X, Wang M, Hu Q, Li S, Wang M, Hu J. The Association between Genomic DNA Methylation and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2019; 2019:2494057. [PMID: 31781662 PMCID: PMC6875377 DOI: 10.1155/2019/2494057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
AIM DNA methylation is thought to be involved in regulating the expression of key genes and inducing diabetic peripheral neuropathy (DPN). However, clinically, the level of whole-genome DNA methylation and its relationship with DPN remains unclear. METHODS 186 patients with type 2 diabetes mellitus (T2DM) admitted to the Second Affiliated Hospital of Soochow University since Jul. 2016 to Oct. 2017 were enrolled in the study, including 100 patients in the DPN group and 86 patients in the non-DPN group, diagnosed with Toronto Clinical Scoring System (TCSS). Clinical and biochemical characteristics between the two groups were compared, and the correlations with TCSS scores were analyzed. Furthermore, the levels of genomic DNA methylation of leukocytes, measured with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), were also analyzed between the two groups. RESULTS Age, duration, triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), creatinine, uric acid (UA), blood urea nitrogen (BUN), and C-reactive protein (CRP) were significantly higher in the DPN group. Estimated glomerular filtration rate (eGFR) and the level of genomic DNA methylation were much lower in the DPN group. Spearman correlation analysis showed that TCSS was positively correlated with age, duration, UA, and CRP and was negatively correlated with body mass index (BMI), eGFR, and the level of genomic DNA methylation. Interestingly, multiple stepwise regression analysis showed that only duration, genomic DNA methylation, and eGFR had impacts on TCSS. The results also showed that the levels of genomic DNA methylation did not change significantly whether or not there was renal injury. Another multiple stepwise regression analysis showed that TCSS and BMI were the influencing factors of genomic DNA methylation. Finally, we found that genomic DNA methylation levels were decreased significantly in the DPN group compared with the non-DPN group when the duration is ≥5 years or BMI ≥ 25 kg/m2. CONCLUSION Low level of genomic DNA methylation is a relative specific risk factor of diabetic peripheral neuropathy in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Xingfa Han
- Department of Endocrinology, Suzhou Science and Technology Town Hospital, Nanjing Medical University, Suzhou 215004, China
| | - Mengmeng Wang
- Clinical Pharmacology Laboratory, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Qingfang Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Sicheng Li
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Meng Wang
- Clinical Pharmacology Laboratory, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| |
Collapse
|